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Two-dimensional Sisyphus cooling in a three-beam laser configuration
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(Received 2 February 1994)

Calculations on the steady-state distribution of atoms cooled in three coplanar laser beams are
presented. For this three-beam configuration, the achievements of Sisyphus cooling are independent
of Quctuations in the relative time phases between the beams. The atomic motion is quantized and
the steady-state solution of the density-matrix equations is found within a secular approximation.
We obtain a minimum width of the cooled momentum distributions on the order of six photon
momenta.

PACS number(s): 32.80.Pj, 42.50.—p

Laser cooling has been the subject of much work during
the last 20 years [1,2] in both experiments and theory. In
"optical molasses" experiments, atoms with kinetic en-
ergies equivalent to temperatures of a few microkelvin
have been observed [3,4], corresponding to rms momenta
on the order of the photon momentum hII. . Theoretically,
such low temperatures have been accounted for in one-
dimensional laser configurations within both semiclassi-
cal [5] and quantum treatments of the atomic motion
[6], and recently two-dimensional laser cooling has also
been studied by full quantum calculations [7,8] similar
to those of [6]. Extensive numerical calculations on two-
dimensional (2D) and 3D cooling have been performed
within a standard semiclassical description [9,10], but in
the case of optimum cooling this approach is not neces-
sarily justified.

In this Rapid Communication, quantum calculations
on polarization gradient cooling in a three-beam, two-
dimensional laser configuration are presented. We use
the secular approximation described in [6], which is use-
ful for the type of polarization gradient cooling named
Sisyphus cooling. The three-beam configuration is ex-
perimentally attractive since in this case no control over
the time phases between the beams is needed [11], as
long as phase fluctuations are slow on the time scale of
the atomic motion. Changes in the two relative phases
correspond to a translation in the two-dimensional space.

The simplest transition that exhibits Sisyphus cooling
is one of angular momenta J~ =

2 m J = 2. When
the oscillating electric field is confined to a plane, there
is no coherence between the two ground-state Zeeman
sublevels of this system. This property is independent of
simplifications in the pattern of spontaneous emission, as
demonstrated in Ref. [8).

As in the 2D experiments of Ref. [11], the laser field
studied is composed of three traveling waves of equal
strength and with coplanar wave vectors which are ro-
tated 120' with respect to each other. Each component is
linearly polarized in the plane. Since the relative phases

are irrelevant, the positive frequency part of the electric
field may be represented by the expression
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We study the case of a weak laser field, i.e., the satu-
ration parameter
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with operators for an atom of mass M

g2H= +U,
2M

U = -m..V&-~V&+~
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is small, so « 1. Here, 6 denotes the frequency detuning,
h = url „,—u q, I' the linewidth of the atomic tran-
sition, and 0 the Rabi &equency corresponding to one
traveling wave and a transition with maximum value, d,
for the dipole moment, 0 = 2dEO/h. In this limit, it is
appropriate to perform an adiabatic elimination of the
excited states and work with an atomic density matrix
in the basis of ground-state sublevels only [12,13]. Then
the ground-state density matrix solves the equation
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In the basis of standard polarizations, eq, q = 0, +1, the

components of A~+~ read

6(+l = ) (."'
le, m+ q)(g, ml. (5)

Here, the states correspond to a well de6ned angular mo-
mentum along the z axis, and the quantities Cq denote
the Clebsch-Gordan coefIicients of the atomic transition.
The summation in (3c) extends over two mutually or-
thogonal polarization vectors for each value of the unit
vector n, indicating the direction of spontaneous emission
of a photon within the solid angle dO„-.

With the electric field of (1) and the simple atomic
transition Jg ——

2 ~ J, = 2, we find that the opti-
cal potential U is diagonal in the basis of ground states
lg, m) = lg~) with diagonal elements

w-Ia} = (E~+' .-) .-'"""v~+~

The operators of atomic position and momentum have
been denoted R and P. The dipole operator D has
been decomposed in a raising and a lowering part and
expressed in the form D = d(b(+l + 6( l), and the di-
mensionless operators V~+~ and V& ~ represent the cor-
responding terms in the atom-laser interaction potential
V = —D E, in the rotating-wave approximation,

contains photons emitted along the z axis and along the
directions of the three laser beams only. This distribu-
tion preserves the triangular symmetry of the problem in
the xy plane. The last term in the relaxation operator
l.'„~ „ then becomes

—I's() ) o.„-) W~(n) pW~(n) t,
n eJn

(8)

where a„- are normalization factors of 4 for n = ke, and
w

of s for n = + &,j = 1, 2, 3. With this emission pattern,
only three Bloch vectors are coupled and we have used
the triple

k ~3k
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When diagonalizing the Hamiltonian in order to 6nd the
periodic functions P„z, we use a Fourier expansion in
momentum states and introduce a cutofF at momenta

lp l, lp„l = JVhk. In the results to be presented below,
the parameter N ranges between 16.5 and 25.5.

