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Transient four-wave-mixing line shapes: Effects of excitation-induced dephasing
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We describe the transient four-wave-mixing (FWM) response in systems where decay of the optically
induced coherence depends on the excitation level of the system. Using modified optical Bloch equa-
tions, we show that excitation-induced dephasing due to phase-interrupting excited-state interactions
qualitatively modifies the temporal behavior and polarization dependence of the FWM signal.

PACS number(s): 42.50.Md, 78.47.+p, 71.35.+z,42.65.—k

Transient four wave mixing (FWM) has provided a
powerful tool for studying electronic relaxation produced
by optical excitations. The underlying physics for FWM
spectroscopy in noninteracting atomic systems is well un-
derstood on the basis of the optical Bloch equations
(OBE) [1]. The FWM line shapes not only provide infor-
mation on decay of the excited-state population and the
optically induced coherence but also distinguish the inho-
mogeneously broadened from homogeneously broadened
systems. In self-diffracted FWM, two pulses arriving at
times ¢, and ¢, and propagating with wave vectors k; and
k, interact in a sample, producing a diffracted signal in
the direction of 2k, —k;. For homogeneously broadened
systems, the FWM signal comes out promptly after the
second pulse, leading to free polarization decay, whereas
for inhomogeneously broadened systems, the signal is de-
layed and peaks at a later time 2, —¢, leading to a pho-
ton echo.

The above analysis of FWM line shapes needs to be
modified when the simple OBE no longer provide an ade-
quate description of the system. It has been pointed out
in the early stages of nonlinear optics that in dense media
the Lorentz local-field correction has to be included in
the nonlinear susceptibility [2]. In FWM, local fields can
lead to a delayed signal even in a homogeneously
broadened system and a signal at negative time delay
(t,—1t, <0) [3]. The effects of local fields on nonlinear op-
tical measurements have been studied extensively in
dense atomic vapors [4], doped crystals [5], and semicon-
ductors [6-8].

The inadequacy of the OBE is also rooted in the
description of relaxation in these equations. A rigorous
treatment of electronic relaxation has always been
difficult except for a few simple cases such as spontaneous
emission. Although discussions of the relaxation of opti-
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cal excitation are often based on the OBE, the failure of
the simple decay-parameter model used in the Bloch
equations is revealed in the early work of magnetic reso-
nance [9]. More recent studies of free induction decay in
impurity-ion crystals [10] and velocity changing col-
lisions in atomic vapors [11] further demonstrated the
inadequacy of the Bloch equations in the optical regime.
In impurity-ion crystals, dephasing due to frequency
shifts induced by local-field fluctuations is quenched at a
high field strength. Theoretical analysis has extended the
OBE in an attempt to describe these processes [12].

In dense media the interaction between optical excita-
tions further complicates relaxation of the system. For
example, in semiconductors such as GaAs, exciton-
exciton scattering increases the decay rate of the optically
induced coherence, i.e., the dephasing rate depends on
the excitation level of the system [13]. This excitation-
induced dephasing (EID) provides an alternative origin
for the nonlinear response and modifies the temporal
behavior of the response. It was shown earlier that EID
has to be included to account for differential transmission
of excitons in GaAs/Al,Ga,_,As quantum wells at
room temperature [14]. More recent measurements
demonstrate that EID is one of the leading contributions
to the excitonic nonlinear response in GaAs [15]. Inter-
pretation of transient FWM in these systems can be com-
plex since, as we discuss below, EID leads to qualitative
changes in transient FWM line shapes similar to that in-
duced by local-field effects.

In this paper we describe effects of EID on the tran-
sient FWM response. We are interested in EID induced
by phase-interrupting excited-state interactions such as
exciton-exciton scattering in semiconductors. We note
that the most appropriate theoretical approach to analyz-
ing coherent optical phenomena in semiconductors is
based on the semiconductor Bloch equations (SBE)
[16,17]. These equations are the Hartree-Fock equations
for the optical interband polarization and the population
probabilities of electron and hole states. Many-body
Coulomb effects in these equations can lead to a renor-
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malized transition energy and to a renormalized electric
field [16,17]. In a simplified version, this field renormal-
ization can be regarded as a form of local-field effects [3].
Since it is our goal in the present paper to obtain simple
analytical results and to present a model study of the
influence of EID, we follow the simplified approach of
Ref. [3] and ignore the exact form of SBE. We use the
OBE for an atomic system and include local-field effects
and EID phenomenologically. Even though this ap-
proach presents a drastic simplification of the theoretical
problem for semiconductors, it should still allow us to ob-
tain important insight into the different effects caused by
EID and local-field effects.

