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We use the wave function from the Schwinger multichannel method to calculate Z,g—an an-

nihilation parameter of positron-atom (or molecule) scattering. These Z,s are evaluated from the

(N+1)-particle wave function and are calculated in a fully ab initio way (in a quantum chemistry

sense). Our first applications are for positron scattering against He atoms and Hs molecules. Our

results for both systems are in excellent agreement with experimental data at thermal energies.

~ACS number(s): 34.80.Bm 34.90.+q

I. INTRODUCTION

Annihilation rates of positronium in molecular envi-
ronments have been recently measured (see Table I) and
shown to be much larger than expected [1]. These ex-
periments at room temperature have given annihilation
parameters Z,a sometimes several orders of magnitude
larger than the classical expected values (about the size
of the number of electrons involved in the process). No
theoretical calculation has confirmed the experimental
data up to now. The theoretical task is extremely dif-
ficult since it may require an approach that keeps the
many-body character of the wave function.

Recently, Germano and Lima [4] have adapted the
Schwinger multichannel method (SMC) [5) for low-energy
positron-molecule scattering. The method is fully ab ini-
tio in a quantum chemistry sense: for complete conver-
gence it depends only on the Cartesian Gaussian basis-set
size and on how close to complete we are able to computa-

I

tionally construct a configuration-interaction space from
this basis set. In this paper, we present the theoretical
procedure for calculating the parameter Z,g according to
the SMC. As first applications we present very promising
results for simple electronic-structure systems as e+-He
and e+-H2.

II. THEORY

The dimensionless parameter Z,g is related to the an-
nihilation rate I' by the expression

where n is the density of atoms or molecules, ro is the
classical radius of the electron, and e is the speed of light.
Z,g is the number of effective electrons that participate
in the annihilation process when the target is scattered
by a positron. It is given by [6]

where N is the total number of electrons of the tar-
get, k; is the direction of the incoming positron, ri
are electron coordinates, r„ is the positron coordinate,

and 4'& (ri, . . . , r)v, r„) is the total (N+1)-particle wave
function of the system.

The bilinear variational expression for the scattering
amplitude is [4]

Molecule

Helium

Formula

He 3.94

Our results

4.20

Hydrogen

Methane

H2

CH4 10

14.7

140

13.63

TABLE I. Measured values of Z,s (thermal energies).
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where

A' ' = QHQ+ PVP —VG,'+'V. (4)

I
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Expansion of the trial scattering wave functions in the
form

and a similar equation for the coefficients a„(ky). In-
sertion of expression (6) back into Eq. (5) gives straight-
forwardly our working equation for the (N+1)-particle
scattering wave function

e„"'& = ) I ~ &(d-'), (~ I
V

I
S, )

m, m

where

and a stationary condition for [f(ky, k;)] with respect to
the coefficients a (k) lead to(+) d .= (x- I

A"'
I x.&. (8)

ml

If now we insert Eq. (7) (and a similar equation for

)) into Eq. (3), we find our usual expression for the
scattering amplitude [4]

[f(kf k')] = ——) (S~y I
V I& )(d ')-(x- I

V
I Si.&

.
m ffL

If we use the definition of
I

)Il&+ ) given by Eq. (7) in the expression of Z, ff [Eq. (2)], we obtain

eff (k, ) = ) ) (&„ I
V

I Sz, &(Six,. I
V

I &~ )(d ')' ~ (d ')„„4
I 6(r~ —r~) (10)

f dOg, . Z,ff(k, )
fdn, ,

where dOg, is the solid angle.
After straight manipulation, we have

Z ff ———Tr d( )Sd 1)tZ (i2)

It is very important to observe that the definition of
the wave function, as given in Eq. (7), is valid only in
regions where the potential is nonzero (this comes from
a property of the Schwinger variational method). Note,
however, that the presence of Dirac's b function in Eq. (2)
implies that the integral will contribute to Z,p only when
the positron and the electron have a probability difer-
ent &om zero of occupying the same position. Since the
electrons of the target are always in the region where the
potential is not null, the use of expression (7) is allowed.

Usually the available experimental values for Z,~ are
angular unresolved. Thus for direct comparisons we must
average the theoretical parameter over all possible orien-
tations of k;, i.e.,

volving four Cartesian Gaussian functions

r gl(r)g2(r)gs(r)g4(r) (i5)

where each Cartesian Gaussian function has the form

g, (A, o.; r) = N( „(z—A, )'(y —A„) (z —A, )"

x exp —a x —A + y —A„

+(z —A, )»]). (16)

The use of Cartesian Gaussian functions in the expan-
sion of the total wave function makes the calculation of
these overlap integrals [Eq. (15)] very simple (although
cumbersome) .

More details about the SMC method and how polar-
ization effects are treated (including the construction of
the configuration space) can be found in Ref. [4]. In what
follows we present a first application of the expressions
(10) and (11) for e+-He and e+-H2 scattering.

where the matrix elements are III. RESULTS FOR He

&-.(x,) = f«» (x I
&

I ».r)(». I

&. I
x.), (»)

N

Z- = ).(~- I ~(r' —r.) I ~-) (14)

and d are defined as in Eq. (8).
All matrix elements of expression (12) can be obtained

from our earlier computer codes [4] except Z „. These
matrix elements are combinations of overlap integrals in-

The SCF wave function for the ground state of the
He atom was obtained with a [10s] Cartesian Gaussian
basis [7], resulting in a electronic energy of —2.86167
hartrees. We have used 58 Cartesian Gaussian basis func-
tions for the SMC calculations. In addition to the SCF
basis we have included six p functions at the He center
(with exponents 15.0, 5.0, 1.5, 0.5, 0.16, and 0.03) and
one p function (exponent 0.5) on each corner of a cube
centered at the He atom. These functions were included
to account for polarization eEects. The cube was used
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FIG. 1. Elastic integral cross sections for e+-He scattering
at low energies. Experimental points: diamond, Mizogawa et
al. [8]; triangle, Stein et aL [9]. Theoretical curves: solid line,
present (SP) results; dot-dashed line, results of McEschrsn
et aL [10]; dashed line, results of Csmpesnu snd Humber-
ston [11].

