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We examine the role of fictitious gauge structure in nonadiabatic transitions for transport in open
paths. Local features of the gauge potential modify the nature of the intersection of the adiabatic
energy surfaces and thereby affect crucially the Landau-Zener formula for a single-passage transition

rate.
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The discovery of quantum adiabatic phase accompany-
ing transport along closed paths has already had a great
impact on various fields of physics and chemistry. This
global phase, originally discussed in connection with the
intersection of molecular energy surfaces, is attributed
to connections in the Hilbert bundle, i.e., to a fictitious
gauge potential [1].

A generalization of the influence of the quantum adi-
abatic phase to the nonadiabatic transitions is nontriv-
ial, because we capture the local (rather than global)
structure of the novel gauge potential via the transi-
tion rate. While several studies are concerned with this
theme, most of the efforts have concerned finding correc-
tions to the global geometric phase factor for closed or
near-closed paths [2].

Nonadiabatic transitions, however, occur widely for
both open and closed paths and they provide a key to un-
derstanding a variety of state-changing phenomena; e.g.,
two-level dynamics in the presence of magnetic and/or
electric fields, atomic and molecular collisions, Zener tun-
neling, etc. [3,4]. This kind of transition is induced at the
avoided crossings of the potential surfaces.

In this Rapid Communication, we consider nonadia-
batic transitions between a pair of states as a mechanism
for nonadiabatic transport along open paths. In partic-
ular, we consider the influence of the fictitious gauge po-
tential on the transition rate. Although we use, as a pro-
totype, the dynamics of a single spin in the presence of a
time-dependent magnetic field, the analysis presented is
applicable to other systems; e.g., two-level systems sub-
jected to time-dependent laser fields.

In the magnetic field B(t) = (B:(t), By(t), B)(t)), the
spin dynamics is described by the Schrodinger equation,
thd¥ /dt = H(B(t))¥, with

H(B() = 1o B()
1 By (1)
=3 (B,a) LB, (1)

where the negative of the Bohr magneton up has been
suppressed for simplicity. With the choice B| = wt,
B, =T, and B, = 0, we obtain the Landau-Zemer (or
curve-crossing) model. In our study, both B, and B,
are assumed nonvanishing and time dependent: B(t) ex-

B.(t) —iB,(t)
—B,(t) )’ @
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ecutes a winding (besides a translational) motion. We
shall evaluate the transition amplitude from one adia-
batic state at t = —oo to another at t = +o0.

First we briefly summarize the existing formulas [5,6]
for the transition rate in the presence of winding motion.
Choosing the adiabatic basis a(t) and 8(t), ¥(t) is writ-
ten as ¥(t) = Ci(t)a(t) + C2(t)B(t) and the Schrédinger
equation reduces to

ihCy = [E1(t) — A1 (t)]Cy — ih(84|W2)Cs,

)
iRCy = [Ba(t) — A2(t)]C; — iA(¥;|¥1)Cy,

with
A; = iﬁ(‘I’,‘l‘i’i) (i =1,2), (3)

where overdots denote time derivative, the {E;} are the
eigenvalues of H in (1) at particular times (adiabatic en-
ergies), and the {A;} are (mutually different) fictitious
gauge potentials [1]. In our notation i = 1 and 2 are as-
sociated with the lower- and higher-energy states, respec-
tively. This gauge structure leads to a novel geometric
phase for adiabatic transport along closed paths. As for
nonadiabatic transport, use of the path-integral method
and the stationary phase approximation leads to the fol-
lowing for the transition rate for a single passage of the
avoided crossing: p = exp(—26) with [5,6]

5= %Im /0 " HAE(t) — AA®)), (4)

where AE = E, — E;, AA= A; — A, and ¢, is the com-
plex crossing point at which AE vanishes. According to
the rigorous treatment given below, however, the gauge
potentials enter into the phase integral in a much more
intricate way and (4) is valid only in a very special limit.

