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Theory of resonances and bound-state management
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Complicated potential deformations performing a desired changing of the decay rates of qua-
sistable states (resonance widths) or deleting chosen bound states are explained surprisingly simply.
Exotic stalactitelike potential deformations “carrying” the chosen states through potential barriers
are elementary constituents of the general theory of resonance management.
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Recently how to manage the bound-state parameters
has been clarified [1-4]. But achieving the same was also
desirable in the second part of quantum mechanics: in the
scattering theory. Now we have succeeded in elaborating
the qualitative algorithm of resonance management. It
appears that for this it was essential to understand the
mechanism of removing the chosen bound states.

It is often necessary to change the spectrum and res-
onance parameters in a desired way. For instance, this
is needed when comparing experimental and theoretical
spectroscopic and scattering data. This is also of prin-
cipal interest for deeper insight into the peculiarities of
the quantum world.

Let us consider at first the deleting of the chosen bound
states. On the one hand, it is equivalent to shifting the
infinite number of energy levels: each in place of its upper
neighbor. But it is impossible to imagine the result of the
addition of the corresponding potential perturbations [1-
4]. The essence of the necessary potential transformation

[I; (z) = V(z)] was understood after a careful investiga-
tion of the quantum pictures such as those in Fig. 1 (for
the deleted second, third, or fourth levels) which were
drawn using the exactly solvable model [5-7]

FIG. 1. The deformations (solid lines) of the oscillator
potential wells (dashed lines) by deleting (a) the second, (b)
the third, and (c) the fourth energy levels.
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Here M, is the normalizing parameter corresponding,
in the case of the initial oscillator potential, to the

uth eigenfunction }(7)‘” with the asymptotic behavior

FO',, (z) 0(]\04“ z* exp(—z?/2) far to the left (at large z).
The following clear qualitative explanation of these po-
tential transformations was found. We have to remove
one knot in each of an infinite number of states above the
deleted one; that is, to make them a half-wave shorter.
This is achieved by narrowing the potential well above
the chosen level, e.g., by shifting the right potential wall
as in Fig. 1. But in a narrower well, the energy lev-
els below the deleted state must go up. To push them
down to their previous positions, the lower part of the
perturbed well has to be changed according to the rule
described in [2-4]. The levels are shifted down with so
many additional partial wells as there are maxima of the
module of the state under the deleted one.

There were indeed some hesitations about the unex-
pected symmetry violation of the present potential. The
original potential was symmetrical as was the modulus
of the deleted state. We have constructed the present
potential according to the requirement of level positions,
and the shape of the symmetrical potential has been de-
termined solely by energy level positions in it. Why then
does the asymmetry appear? It was introduced uninten-
tionally into the kernel of the inverse problem equation
(see [2]) when the norming constants fix the left-hand-
side asymptotic behavior of the eigenfunctions as in the
original well. A trivial illustration of removing only the
ground state from the equidistant spectrum of the special
original (oscillator) potential was published by Sukumar
[7]. In this case, the potential is simply shifted up by
the energy interval between the levels. But at that time,
there were no general algorithms of the qualitative pre-
diction without mathematical manipulations of how the
shape of the arbitrary initial potential must be changed
to remove arbitrary energy levels as has been done here.

The annihilation of a level can be understood as a limit
of the continuous decreasing of the corresponding norm-
ing constant (this means some kind of connection be-
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FIG. 2. The deformation of the oscillator potential by

suppressing the tail (on the left) of the wave function for the
second energy level. This is the intermediate stage for the
subtraction of the chosen level when the narrow additional
stalactite-type well “carries away” to the right infinity the
localization domain of the wave function of the state to be
annihilated.

tween independent spectral parameters F, and M,,). The
typical picture for the small norming constant is shown
in Fig. 2.

A typical “stalactite” appears in the perturbed po-
tential whose shape favors the retaining of the standing
half-wave of the state chosen for the annihilation. The
remaining part of this eigenfunction becomes more and
more self-suppressed inside the left well when its main
part is carried away by the stalactite. Unlike this, for all
other states there is self-suppressing inside the stalactite
and the concentration of the wave inside the big well.
The further the additional well moves away, the higher
the repulsive “lap” grows, which makes the main well
narrower. The first knots from the right (one for each
of these states) are posed inside the intermediate barrier.
In the limit, these first knots are moving away to infinity.

In the process of removing several bound states there
appear a corresponding number of stalactites. Their po-
sitions depend on the relation of the values of the proper
norming constants. Particularly, the stalactites can move
to the left (e.g., as a mirror reflection of Fig. 2, symmetri-
cally with respect to the center of the original potential).

The connection of level annihilation with variations of
normalizing constants elucidates in an alternative way
the behavior of the potential perturbations by the varia-
tion of reduced widths [1,2].

The peculiarities of the present quantum pictures are
so clearly understood that it is possible to give qualita-
tive predictions without computers or analytical manip-
ulations. For example, for the creation of the new level
above the third one the well must be made wider with
the upside-down shape of the perturbed bottom (with
respect to Fig. 1). It is also easy to predict the shape of
deformed potentials on the half axis in Gelfand-Levitan’s
and Marchenko’s approaches. All these predictions were
confirmed by exact calculations.

What is more important is that the mechanism con-
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FIG. 3. The potential differing from that in Fig. 2 by
bending the infinite right wall so that bound states become
decaying. The stalactitelike narrow potential well contain-
ing the main part of the chosen decaying state can carry it
through the barrier. Thus, one can, at will, increase the decay
rate by bringing this well (and the wave function in it) to the
outer boundary of the barrier.

sidered above elucidates a possibility to also manage the
decay rates of quasibound states. Indeed, let us bend

the right wall of the initial potential I;(x) to transform it
into a finite potential barrier vanishing at large = values
(see Fig. 3). Then, the bound states become the qua-
sistable states which decay through the barrier, and it is
clear that the higher the level of the decaying state lies
the bigger the corresponding decay rate. Let us choose
some quasibound state. We can require that its decay
width will increase, whereas the other states will remain
unchanged. It is attained with the special auxiliary sta-
lactitelike potential well carrying to the outer boundary
of the barrier the chosen quasibound state while all other
states remain at their previous positions. So, for the cho-
sen state it becomes easier to decay through the narrower
barrier.

This mechanism has a general character. Arbitrary de-
cay rates for all quasibound states can be obtained by the
combination of stalactites: one for each level. The dis-
covered phenomenon can be investigated within the ex-
actly solvable models (see references in [8] and [2]). Now
we have the clear intuitive notion about the algorithms
of spectral management: the rules of arbitrary variation
of level positions, the corresponding norming constants
[2,4], and also the recipes of deleting and creating levels.
Now it becomes clear that even by the weak variation
of normalizing constants there always appear embryos of
the stalactites. See, for example, [2] and the perturba-
tions of the Coulomb potential considered in [9]. In the
case of infinite vertical potential walls the wave functions
are confined inside the finite interval. In this case, the
deleted state is “pressed into the wall.”

One of the authors (B.Z.) wishes to acknowledge stim-
ulating discussions with R. J. Slobodrian during his brief
visit to Quebec.
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