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The nonlinear response to external disturbances of a system of interest A (the “atom”) in contact with
a thermal bath is studied. The central issue is the relationship between the nonlinear susceptibility and
the equilibrium relaxation spectra of observables of A. Paralleling the results of the linear-response
theory, the nth-order nonlinear susceptibility is factorized by quantum-mechanical arguments into two
terms pertaining to the disturbances and the spin-bath system, respectively. The role of slow atom
states, i.e., states relaxing on times T longer than the bath correlation time 7., is pointed out, by recur-
ring to recent findings on their general features [Phys. Rev. A 46, 6222 (1992)]. In the frame of a sto-
chastic picture of the bath and a multilevel scheme of the system A, the conditions under which the
nonlinear susceptibility provides the spectrum of the slow atom states are clarified. Illustrations are
drawn from magnetic resonance to demonstrate that techniques based on the nonlinear response of a
spin system to multiple continuous waves compete favorably with pulsed techniques to provide informa-

tion on longitudinal spin relaxation.

PACS number(s): 32.80.—t, 05.40.+j, 76.20.+q, 33.40.—e

I. INTRODUCTION

One of the major achievements of the linear-response
theory (LRT) [1,2] is to state that the linear response of a
system @ to an external disturbance F(t) is deducible
from the relaxation behavior in the absence of the distur-
bance itself. Let H be the Hamiltonian of the isolated
system (. The dynamical motion determined by H is
usually referred to as the “natural motion” of the system
@. If the perturbation energy ¥ due to the presence of
F () is represented by

V(t)=BF(t), (1.1

where B is an observable of @ and F(t) is classical,
periodic, i.e., F(t)=F,cos(wt), then the linear response
A A (1), defined as the deviation of the observable 4 from
its unperturbed value, will be written as

AA(t)=Re{x(w)Fyexpliot)} , (1.2)

where Re{Z} means the real part of Z. If the system € is
in canonical equilibrium at temperature T'=1/kg[3, the
complex susceptibility y(w) is given by the general equa-
tion (h /27r=1and i’=—1)

@)= [ "y (Dexp(—iot)dt (1.3a)

:X0+mﬁfo°°w“(t)exp(—mt)dt . (1.3b)

®p,(t) is the response function, i.e., the response of
A A (t) to the pulsed force F(t)=¥5(t), whereas —Wp ,(¢)
is the relaxation function accounting for the relaxation of
A A (¢) after removal of the outer (static) disturbance at
t=0. From Eq. (1.3) it follows that ® ,(z) is the time
derivative of B¥p ,(¢) and x,= —B¥p ,(0) and

©p,()=iTr(p.[B, A(1)]} , (1.4)
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where [X,Y]=XY —YX, p, is the equilibrium density
matrix of the system €, and

wBA(:)zﬁ—‘fOdeTr{pCB<—u\)A(z)}

=Tr{p,B(0)A (1)} . (1.5)

In the second line of Eq. (1.5) high temperature is as-
sumed. If ¥y (0 )70 the limit value must be subtracted
from the right-hand side of Eq. (1.5). Equation (1.5) fol-
lows by assuming canonical equilibrium [1,2]. In Eq.
(1.4) A (1) denotes the natural motion of A4, according to

(1.6)

A)=i[H, 4] .

Equations (1.2)—(1.5) relate the linear response to the nat-
ural relaxation behavior. If the nonlinear response of the
system € is stimulated by single or multiple external dis-
turbances, Eq. (1.2) is augmented to

AA(t)=Re |3 x'"w, )Foexpliogt)
k

2)
+ 3 xPNoy 0 For For,
ki, k,
1’72

Xexp[i(wkl-ka)xz)t] (1.7)
Evaluating A 4 (¢) via Eq. (1.7) is meaningful if the ampli-
tudes Fy;,Fy,, . . . are small enough. Since the system €
will be considered in equilibrium before the disturbances
are acted on, this implies that the nonlinear response
originates from states weakly out of equilibrium.

The present paper intends to elucidate the relationship
existing between ¥V, ¥, . . . and the response and relax-
ation functions ®; ,(¢) and ¥y ,(¢). In linear condition
this relation is assessed by Eq. (1.3). It is a common be-
lief that in nonlinear condition such simple relations are
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lost and that nonlinear response is, as a matter of fact,
useless to provide insight into the equilibrium relaxation
behavior of the system €.

