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Nonclassical states of motion in a three-dimensional ion trap
by adiabatic passage

3. I. Cirac, ' R. Blatt, ~ and P. Zoller
Joint Institute for Laboratory Astrophysics, University of Colorado and 1Vational Institute of Standards and Technology,

Boulder, Colorado 80809-0/$0
(Received 20 December 1993)

A scheme for the preparation of nonclassical states of motion in a three-dimensional harmonic
ion trap is proposed. The technique is based on adiabatic passage along dressed energy levels of the
strongly coupled ion-trap system by varying the laser frequency.
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Recent experiments on laser cooling and trapping [1]
have reported the observation of quantum effects related
to the center-of-mass motion of ions and atoms. In ion
traps, sideband cooling to the vibrational ground state
of the trapping potential has been demonstrated [2], and
for neutral atoms quantized motion in optical potentials
has been observed in spectroscopy of optical molasses [3].
An intriguing new perspective is the possibility to pre-
pare nonclassical states of motion of cold atoms and ions

[4—6]. This is interesting Rom the point of view of high-
resolution spectroscopy with cold atoms and ions. In ad-
dition this opens a new route for experiments to test fun-
damental questions in quantum mechanics, such as the
formation and decay of macroscopic superposition states.
We have proposed [5] the generation of Fock states of
motion of trapped ions (energy eigenstates of the trap)
by observation of quantum jumps in three-level systems
placed at the node of a standing laser wave. In a similar

configuration, squeezed states of motion can be prepared
as a "dark state" of the atom in a multichromatic laser
wave [6]. For an ion located at the node of a standing
light wave there exists an interesting analogy between the
ion in the trap and the Jaynes-Cummings model (JCM)
of cavity quantum electrodynamics (CQED) [5,6].

In this Rapid Communication we discuss a scheme for
preparation of nonclassical states of motion of trapped
ions based on adiabatic passage along dressed energy lev-
els of the strongly coupled trap-ion system. In compar-
ison with our previous proposals [5,6] this scheme has
the advantage that it can be easily extended from one
to two or three dimensions. It is not restricted to the
Lamb-Dicke limit (LDL); i.e. , does not assume that the
ion is localized in a region small compared to the op-
tical wavelength [8], and thus it allows the preparation
of superposition states larger than the wavelength of the
light. Finally, the present scheme is simpler to realize
experimentally and is fairly insensitive to uncertainties
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where as = [mvs/(25)]~~~2) [Bs + i'/(mvs)] is the usual
annihilation operator along the direction j (R and P
are position and momentum operators, and m is the
ion mass), and v~. is the frequency of the ion motion in
the j direction. Denoting ~ns) . (j = x, y, z) the Fock
state (eigenstate) of the harmonic oscillator with energy

hvar(ns + 1/2), we seek to prepare (i) Fock states in three
dimensions, i.e. ,

f@) = iin, n„,n, ) = fn, ) ]n„) ]n,)„
and (ii) linear superpositions of these states, such as

)@) = a~n. , n„, n, ) + Pain. , n„+1,n, ) .

(2)

To prepare these states, the ion is assumed to interact
with three standing waves of frequencies u, uy, and u,
along the directions z, y, and z, respectively. These laser
beams excite an internal transition ~g) ~ ~e) of the ion
modeled here by a two-level system with transition fre-

quency ~0. For the preparation of the nonclassical states
(2) and (3) we propose to use a slow variation of the laser
frequency in such a way that the motion of the ion is left
in one of the states (2) or (3), whereas the internal atomic
state is the ground state ]g). This adiabatic passage is
coherent, and we will assume that there is no sponta-
neous emission during the preparation. This is the case,
for example, when the lasers excite an electric-dipole for-
bidden transition [2]. After the frequency chirp cycle the
ion will be left in its internal ground state; therefore the
prepared motional state persists due to the absence of
spontaneous emission.

The Hamiltonian describing the motion of the ion in
the presence of the laser beams is

in experimental parameters. Adiabatic passage has been
suggested in Refs. [7] to prepare nonclassical states of
light in CQED.