We now examine the quantum dynamics for the Hamil-
tonian (1) using a diabatic (time-independent) basis.
Transforming to polar coordinates defined by B,(t) —
iBy(t) = B, (t) exp[—i®(t)] and introducing the unitary
transformation

e—i§/2 0
U(t) = ( 0 eiQ/Z ) ’
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we introduce a new wave function U defined by ¥ = U¥.
Then ¥ satisfies

1

ihd®/dt = H(8)¥ = ( By-#2 B,

5 o)
G

The transformed Hamiltonian H given by (5) is now
analytic throughout some strip of the complex-time
plane centered on the real axis, and it satisfies |H;,|/
|Ha2 — Hq1| — O for |t| — oo (i.e., absence of mixing be-
tween diabatic states). In this situation we can apply the
phase-integral method by Stiickelberg [7], then obtaining
for the full transition rate

2

P = 4p(1 - p)sin®(--")

with the single-passage rate p = exp(—26). [In this
Rapid Communication we are not interested in the phase-
interference factor, sin®(- - -), proper to the passage of suc-

AE ~
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cessive avoided crossings.] 4 is now given by

5= ;Im /0 " #AE®) (6)

with

AE = /{(B) - h$)? + BY)

= ,/(B? + B? — 2k&B) + h2$?2 7)
Il 1 Ii

the difference between adiabatic energies of H in (5).
Note that . is the complex crossing point [AE (t.) = 0]
nearest the real axis. Equations (6) and (7) are exact. In
the near-adiabatic region of the winding Landau-Zener
model, B (= T') is constant and predominant, whereas
& and By are slow and small variables in the transition
region near the avoided crossing. In this extreme case,
(7) is expanded in one of the slowest variables as

\/B% + Bt — 1dBy/,/B? + B2 + O(k*®?) for hé < By, (8a)

VBi + h2d2 + O(BH) for fi@ > B", (Sb)

followed by the corresponding expansion of ¢, in (6).

While the results in (6)—(8) are derived using the dia-
batic basis, we now rewrite them in terms of the adiabatic
basis: Definition (3) yields AA = A; — A; = h®B|/AE
and A = A, + A; = hd with AE = (B} + B})'/2.
Using these expressions in (7), we have

AE = { [AE2 — 2AAAE + (Z A)z] }1/2 )

With the same replacement in (8), the asymptotic be-
havior is given by

AE - AA for h® < By, (10a)

AE =~ 1/2 .
B2+ (2 4|7 for id > By, (10b)

with t. approximated by the values at which AE and
[B2 + (X A)%]Y/2 vanish in (10a) and (10b), respectively.
Therefore (4) is justified in the special limit when the
winding motion is much slower than the translational mo-
tion. In the opposite limit the sum of gauge potentials is
needed and, in the general case, we should use (9).

We shall now apply the results in (6), (9), and (10) to
a winding Landau-Zener (curve crossing) model where
By = vt, B = I'cos®, and By = I'sin® with & =
wt™/n (n = 1,2,...). For simplicity, v, I, and w are
assumed to be positive.

Below we shall use AE = [['2 + (vt)2]'/2, irrespective
of the value of n.

Case of n=1. In this case, the Galilean transformation
(t = t' =t — hw/v) smears out the phase factor, so that

r
there is no gauge structure and the ordinary Landau-
Zener transition rate prz = exp[—nI'?/(2hv)] is applica-
ble.

Case of n=2. Using in (10) AA = hvwt®?/AE and
S A = hwt, we have from (6)

(11a)

5= { [7T2/(4hv)](1 + hw/v) for hw K v,
(11b)

~ | n?%/(4h%w) for hw > v.