Beyond the theoretical interest, the present investiga-
tion is also motivated by the experimental work. Many
spectroscopic studies obtain information on ®;, and
Y, , by measuring ¥(w) in the frequency domain or by
preparing the system of interest in some nonequilibrium
state whose relaxation is then followed in the time
domain (“pump and probe” experiment). Both metho-
dologies present limitations and drawbacks from the
standpoint of the interpretation. Furthermore, in some
cases, e.g., in magnetic resonance, practical studies put
extreme, sometimes unmatched, demands on the experi-
mental and technical conditions beyond the limits of the
typical figures for state-of-the-art components [3], so it
seems proper to investigate alternative procedures to
measure $p, and ¥Yy,. As a further comment, the
choice of investigating the nonlinear response to small-
amplitude fields is also motivated by the current trends in
the field of magnetic resonance, traditionally the branch
of spectroscopy where relaxation effects are a major issue
[4].

An analysis of the open literature exposes the lack of a
satisfactory investigation of the relationship existing be-
tween the nonlinear susceptibilities and the relaxation
and response functions. This is somewhat surprising in
that Kubo himself in his classic paper [1] touched on this
point [see Egs. (2.25)-(2.29)]. The subject was considered
by Miyake and Kubo in the related context of transport
theory [5] and, more explicitly, by Tani [6] and Zubarev
[7]. In all the papers it is presumed that, at the initial
time, the system of interest is in thermal equilibrium and
that, after the external disturbances are switched on, it is
isolated by the thermal bath. This assumption is very
crude, since it neglects all the relaxation phenomena in-
duced by the bath. A first attempt by Kalashnikov to cir-
cumvent this drawback led to a relation between the
response and the disturbance formally equivalent to Eq.
(1.2) with a time-dependent susceptibility y(¢) [8]. Huber
and van Vleck discussed the resonant linear absorption
and evaluated Eq. (1.3) for a two-level system [9]. Huber
considered the resonant scattering of photons from an
atom-lattice system, namely, a second-order process, and
derived expressions for the coherent (Rayleigh), in-
coherent, and fluorescence terms [10,11]. As the analysis
is limited to a two-level system, the Raman effect is not
recovered. All the above papers are characterized by
purely statistical treatment of the problem. A strong im-
petus was given by the introduction of stochastic ap-
proaches which are able to take into explicit considera-
tion the role of the fluctuations [12—14]. Stochastic mod-
els depict the environment surrounding the system of in-
terest, i.e., the bath, by introducing a limited set of classi-
cal random variables. This approach usually neglects the
reaction of the system of interest on the bath itself. The
stochastic approaches were applied to the resonant
scattering of photons by Huber in a number of papers
[15-18]. Second-order optical processes were also exten-
sively investigated by Kubo and co-workers in an exten-
sive series of papers in the framework of stochastic

theory [19-25]. The emphasis is on the interaction be-
tween the system under observation and its environment.
This interaction may occur in the initial or final state of
the optical process, but special features result if an
intermediate-state interaction takes place. The role
played by the fluctuations in determining the Rayleigh
(elastic), Raman, and fluorescence (inelastic) components
present in the light scattering by multilevel atoms is ex-
plained by the authors. Relevant to the present investiga-
tion are both the paper by Wodkiewicz and Eberly who
discussed the effects of dichotomic random noise on the
Bloch equations [26] and the paper by Brown and Ciftan
who present a model for a system of N two-level atoms
being driven by a monochromatic radiation field [27].
These latter deal with the bath effects not in a systematic
way by simply introducing at a certain stage an ansatz,
but by applying their equations to many model problems
such as superradiance, photon echoes, and bistability.
The present author and his collaborators investigated the
role of the fluctuations in affecting the line shape by using
the generalized Langevin equation [28] and developed a
proper generalization of the customary Bloch equation to
investigate the basic feature of the nonlinear response of a
two-level system acted on by a multiple radiation field
[29,30]. In Refs. [29, 30] the emphasis was laid on the
atom-radiation interaction, whereas relaxation effects
were relegated to the customary relaxation times T, and
T,.

