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Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium

W. Leonski and R. Tanas
nonlinear Optics Division, Institute ofPhysics, Adam Mickie]vicz University, 60-?80 Poznan, Poland

(Received 7 September 1993)

It is shown that the field in a cavity, periodically kicked with classical pulses and containing a non-

linear Kerr medium, can reach the one-photon quantum state if the amplitude of the kicks and the time
between the kicks are appropriately chosen.

PACS number(s): 42.50.Dv

Although number states are well known and commonly
used in theoretical descriptions of quantum fields, their
production in practice is by no means a trivial task.
Hong and Mandel [1] have shown that an ideal one-
photon state is produced in the parametric down convert-
er if signal photons are used to gate a photodetector
counting the corresponding idler photon. Such schemes
of generating antibunched light have been studied
theoretically by Stoler and Yurke [2]. Another possibility
of preparing a highly excited Fock state is a kicked cavity
into which two-level atoms are injected [3]. Recently,
Brune et al. [4,5] have suggested a method for the
preparation of a Fock state based on the quantum non-
demolition (QND) measurement in which detection of the
atomic phase by the Ramsey method plays the role of the
QND probe, giving information on the cavity field ener-

gy. After a sequence of atomic measurements the cavity
field collapses into a Fock state with an unpredictable
number of photons.

In this paper, we propose a scheme in which a one-
photon state can be obtained in a cavity that is periodi-
cally kicked by a sequence of classical light pulses and is
filled with nonlinear Kerr medium. The evolution of the
cavity field between the kicks is the quantum evolution of
the field interacting with the nonlinear Kerr medium
leading to the intensity-dependent "phase shift" of the
field. A similar system, but one with nonlinear rather
than linear kicks, has recently been discussed [6—8] in the
context of a comparison between the classical and quan-
tum dynamics in the regions of classically regular and
chaotic behaviors.

The nonlinear quantum evolution of the cavity field in
the Kerr medium is crucial for the preparation of a Fock
state in such a system. The effectiveness of the prepara-
tion is, however, considerably diminished by the cavity
losses. Nevertheless, it seems to us important that the
cavity with a nonlinear Kerr medium, which is initially in
a vacuum state and is pumped by a sequence of short
pulses of the classical field coupled linearly to the cavity
field, can reach, with a high degree of accuracy, the one-
photon Fock state.

Our model is as follows. In the period of "free" evolu-
tion between the kicks the system dynamics is determined
by the Hamiltonian (in the interaction picture)

~ (at) aint
Z

where y is proportional to the third-order nonlinear sus-
ceptibility and a, a are the annihilation and creation
operators of the field mode. They obey the boson com-
mutation relation, [a,a ]= l.

The cavity is kicked by a train of short pulses of the
electromagnetic field at the frequency of the cavity mode.
The kicks are described by the Hamiltonian (in the in-
teraction picture)

Htc =Pi(ea +e'a)5x(t),
where

(2)

where T is the time between the kicks. We assume here
that T is suSciently large so that co))2m. lT, where co is
the field frequency. This assumption allows us to consid-
er the pump field as a coherent pulse of frequency co being
short enough to be modeled by a 5 function. Rapid oscil-
lations with optical frequency m are eliminated in the in-
teraction picture. The kick strength e is associated with
the complex classical field amplitude of the pumping
field.

Thus the evolution operator over the kick may be writ-
ten as

(4)

where 8'=a a is the photon number operator. The evo-
lution of the system from just before the kick up to just
before the next one is governed by the unitary evolution
operator

—i(yT/2)8(& —1) —i(ea +e a)x sc e (6)

The change in the field state after a kick and free evolu-
tion between the kicks (quantum map) is then given by

I+k+] )

Since the operator Uz is diagonal in the number-state
basis, and the operator U~ is in fact a displacement
operator Xl( i e) whose matrix e—lements in the number-
state basis are known [9], the quantum map (7) can be

and the "free" nonlinear evolution operator between the
kicks is given by

—i (y T/2) A(8 —1)
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where the quantity 3 is a phase factor generated by the
"free" evolution of the system, and is given by