The Hamiltonian describing the motion of a trapped
ion is given by

p2

2=&~y~&

) nv, a,'.a, +-
j=x,y, z
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0 = IItp + III + II

where Ht„ is given in (1), HI = tripoz/'2 (5 = 1) is the
&ee Hamiltonian describing the two-level system, and

H;„, = ) —'sin(k, R, +P, )(o+e * "+H.c.)

n

V
1I

V

In-l, e

In, e&

In+1,e&

gives the interaction with the laser. Here, o~, o., are the
usual spin —1/2 operators describing the two-level system,
O~ is the peak Rabi frequency of the laser standing wave
in the direction j = x, y, z; k~ = u~/c, and Pz depends
on the relative phase between each of the lasers forming
the standing wave in this direction.

In the following we will consider that at any given time
only one standing wave (denoted by j) interacts with
the ion. In this case, in a frame rotating with the laser
&equency u~, the Hamiltonian is

&&
—4)p

tp—
2

0'z

In-l, g&

In,g)

,g&

FIG. 1. Energy levels for a two-level ion moving in
a harmonic potential. For u ~0, transitions from

~n, g) ~ ~n, e) are close to resonance (2), whereas transi-
tions with ~n, g) ~ ~n + l, e) are very far off resonance (1)
and (3). For u Ido —v, transitions from In, g) ~ ~n —1,e)
are close to resonance (1) whereas all other transitions are
very far off resonance. For cu uo + v, only transitions from
In, g) ~ ~n+ 1,e) are close to resonance (3).

+—sin(k, R, + P )(o+ + H.c.) .O~
(5)

In the absence of spontaneous emission and considering
interaction with a single laser only, the motion in the
three spatial dimensions decouples, which allows us to
study the Hamiltonian H in one dimension. For simpli-

city we will suppress the subscript j in the following. In
contrast to the standard theory of ion cooling [8,9], we

will not assume in the following that we are in the LDL.
Below we discuss the eigenvalue spectrum and dressed

states of the Hamiltonian (5) as a function of the laser

frequency. In particular we are interested in the evolution
of the dressed states in an adiabatic &equency sweep. Let
us denote by ~n,, g) (~n, e)) the state of the ion in which
the internal two-level system is in the ground (excited)
state, and with n the excitation number of the harmonic
oscillator. The bare Hamiltonian (0 = 0) shows degen-
eracies whenever the laser detuning is a multiple of the
trap frequency, u —Idp ——kv (k = 0, kl, . . .); i.e., the
laser is tuned to one of the "motional sidebands" corre-
sponding to a degeneracy between In, , g) and ]n+ k, e).
In the presence of the laser these degeneracies become
avoided crossings, and for sufBciently weak laser excita-
tion these avoided crossings will be isolated (nonoverlap-

ping). For example, when the laser frequency is close to
the two-level transition resonance (~&u

—
&up~ (( v) transi-

tions changing the harmonic oscillator quantum number
n are off resonance (k = 0) and can be neglected (arrows
1 and 3 in Fig. 1). In this case the Hamiltonian (5) can
be approximated by

Similarly, for [Id —(up+ v)
~

&& v, only transitions increas-
ing the quantum number n by 1 (k = +1) contribute to
the Hamiltonian H;„q (arrow 3 in Fig. 1). In this case,
H can be approximated by the anti-Jaynes-Cummings
Hamiltonian

H = Hg„— ' o, + n+ '(o+a,. +—H.c.). (8)
~zc (~j —~o)

ll,e) 11,g)

l2,g)

IO,e)

l2,e&

10.g)

In Eqs. (6)—(8) the n's are numerical factors depend-
ing on. the dimensionless Lamb-Dicke parameter g
[hk /(2mv)]( ~ i and the phase P~. For an isolated
avoided crossing the dressed states are readily obtained
by diagonalizing the 2 x 2 matrix of degenerate states.