With the same expression for gauge potentials in (9), (6)
with £, = i['/|v — hw| yields § = n['?/(4Ajv — hw|), which
recovers the two limits in (11). While Berry carefully
analyzed the n = 2 case [6], he was mainly concerned

-In(P) (a) -In(P) ‘ (b)
ML |
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FIG. 1. Full transition rate P for the winding Lan-

dau-Zener model with A =1 and ' = 1. Filled circles denote
values obtained by numerical iteration of (1): (a) 4Awl’ < v?
with v = 0.4; (b) 4%wT >> v? with v = 0. Envelope lines in
(a) and (b) represent —InP = —2 In2 — Inp with p in (12a)
and (12b), respectively. Arrow in (a) corresponds to the limit
P =prz.
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with (10a) and (11a), showing neither (9) nor (10b).

Case of n=3. In this case, AA = hwvt®/AE and
S A = kwt?. The formula in (4) or (10a) here yields
no correction to the Landau-Zener result, since the in-
tegration of AA does not have any imaginary compo-
nent. On the other hand, from (10b) we have § =
0.61[['3/(A%w)]!/2. In terms of a scaled time 7, the most
general result available from (9) is

{ pLz exp ([3mhw?T*/(4v%)]{1 — (565/1536) (4hwl /v? ) +---}) for 4huwl < v?,
0.42v%/(4kwT) +

exp (- 2[[%/(h*w)]/*{0.61 —

The asymptotic behaviors in (12) are in excellent
agreement with an envelope of the full transition rate
P(= 4p) in Fig. 1 obtained by our numerical iteration of
the time-dependent Schrodinger equation (1) for n = 3.
[Spiking oscillations in P are attributed to the multi-
plicative phase-interference factor in the equation above
Eq. (6).] We here assert that (i) even when the wind-
ing motion is slower than the translational motion, the
existing formula (4) fails in providing a leading-order cor-
rection to prz; (ii) in the opposite case, the formula in
(10b), consisting only of a sum of gauge potentials, can
give accurate leading-order values for the transition rate;
and (iii) in general, (9) indicates that the transition rate
depends on the difference and sum of a pair of gauge po-
tentials in intricate ways, according to the adiabaticity
ratio of the winding and translational motions.

The present formula in (9) and (10), with a slight mod-
ification, can also be used in other winding models in the
near-adiabatic region. Consider, for instance, a winding
Demkov (exponential) model [8] with By = T, By =
v cos k exp(—vt), and ®(t) = [y/(Av)]sink exp(—wvt) in
the case fiv <« T'. Interchanging B and B, the for-
mulas from (8) through (10) still hold; this interchange
comes from the predominance of B in this model. Not-
ing the gauge potentials AA = —T'y sink exp(—vt)/AE
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5(6) = [F3/(h3w)]1/2lm /"C[(Tz _ 6)2 + 1]1/211’7',

with ¢ = v?/(4lkw) and 7. = (¢ + i)/2.  Not-
ing the asymptotic expansions 5(6)/[I‘3/(h3w)]1/ 2~

(m/8X/?)[1 — 3/(32¢2) + 565/(21%*) + -] for ¢ > 1
and ~ 0.61 — 0.42¢ for € < 1, we have

(12a)

-:}) for 4hwl > v2. (12b)

[

and A = —vsinkexp(—vt) with AE = [[? +
42 cos? k exp(—2vt)]'/2, we have from (10) and (9)
_ [ exp[-nTk/(hw)] for k € /2, (13a)
P/PDemi = { exp[—nT/(hv)] for k =~ m/2 (13b)
and
P/Pbemk = exp[—nT sink/(fv)], (14)

respectively [9], where ppemk = exp[—n['/(Av)]. The
winding Demkov model, after a unitary transformation
(5), turns out the exactly solvable Nikitin model, whose
known solution [8] justifies (13) and (14) in the near-
adiabatic region.

In conclusion, when the applied magnetic and/or elec-
tric fields show time dependence in both the amplitude
and the polarization vector, the local aspect of the gauge
potentials greatly affects the intersection of adiabatic en-
ergy surfaces. The formula for the nonadiabatic transi-
tion rate includes a pair of gauge potentials in intricate
ways, depending on the ratio of the adiabaticities of the
winding and translational motions of applied fields.

We are grateful to M. V. Berry, P. Gaspard, and H.
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