(10)
0.2

From Eq. (9) it is obvious that the amplitude of the state
I2) depends on the time T between the kicks, when the
evolution of the system is due to the nonlinear Hamiltoni-
an (1). It is seen that the nonlinear coupling between two
consecutive kicks acts as a "phase shifter" and couples
incoherently the state I2). Obviously, this coupling is
much slower than the coherent excitation process be-
tween the vacuum IO) and the one-photon I

1 ) state. The
expression in braces in Eq. (9) can be written as

I I
]

I I I I I I I I I
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CLwhich for A =1, i.e., yT=2mn, (n .=0, 1, . . . ), gives
k /2, and for A WI it has a term linear in k. This means
that for e-k ' the state I2) amplitude is of the order of
k ' and is negligible for large k. In the optimal case
3 = —1, which we have used in our numerical calcula-
tions, this amplitude takes the value
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(12) FIG. 3. Probabilities for the vacuum IO) (solid lines) and
one-photon

I I) (dashed lines) states. The damping constant

y =0.0ly (a) and y =0. lg (b), the kick strength e =~/50, and
the time T=mlg.

metric oscillator with a Kerr nonlinearity, we simply take
advantage of this solution and apply it here to take into
account the dissipation in the system. The results are
shown in Fig. 3, where the probabilities of the vacuum
and the one-photon state are plotted for e =~/50,
yT = m. , and y /y=0. 01 (a); 7 /y =0. 1 (b), where y is the
linear damping constant. It is seen that for y/g=0. 01 it
is still over 75% of the population that is found in the
state

I
1 ), while for y /y=0. 1 it is already less than 15%.

Thus, the dissipation in the system drastically lowers the
effectiveness of producing the one-photon state.

Of course, our considerations have a rather model
character, and many technical questions should be solved
to make this method of producing the one-photon state
feasible. It would require a high Q cavity to store the
field for a long enough time to ensure suSciently large
nonlinear "phase shifts, " and, simultaneously, the non-
linear Kerr medium should have very low linear damping
to have y/g&(1. These are very strong requirements
that will not be easy to satisfy. However, recent experi-
ments [11,12], in which the very subtle effect of "vacuum
Rabi splitting" was measured, give us some hope for

By increasing the number of kicks k and simultaneously
decreasing the kick strength e so as to keep ke constant,
the amplitude of the state I 2 ) can be suppressed. In this
case, the field evolution takes place between the states IO)
and I 1 ) only. One can also notice that the amplitudes of
the states IO) and I I ) are the first terms of the Taylor-
series expansions of the cosine and sine functions of ke,
respectively. Our numerical results confirm this observa-
tion and show that, for ke=m /2 with k sufficiently large,
the system evolves into the one-photon state. It is notice-
able from our discussion that our system behaves as a
two-level system undergoing the Rabi oscillations, with
the Rabi frequency determined by the strength of the
external classical field.

In real physical situations we cannot avoid dissipation,
so we cannot take e too small in order to avoid complete
damping of the field during the evolution between the
subsequent pumping kicks. Moreover, the dissipation in

the system will cause mixing of the quantum states, and
the clear, pure state picture of the field evolution present-
ed above will be obscured. Nevertheless, if the damping
is weak, it is still possible to get the field in a cavity being
very close to the one-photon state. Since, for the case of
the Kerr medium with linear damping, the corresponding
master equation can be solved exactly [10], and the solu-

tion was used by Milburn and Holmes [7] in their discus-
sion of quantum and classical dynamics of a pulsed para-
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making our scheme of producing the one-photon state
feasible.

Concluding, we have found one more interesting
feature of the quantum evolution associated with the non-

linear Kerr Hamiltonian (1): it can lead to the one-
photon Fock state in a cavity that is pumped by a period-
ic sequence of short pulses of small intensity, provided
the system damping is low enough.
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