In a recent paper [31], hereafter referred to as I, the
author and his co-workers have reported on some pecu-
liarities of the relaxation induced by colored noise in mul-
tilevel systems. The central issue was to clarify the con-
ditions under which scale separation between the finite
correlation time 7, and the relaxation times takes place.
In particular, it was pointed out that the longitudinal re-
laxation, i.e., the relaxation of populations, is slow, name-
ly, T, >>r,, provided that the amplitude A of the fluc-
tuating fields is smaller than the largest level spacing.
This feature will be exploited in the present work to ex-
pose the relationship existing between the nonlinear
response and the slow relaxation. Following I, the
analysis is based on a stochastic model. This is regarded
as an advantage since stochastic models can cover a wide
category of physical cases from a unified point of view.
Furthermore the calculations may be carried out by non-
perturbative methods. The model separates the system @
as the system of interest A, to be coupled to the external
forces, and the bath B, i.e., the irrelevant degrees of free-
dom, which is assumed stochastic and colored, i.e., with
finite value of 7.. As in I, the system of interest A will be
either a two-level or a four-level system. A full quantum
treatment of both the external disturbances and the sys-
tem of interest A is accomplished. Second quantization
formalism proved useful by recovering time-independent
Hamiltonians. A nonperturbative, systematic treatment
of the coupling between the system of interest A and the
irrelevant degrees of freedom collected in B is introduced
in terms of the stochastic Liouville operator (SLO) [2,14]
and the generalized Langevin equations (see I for details).
The treatment avoids all the delicate questions on conver-
gence to be tackled when using the cumulant expansion
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method [32] to which, however, it reduces under time
scale separation condition (see I).

The paper is organized as follows. In Sec. II the gen-
eral framework is outlined on a pure quantum-
mechanical basis. The main outcome of the analysis is
the factorization of the response at a definite perturbation
order as the product of two terms R and 2. The former
depends only upon the degrees of freedom of the external
disturbances, the latter depends only upon the degrees of
freedom of the system of interest and the bath. This
feature has not been pointed out by previous analysis. On
account of it, the approach proves to be a direct exten-
sion of the standard LRT. In cases of interest i may be
reduced to trivial expressions. The term A will be ex-
pressed as a product of continued fractions, irrespective
of the particular Markovian stochastic process con-
sidered. In Sec. III a general stochastic picture of the
bath will be outlined. In Sec. IV the system of interest
will be modeled. In Sec. V applications will be presented.
Finally, our conclusions will be summarized.

II. EXACT RESULTS FROM QUANTUM MECHANICS

A. Generalities

Let us consider the situation usually met in spectrosco-
py (Fig. 1): a system of interest (the “atom’) with Hamil-
tonian H , is acted on—via a suitable interaction V' —by
external radiation fields 2 with Hamiltonian Hy such
that Hy'H ,=0 (A *B= AB —BA). The system A is in
turn embedded in a larger one, which behaves as a
thermal bath B with Hamiltonian Hg. Their mutual in-
teraction is accounted for by a term H ;. With the
above definitions some commutation rules follow, name-
ly, HYH, ,=HRHpy=HyH, ,=HZH ;z=Hz;V=0. In
particular, it is assumed that negligible coupling exists
between radiation and bath states. The total Hamiltoni-
an Hy reads

Hy=H,+Hg+Hy+H z+V . 2.1)

The characterization of both the bath B and the radia-
tion fields & will be accomplished later on. It is also as-
sumed that the coupling between the radiation and the
system A follows from the interaction between the exter-
nal fields and the spin S of the system A. We adopt the
point of view of Heisenberg and describe the dynamical
behavior of the observables of the system A by resorting
to the language of superoperators [2]. In this framework
the states of the system A are indicated by kets
|S,0)=|S)|o). |S) is an operator acting in the spin

FIG. 1. Schematic view of a spectroscopic experiment.

space, whereas 0 ={0,,0,, ...} are further operators
which make complete the overall set. To avoid any
misunderstanding, the usual kets will be indicated by the
notation | - - - )) throughout the paper. Furthermore, the
shorthand notation |S,1, ) =|S ), where I, is the identity
in the subspace spanned by o, is adopted.