FIG. 2. Z,~ for e+-He scattering. Experimental re-
sults: triangle, at thermal energy (0.025 eV) of Coleman et
al. [2]. Theoretical curves: solid line, present (SP) results;
long-dashed line, present (S) results, dot-dsshed line, results
of McEschrsn et al. [10); dashed line, results of Csmpesnu
sud Humberston [11].

to couple higher partial waves than those obtained with
8 and p functions at a single center. We also added one
s function (exponent 0.1) centered on each face center
of the cube. The distance &om the He center to the
face of the cube was taken to be lao. To construct the
closed-channel space we used all possible single-particle
excitations to a set of simple virtual orbitals made with
the same SCF basis plus the additional functions. We in-
cluded all symmetries, summing up 3364 configurations.
Our Z,g is calculated for positron impact energy rang-
ing &om 0.001 to 4.9 eV. We took 11 diH'erent trial bases
(corresponding to difFerent cube sizes and difFerent ex-
ponents of Gaussian functions on the cube corner and
on the face center of the cubes) and found small dif-
ferences for the parameter Z,g at the thermal energy

( 0.025 eV). All results were found in the interval be-
tween 3.5 (no cube) and 4.2 (basis described above). The
experimental value is 3.92 (Colemann et al. [2]). In Fig. 1
we present our calculated elastic integral cross section for
e+-He scattering along with some of the available exper-
imental data [8,9] and other theoretical results [10,11].
We see that our cross sections lie below the experimen-
tal points [8,9] for energies lower than 2.5 eV and are
very close to them for energies between 2.5 and 5 eV.
In the limit of zero energy, the experimental cross sec-
tions apparently agree better with our results. As seen
in this figure our cross sections are a little better than
those obtained by McEachran et al. [10] using the polar-
ized orbital method, but worse (for energies between 0.5
and 2 eV) than those obtained by Campeanu and Hum-
berston [11] using what they call the H5 model (Kohn
variational inethod). In Fig. 2 we present our static (S)
and static-plus-polarization (SP) Z, tr along with the ex-
perimental value of Coleman et aL [2] and the theoretical
results from Refs. [10]and [11). When polarization effects
are taken into account, our Z g's are in good agreement
(between 5'%%uo and 10'%%uo difFerence) with other theoretical

results for all energies. It is clearly seen in this figure that
polarization efFects are very important in the evaluation
of this parameter.

IV. RESULTS FOR Hg

We have chosen H2 for a first test of Eqs. (10) and
(ll) for molecules. The SCF wave function for its ground
state was obtained with a [7s4p] Cartesian Gaussian ba-
sis, at an internuclear separation of 1.40028ao and has
given an electronic energy of —1.8473 hartrees. The expo-
nents are those of Gibson et al. [12],except that we added
one 8 function with exponent 0.035 and we removed two

p functions corresponding to the largest and the smallest
exponent of their p basis. To construct the closed-channel
space we used again all possible single-particle excita-
tions to a set of simple virtual orbitals made with the
same SCF basis plus additional functions (1p 1p„on a
dummy center located at the origin with exponents 0.03,
and p functions at the corners of a cube —same as in He,
except that here we have not included the 8 functions
at the cube faces). We have 64 Gaussian functions for
the SMC and we used all symmetries summing up 4096
configurations now. In Fig. 3 we show the elastic integral
cross sections for e+-H2 scattering at low energies. We
see that our results are in excellent agreement with the
experimental data [13,14] for all energies between 1 and
4.9 eV (the presence of the p functions at the corners of
the cube improved substantially our results compared to
our previous application [4]). The present results are in
good agreement with the Gibson theoretical calculation
using the distributed positron model [15] and differ from
the R-matrix results of Danby and Tennyson [16]at lower
energies. In Fig. 4 we have our static (S) and static-plus-
polarization (SP) Z,tr along with the experimental value
of Heyland et al. [3] and the theoretical results of Ar-
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FIG. 3. Elastic integral cross sections for e+-Hq scattering
at low energies. Experimental points: diamond, Hoffman et
al. [13]; triangle, Charlton et al. [14]. Theoretical curves:
solid, present results I SP); dot-dashed, results of Danby and
Tennyson [16]; long-dashed, results of Gibson [15].

FIG. 4. Z,g for e+-H2 scattering at low energies. Ex-
perimental points: triangle, Heyland et al. [3]. Theoretical
curves: solid, present results (SP); dashed, present results
(S); long-dashed, results of Armour et al. [17]; dot-dashed,
results of Hara [18].

mour et al. [17] and Hara [18]. Our Z,ir (SP) is bigger
than those of Armour et aL [17] and Hara [18] for all
energies. Once more, we see the great importance of po-
larization in the Z,g calculation. At the thermal energy,
our calculated Z,ir (13.63) is in excellent agreement with
the experimental value (14.7).

at thermal energies. Our next task will be to test our
procedures for calculating the parameter Z,g for bigger
molecules, such as CH4 and C2H4.
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