As discussed in the papers [6—8], the secular approx-
imation is applicable when the ratio between a typical
splitting between eigenenergies in the optical potential
and a typical linewidth of a transition between them is

large. In two-dimensional systems, these two quantities
are on the order of the recoil energy of the atom associ-
ated with the emission of a photon, ER = 5 k /2M, and
M'80, such that the validity condition reads
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Within this region, the equation of evolution in (2) can
be reduced to a set of rate equations between diagonal
elements of the density matrix II, = (ilpli) in the basis
of eigenstates li) = ln, q, 6) of the Hamiltonian (3a),

dO,* = —) ~, ,II;+) ~, ,II, ,

J 2

as also described in [6]. The rates pi~; are obtained from
the last term in (3c) with the emission pattern of (8), and
one finds the expression

Here, we have chosen a negative detuning, b, to see cool-
ing. We note from (6) that U+ and U differ by a trans-
lation in space only.

Due to the periodicity of the optical potential, the
eigenstates of the Hamiltonian, 8, may be characterized
by a band index n and a Bloch vector q, in addition to
the internal state g~. We find the eigenstates in, e.g. , U+
as the direct product of lg+) and a spatial eigenfunction
of Bloch type ln, qQ

(Rln, qQ
= e'~ P„q(B),

where P~ ~(B) has the periodicity of U+(R). The vec-

tor q is chosen within the first Brillouin zone which is a
hexagon of outer radius k with two corners at Eke .

To make the problem tractable, we replaced the spon-
taneous emission pattern in (3c) by a distribution which

~, ; = -I'sp):~;) l(il(&( ' e)'e *"""y'"l~)l'.
n eJn

Apart kom the common factor of F80, the rates depend
upon the parameters in the problem only through the
ratio Up/E~ = sh[blsp/EIi that appears in the matrix
elements. Consequently, the steady-state populations II,.
depend on Up/EIi only.

In Fig. 1, we show the populations of the lowest ten
energy bands found by solution of (10) in the steady
state, for three diferent values of the cutofF parameter
JV. These populations vary smoothly with Up/ER, as in
the one-dimensional case of [6]. This is in contrast to the
results of [7], where tunneling through a potential bar-
rier between a shallow and a deep potential well led to
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in the figure. These six minima appear as the corners of
a hexagon and the variation in atomic density along the
perimeter of the hexagon amounts to a little more than
a factor of 2, whereas the difference in density between
global potential maxima and minima is larger, on the or-
der of 9. From the results in [7] and in this Rapid Com-
munication, one indeed observes such significant modu-
lation of the position distributions in these optical poten-
tials that one expects a two-dimensional lattice of cooled
atoms if the density becomes of the order of an atom per
potential minimum. In the experiments, however, such

high densities have not yet been attained [11].
With the four-beam laser configuration studied previ-

ously [7,8], resonances appear in the populations of the
lowest lying eigenstates in the optical potential as func-
tions of potential strength, due to tunneling between two
types of potential minima. The situation studied here
leads to only one type of minimum and the populations of
all eigenstates vary smoothly with Uo/EIt. We note that
resonances might appear with the three-beam configura-
tion for an atomic transition of higher angular momen-
tum since they have been found in 1D Sisyphus cooling
on a Js = 4 to J, = 5 transition [15].

In a comparison of experimental results for the temper-
ature in 1D and 3D Sisyphus cooling, on atoms of tran-
sition with higher angular momenta, Jg ——3 M J, = 4

(Rb) and Jg = 4 -+ J, = 5 (Cs), the curvature of the
optical potentials emerged as a relevant parameter [16].
This indicates that the steady-state distribution is de-

termined mainly by the atoms bound around the bot-
tom of the potential well: The lowest bound eigenstates
and their energy bands can, to a good approximation, be
determined &om a harmonic potential, and these eigen-
states are more sensitive to local surroundings, i.e., the
potential curvature, than global surroundings, e.g. , the
maximum potential depth. In our 2D calculations, we
have compared the variation of 2p, with the values of
the laser parameters for three different laser setups. The
minimum width of p, 5.95k of the cooled momentum
distributions in the three-beam configuration studied in
this paper exceeds the minimum width of p, 3.55k for
the four-beam configuration studied in [8], with the opti-
mum choice for the relative time phases. With a different
choice of relative phases in the four-beam configuration,
we have found a minimum width on the order of 5.5 hk.
The three minimum values are obtained with approxi-
mately the same curvature of the potential well, but if
we consider also the overall variation of 2p„ it is not
clear whether the curvature or the depth of the potential
is the appropriate parameter to choose.
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