Let A be the observable of interest of the system .A.
The first step of the analysis consists in developing a suit-
able perturbative scheme on V to take advantage of the
small amplitudes of the external disturbances. The goal
is to express the nonlinear response of the system .A in
terms of the unperturbed Hamiltonian H of the system
A® B, namely,

H=H,+H, ;+Hp . 2.2)

Because of Eq. (1.6), the retarded Green function of the
complete system is defined as [33]

Kp(t,t')=0(t —t")exp[iH(t —t')] , (2.3)

where O(?) is the Heaviside step function [O(t)=1 if
t 20, ©(t)=0 otherwise] and [2]

expliH{t]X =exp[iHrt)X exp[ —iHt] . (2.4)

Let us consider the retarded Green function K 1(#,¢") of
the overall system A ® B® R. It can be shown that [33]

K, t)=Ko(t,0)+i [ 7 7dt Ko(t,0)V <K plty,1)

(2.5

where K(t,t,) is the retarded Green function of the sys-
tem in the absence of the coupling V, namely,

Ko(t,t)=0(t —t"Yexp[i (H +Hg ) (t —t)] . (2.6)

Starting from the initial time ¢, the time evolution of the
observable of interest A4 (t) is evaluated as

A(t):Tr[.A,ﬁ,B]{pAPRPBKT(t’to)A} 5 (2.7)

where the trace operation is performed on the degrees of
freedom of the systems A, B, and & weighted by their
density matrices p 4, pp, and py, respectively (possible
correlations at ¢ =t between atom, radiation, and bath
are neglected). Since the stationary state of A4 (¢) is of in-
terest, henceforth the time ¢ is understood to be much
larger than #, to allow the decay of any transient effect
subsequent to the switching on of the disturbances. The
steady-state signal A 4 (¢) is the variation of the observ-
able with respect to the unperturbed value. By inserting
Eq. (2.5) into Eq. (2.7) one obtains for A 4 (7)

AA(D=iTr 4 5| |p 4Pr fjwdthR(t,t,)

XVX(Kp(t),t5)) A4

(2.8)
since H*(p 4pp)=0 and

Kg(t,t)=0O(t —t"exp[iHZ(t —1")] ,

(2.9
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Equation (2.5) can be iteratively solved to provide a per-
turbative series in ascending powers of V:

At te)= 2 t"_lf_:dtldtz ceedt, Kot _y)

: VxKo(tz,tl)

XVXKy(ty,tg) - (2.10)

The Laplace transform of AA(¢), AA (z), is a central
quantity in analyzing the harmonic structure of the

A4 "(2)=i"Tr g 2)[p 4pr Gr (D VX Go(2)V*Gyl2) - - -

where the averaged term { ) contains n terms. G(z) and
Ggr(z) are the Laplace transforms of Kg(z,¢') and
K (t,t'), respectively,

1 1

, Grz)= .
—i(H*+HF) k z—iHY

Golz)= (2.14)
zZ

To proceed further, an explicit form of the perturbation
operator V is needed. This form will be discussed in the
next section.

B. Factorization of the response

Let us suppose that k different waves are acting on the
A system. The Hamiltonian of the free fields Hy takes
the form [33]

Hpy 2 wpaja, = 2 @A _ay - (2.15)

k=1 k=1
For the kth mode, o, =2mv,, v, is the frequency, and a;
and a_, =a/ are the related annihilation and creation
operators, respectively.

The application of G,(z) on a vector of the A® BSR
space factorizes according to

Go(z) | [T (a_i) *ag*x
k

=TI (a_x)"a;*G —n)oy |[X],
k

z+i Y (my
k

(2.16)

where X is a generic operator of the system A ® B whose
propagator G (z) is given by

(VXGo(2)V*Gy(z) " -

VXGO(Z)>A= 2 Akl...kknakn...

response

A= ["Ad(De"dr . (2.11)

After substituting Eq. (2.10) into Eq. (2.8), AA (z) can be
expressed as a sum of the contributions A4 ™ at the
different order of perturbation:

Ad(z)= 3 A4 "(2), (2.12)
n=1
where A 4 " is found:
VXGol2) 4], 2.13)
—
G(z)=——= L 2.17)
z—iH* z—i(HY+H}+H})
To analyze the averaged term
(VXGo(2)V*Gy(z) - - - V*Gy(z)) included in Eq. (2.13)

the explicit form of the interaction ¥ must be defined.
We assume that the radiation field is coupled to the elec-
tron spin of the system A. In the long-wavelength ap-
proximation for the magnetic field B, ¥ reads as [33]

V=—‘yS-B

2 KkS (akek +akek)

A Skak .