Assuming that the dephasing rate due to EID is pro-
portional to the excited-state population [18], we have

ih%peg(a))= Veg[Pgg(@)—p.. (@) ]+ Fiwp,y(w)

—ifi(y + 0P )P (@) . (1)
The excited-state population is determined by

ih%pee(w)=—[Vgepeg(a))—c.c.]—-iﬁyepee(a)) , (2)
where p,, and p,, are the standard population density
matrix elements [19], and V' = —er-E, is the interaction
Hamiltonian with E,,,=E-+LP, where L is the effective
Lorentz local field factor and P=Tr(erp) is the polariza-
tion. For inhomogeneously broadened systems,

P= [dwg(o)Trlerp(o)] (3)

where g () is the inhomogeneous distribution [assuming
Pee(®@) T pg(@)=Ng(w) with N being the density of the
two-level systems]. We also assume that the entire
excited-state population contributes equally to the EID,
that is, p,, in Eq. (1) is the overall excited-state popula-
J

PND=ycexp[id(t —2t,+1,)] |O(t —1,)0(t,—1,)e
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tion [20]. Note that these equations do not describe the
more complicated problem of resonant collisions.

The dephasing term due to EID in Eq. (1) not only
affects decay of the polarization but also gives rise to an
additional FWM signal. 1In self-diffracting FWM, the first
and second pulses induce optical polarization propaga-
ting in the direction of k; and k,, respectively. The two
pulses also interfere in the sample, producing a popula-
tion grating. For noninteracting systems, self-diffraction
of the second pulse from the grating results in the con-
ventional FWM signal in the direction of 2k,—k,;. In
dense media, the optical polarization can induce large
electric fields. Scattering of these electric fields from the
grating leads to a FWM signal in the direction of
2k, —k,. The population grating of the excited state,
however, can also modulate the optical polarization
through the EID term in Eq. (1), which results in an addi-
tional FWM signal in the direction of 2k, —k,. Note that
this discussion is valid only when the characteristic
length scale of the excited-state interaction is small in
comparison with the grating spacing.

For a homogeneously broadened system, the relevant
nonlinear polarization can be obtained by solving the
density matrix equation in perturbation theory. The ap-
plied optical fields can be described by

E :Elf(t "'tl )exp[i(kl'r“ﬂt]
+E,f(t —t,)expli(k, r—Qt)]+c.c. , (4)

where f(t—t;) (i =1,2) is the normalized pulse shape
centered at ¢; and E; is the pulse area. To obtain analyti-
cal solutions we assume the pulse duration to be much
shorter than all the relevant time scales, except the in-
verse of the optical frequency. The nonlinear polariza-
tion propagating in the direction of 2k, —k, is then given
by

—I‘,(rftz)~[‘1(12—tl)

4 Nlo+in) (Ot —1,)0(t, — 1, (1—e Tel TR, Thm )T )

Ve

+6(t —1,)0(t,—1,)(1—e ¢

where k= —iNu*#i 3E3E}exp[ —iQt +i(2k,—k,)-r],
O(t) is the Heavyside function, u is the dipole moment
between the ground and excited states (assumed to be
real), n=2u’L /%, and §=Q—w—¢ with e=Nu’L /7 be-
ing the static Lorentz shift. In the limit of the third-
order nonlinear susceptibility, decay rates I',, '}, and T,
are all determined by the intrinsic dephasing rate y. As
the excitation level increases, decay of the nonlinear po-
larization becomes dependent on field intensities. In the
limit y,(¢t —t;)<<1 and v,(t —t,,<<1, we have [';=y
+oN,,I',=y+0oN,,and I',=y+0oN,+0oN, where N,
(i =1,2) are the excited-state population densities due to
the first and second pulses, respectively. Other higher-
order nonlinear optical processes will also start to con-

—ty), T (t—r)=20(, —t,)

Je ]|+cc., (5

-
tribute to the nonlinear polarization. Inclusion of all the
higher-order corrections is straightforward but is not
given here for the clarity of the presentation. These
higher-order processes can give rise to additional signals
in directions other than 2k, —k;.

The first term in the large parentheses of Eq. (5) is
identical to the prompt free polarization decay term for a
simple noninteracting two-level system, except that decay
of this polarization can depend linearly on the excitation
level: Decay of the time-integrated signal as a function of
t,—t, is determined by 2I';, while decay of the time-
resolved signal as a function of t —¢, is determined by
2T,. The second term in Eq. (5) describes the additional
FWM signals due to the local-field correction (propor-
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tional to 1) and EID (proportional to o). Scattering of
the polarization-induced by E, leads to a signal that is de-
layed with respect to the prompt signal when ¢, —¢,>0
and to a signal occurring at ¢, —¢; <O (negative time de-
lay), as shown in [3]. Similarly, modulating the polariza-
tion induced by E, through the EID also results in a de-
layed signal when t, —t, >0 and a signal at negative time
delay. However, the dephasing-induced signal is 90° out
of phase with the signal induced by the local fields. In ad-
J