Figure 2 is a numerical example of a dressed energy
spectrum. In this 6gure we have plotted the exact eigen-
values of H (calculated numerically) as a function of
the laser frequency u, for q = 0.5 [10], 0 = 0.3v, and

P = x/4. The dotted line represents the energies of the
"bare" states. For the laser &equencies far below the
two-level resonance (point C in Fig. 2) no transitions be-
tween states ]g) and ~e) take place, since they are very far

O~H = H» — (Id —uo)cr + no — (o+ + H—.c.).P 2 2 2
(6) Il,g) Il,e)

For laser &equencies close to the lower motional sideband
~u —(urp —v)

~
&& v (k = —1) only transitions decreasing

the quantum number n by 1 are important (arrow 1 in
Fig. 1). Now, H can be approximated by the Jaynes-
Cummings-type Hamiltonian

IO,g)
C B A

10,e&

H = H,„— ' o., + n '(Ir+a, + H—.c.). (7)
~c (~~ —~o)

2
'

2

FIG. 2. Energy level diagram for a two-level ion interacting
with laser light, as a function of the laser frequency cu. Dotted
lines correspond to the bare states.
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off resonance. Hence, the eigenstates of H are those of
the free part Ht„+ HI, i.e. , ln, g) and ln, e). For increas-
ing values of the laser frequency, states ln, g) couple to
states ln —1, e) via the Hamiltonian H, and therefore
the eigenstates (or dressed states) are linear cornbina-
tions of these two states. In particular, for ~ = ~0 —v it
can be easily shown that the eigenstates are

which corresponds to the 6rst level anticrossing of Fig. 2.
For increasing values of the laser frequency, but still far
from resonance (point B), states In, g) and Im, e) are
again decoupled. If the laser frequency is increased to the
two-level resonance, states ln, g) couple to states ln, e) via
Hamiltonian H, and for cu = uo the eigenstates are

(10)

time duration of each cycle, and 0 is the effective Rabi
frequency for transitions ln, g) i ln —1,e), ln, e), which
for the sake of simplicity we assume to be similar. For
example, for a trap frequency of (27r)1 MHz, and an ef-
fective Rabi frequency of (2x)50 kHz, the adiabaticity
condition implies interaction times T » 60 ps. These
numbers are within reach of current experiments with
trapped ions. It is worth emphasizing the fact that under
low-excitation conditions [Ilj and when the adiabaticity
condition is satisfied, this procedure for preparing Fock
states is insensitive to the specific values of the param-
eters involved in the process. Furthermore, it can be
easily generalized to other laser configurations, such as
traveling wave excitations.

General linear combinations of neighboring Fock states
can be prepared following the above procedure, with the
initial state of the ion in the superposition state (nlg) +
/le)) IO). As can be deduced following the level diagram
of Fig. 2, after one cycle the state of the ion becomes
(all) + PIO)) g). After n cycles, the state of the ion will
be (nln) + P n —1))lg).

which corresponds to the second level anticrossing of
Fig. 2. Similarly, for increasing values of the laser
frequency one can easily identify the eigenstates of
H by considering transitions between states In, g) and
ln+ 1, e) via the Hamiltonian H+~+. In particular, for
u = uo + v, the eigenstates are

X a)'

1
I@"+) = (ln g) + ln+ 1 e)) (n = 0, 1, . . .),

X Y
P„(2) P, (2)

P„(0)$) P„(t) g P&(0)
Ir

P&(1) I(
P (OI

b)
P, (2)

The ability to change adiabatically the laser frequency
offers the possibility to generate Fock states of the atomic
motion by adiabatically following one of the dressed
states. To illustrate this, let us assume that the initial
state of the ion is in IO, g). This is the vibrational ground
state in which the ion is left after sideband cooling. The
laser frequency is initially set to a certain value between
uo and no+ v (denoted by A in Fig. 2), so that all transi-
tions are off resonance. The corresponding energy level is
denoted by 1 in the energy diagram of Fig. 2 ~ When the
laser frequency is decreased adiabatically, the state of the
ion changes according to the dressed energy diagram of
Fig. 2. Once the frequency u reaches C, the state of the
ion has evolved to ll, g) (point 2 in the figure). Now the
laser is switched off and on again, but with the original
frequency A. Thus, the state of the ion corresponds to
the point 3 in the figure. By decreasing adiabatically the
laser frequency again the ion ends up in the state I2, g)
(point 4 in the figure). By repeating this cycle n times,
the state of the ion becomes ln, g); i.e., a Fock state with
n quanta is prepared. Note that after any cycle, the
internal structure of the ion is left in its ground state
lg), and therefore the Fock state is not modified due to
spontaneous emission from the electric-dipole forbidden
transition.