PN =cexp[idy(t —2t,+1;)]
X |O(t —1,)0(t,—t))e

No

Ve

—[w(t,—t )]2/2
e 27 h

+ [O(t —¢t,)0(t,— ¢t )e

+6(t—1,)0(t,—t))e

Xe —I,(t—1)—2T,(1,

where g(A)=1/(V27w)exp[ —A%/(2w?)] is the inhomo-
geneous distribution (assumed to be Gaussian),
8=Q—aw,, with o, being the center of the distribution.
It is well known that, for noninteracting two-level atoms,
nonlinear polarization from atoms with different transi-
tion energies can constructively interfere at a later time
t =2t, —t,, generating a photon echo. Integration of the
first term in Eq. (5) over the inhomogeneous distribution
gives rise to the conventional photon echo. The EID-
induced signal now arises from modulating the optical
polarization through the spatial grating of the frequency-
integrated excited-state population. The amplitude of
this grating is proportional to f dAg(A)exp(iAT)
=exp[ —(rw)?/2] with r=t,—t,. Different frequency
components of the induced signal always interfere des-
tructively (no echo) because the above integration in the
population averages out the phase information necessary
for generating an echo. The dephasing-induced signal
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FIG. 1. Time-resolved transient FWM response induced by
excitation-induced dephasing in a homogeneous system (all time
scales are normalized to the intrinsic dephasing time 1/7). (a)
Delayed signal with £,—¢;=0.5. (b) Signal at negative delay,
t,—t{=— 0.5.
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dition, FWM signals induced by the EID or the local
fields have a rise time (as a function of ¢ —¢,) on the order
of the total dephasing time, as is evident in Eq. (5). Fig-
ures 1(a) and 1(b) show FWM responses induced by the
EID and illustrate both the delayed signal and the signal
at negative time delays.

We now consider systems with inhomogeneous
broadening. The nonlinear polarization, including con-
tributions from both saturation and EID, is given by

—(w(t—2t,+1, )]2/2e—r,(t—t2)—rl(t2~t1)

[w(t-tz)]z/Z(l_e—ye(t—tz))e—l't(t—tz)—l‘](tz—tl)
[w(t—1,)]2/2 —y (t—1,)
1 (l_e Ve 1 )
—1,)
]{+c.c., (6)

[

can become significant when |t, —¢,| <1/w, or when T,
approaches the inhomogeneous width. Figure 2 shows a
FWM response due to both saturation and EID in an in-
homogeneous system.

The result for contributions from the local-field correc-
tion is more complicated but the physical behavior of the
induced FWM signal is easy to describe: The total local-
field correction is determined by the frequency-integrated
optical polarization not by polarization at a particular
frequency w, in contrast to the approach used in [3]. The
integrated polarization is proportional to

J dAg(A)expliAn6(t)=exp| —(tw)?/2]6(2) .

The signal due to scattering of the polarization induced
by E, will give rise to a photon echo when t,—t,>0
since the frequency integration in calculating the total lo-
cal fields does not affect the phase information necessary
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FIG. 2. Time-resolved transient FWM signals for an inhomo-
geneous system. The dot-dashed line is the signal due to
excitation-induced dephasing and the dashed line is the echo
due to saturation. Parameters used are No =30, w =4, and
t,—t;=0.5.
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for generating an echo. The dephasing-induced signal at
negative time delay will not lead to an echo (no rephas-
ing) since t,—t;<0. This signal is negligible when
[t,—t,|>1/w.

Finally we emphasize that the EID-induced signal de-
pends on the relative polarization of the incident pulses.
To illustrate this magnetic substates have to be included
in the calculation. Here we take as an example the ener-
gy structure of heavy-hole transitions in GaAs (see Fig.
3). The transition is characterized by independent o
and o_ transitions. When E,lE,, the grating produced
by the o, transition is out of phase with that produced
by the o _ transition. If we take the dephasing rate to de-
pend on the total exciton density as shown in [15], the
EID-induced signal vanishes because there exists no spa-
tial modulation in the dephasing rate. The time-
integrated FWM signal intensity for a homogeneously
broadened system (without including local-field effects) is
given by

2
No 1
+_
r, 2

No
r,

I(¢)/1(90°)=1+ cos’(¢), (7)

where ¢ is the angle between E; and E, and we assume
t,—t;>0and y,(t —t;) << 1. The ratio also depends on
the total dephasing rate. These EID effects are very im-
portant in understanding the polarization dependence of
the nonlinear optical response in semiconductors [15].
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FIG. 3. The energy structure for the heavy-hole transition at
zone center in GaAs.

Note that the local-field correction gives rise to an addi-
tional FWM response even in the cross-polarized
geometry. In general, the different polarization depen-
dence discussed above can be used to distinguish these
effects experimentally.

In conclusion, although transient FWM provides a
powerful method for studying electronic relaxation in
materials, the interpretation of these measurements can
be complex especially in dense interacting media. The
temporal line shape and polarization dependence of the
FWM signal can be used to study interactions between
optical excitations.
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