The conditions for the adiabatic following can be eas-
ily estimated for a laser frequency varying linearly with
time. In this case one finds OT )) v/0, where T is the
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FIG. 3. Preparation of the 3D Fock state I2) I2)„I2), by
adiabatic variation of the laser detuning. (a) Variation of the
laser frequency as a function of time (X, Y, and Z indicate
the direction of propagation of the laser that is on during each
time interval; these time intervals are separated by vertical
lines in the figure). (b) Populations of the states In), In)„,
and In) (n = 0, 1, 2) vs time. Note that we have plotted
the populations only during the time intervals in which they
change due to the presence of the laser. (c) Population of the
internal ground state Ig) vs time. (d) Occupation probabilities
P, P„, and P, of the Fock states of the harmonic oscillator
along the directions x, y, and z, respectively, at the end. of the
preparation (time=6 ms). Parameters are v/(2vr) = 3 MHz,
fl/(2vr) = 300 kHz, P = m/4, and g = 0.5. Note that under
these conditions we are not in the Lamb-Dicke limit.
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Fock states in two and three dimensions may be pre-
pared as follows. We assume that the ion has been cooled
via sideband cooling to its lowest state along the three di-
rections; i.e., the initial state of the ion is ]0,0, 0, g). Ap-
plying lasers along one direction, for example, x, and with
the procedure described above, the ion ends up in the
state in, O, O, g). Next, the lasers along z are switched
oK, and those along y switched on. By adiabatic change
of the laser frequency, the state in~, n„,0, g) is prepared.
Finally, proceeding in the same manner with the z direc-
tion, one can prepare state (2). Obviously, by combining
this procedure with that described in the previous para-
graph one is able to generate state (3).

As a numerical example, we have plotted in Fig. 3
the time evolution for a pulse sequence that leads to the
preparation i0, 0, 0) ~ i2, 2, 2) by an adiabatic variation
of the laser detuning. These curves were calculated by
solving the full time-dependent Schrodinger equation us-

ing a truncated basis of oscillator eigenstates. The fre-
quencies of the lasers along the three directions as a func-
tion of time are plotted in the upper part of Fig. 3(a).
Figure 3(b) shows the populations in), in)„, and ]n),
(n = 0, 1, 2) of the trap states and Fig. 3(c) is a plot of
the occupation of the internal ground state ig) as a func-
tion of time. As indicated in the population histogram in
Fig. 3(d) a three-dimensional (3D) Fock state i2, 2, 2) has
been prepared after the completion of the three adiabatic
cycles.

Finally, entangled states ]4) = ai0, 1,0) + P]1,0, 0)
can also be prepared. For example, to prepare this state
with a = P = I/~2 one can proceed as follows. In a first
step with the ion initially in its ground state, the fre-
quency of the laser along the z direction is adiabatically

increased &om A in Fig. 2 up to no+ v . This corre-
sponds to moving from points 1 to 5 in Fig. 2. According
to (11), the state of the ion in this first step becomes

(]0,0, 0, g) + ]1,0, 0, e))/~2. In a second step the fre-
quency of the laser in the direction y is increased from
C to B, which corresponds to moving the second term of
the wave function from 6 to 7 (the first part of the wave
function remains the same, as can be deduced from the
figure). Again, the internal state of the ion factorizes in
the final state, and therefore it is left in its ground state.

In summary, we have proposed a scheme for the
preparation of a variety of three-dimensional nonclassi-
cal states of motion in a trap. This technique is based on
the excitation of an electric-dipole forbidden transition
by diferent lasers in an optical-molasses con6guration,
in such a way that during the preparation no sponta-
neous emission takes place. Nonclassical states can be
produced by adiabatically varying the frequency of the
lasers. The scheme presented here is valid beyond the
Lamb-Dicke limit, and is not sensitively dependent on the
specific values of the laser parameters, trap frequencies,
etc. Furthermore, after the state of motion is prepared,
the internal structure of the ion is left in its ground state,
and therefore the nonclassical state persists. The param-
eters of this scheme are well within the reach of current
experiments with single trapped ions, such as Ba+, Ca+,
or Hg+.
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