—k

(2.18)

[
I M ||

k

S is the spin operator for magnetic species with magneto-
gyric factor v, e, is a unit vector describing the polariza-
tion state of the kth mode of the field, and e is its com-
plex conjugate. The notations e_j,=e;, S;=S-¢,
S_ix =S-e; are introduced. The strength of the kth
mode is Ay =A_ with A;=0. In the case of a cavity
with volume V, A, is expressed as

172

i , (2.19)

M=y 2€,c2V?

where €, and c are the electric permittivity of free space
and the velocity of light, respectively.

The bilinear structure of V and the repeated applica-
tion of the disentanglement property [Eq. (2.16)] yield for
the nth order averaged term { ) of Eq. (2.13)

* Sk);G(sz )Sk)iG(zkl ) ) A .
(2.20)

akl<SanG(an) °

The different arguments z; at which the propagator G (z; ) must be evaluated are derived according to the following

iteration scheme:
Zkl =z,

z =z, +isgn
km+1 km Sg (km )a)km ’

m<n—1,

(2.21)
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where sgn(x) provides the sign of x.

We are in a position to prove that the response to the applied fields computed at the nth order with respect to V,

namely, A 4 (")(z), can be factorized.

By taking advantage of Eq. (2.20), Eq. (2.13) can be cast in the convenient form

K
A4 "M(z)= > 1 Rik,,...,
kpseeos ky==k z +i 2 sgn(k, )cok
p=1
where
Rik,,h 1 = A Ay Trygylprag, - - ag )
Ui,k (D) =Trqp 4 (SEG (2 ) -

The R term depends only on variables of the applied fields,
whereas the ¥ term depends only on variables of the bath
and the system A. Henceforth, these terms will be re-
ferred to as the radiation term and the atom-bath term,
respectively.

The poles on the imaginary axis of the right-hand side
of Eq. (2.22) yleld the discrete frequency spectrum of
A4 "(z) in regime condition, as one easily proves by in-
verting the Laplace transform and resorting to Cauchy’s
integral formula (the residues of poles with a real part
contribute to the transient). By inspection of the analytic
properties of G (z), one realizes the imaginary poles are
only present in the first term on the right- -hand side of Eq.
(2.22) [34]. Therefore the spectrum of A4 ”(z) exhibits
components at frequencies @ such as

o=— 2 sgn(k, )wk ) (2.24)
p=1
with amplitudes given by the residue R, (@ ):
k
Rn(E))E 2’ ER‘kl _____ k"]mlkl """" k }(ICO) (225)
kyvook,=—k

The prime signals that the sum must be restricted to the
terms allowed by possible selection rules. These latter
ones pick out the correct sequences S,ff ,S,f;, .o, S ap-

pearing in the % term. Equation (2.24) instructs us about
how to evaluate the frequency spectrum of the nonlinear
response at nth order. For an allowed n-photon process
(identified by the string k,,k,, . . ., k, ), if the pth step in-
volves the emission (absorption) of a photon of frequency
O, this event will contribute with a term +“’kp (—a)kp)

to the frequency @ related to the process. The amplitude
of the harmonic at the frequency @ is given by Eq. (2.25).

To conclude this section, we summarize the main re-
sults obtained by the quantum framework.

(i) Tracing both the amplitude and the frequency of the
components of the spectrum of the observable back to the
underlying multiphoton process. This feature is not easi-
ly recognizable in other treatments, since the evaluation
of the amplitude is usually the major problem [35,36].

(ii) Factorizing the response at nth order in two terms
R and A. The former pertains to the radiation fields, the
latter to the subsystem constituted by the thermal bath

(2.22)

(2.23)

SG (2, )SPG(z,) A} .

and the atom. The factorization rests on the disentangle-
ment property expressed by Eq. (2.16) and motivates the
statement that the present approach extends the LRT to
the case of nonlinear response of the atom.

In the next paragraphs both the terms R and 2 will be
discussed thoroughly.

C. Reduction of the radiation term

In an experiment the fields can often be considered as
quasiclassical, coherent states |w,) [11,33,35]. The
coherent states of the kth oscillator are the eigenstates of
the annihilation operator a, with eigenvalue a:

alo ) =ayloy), (oplai=al{o,] . (2.26)
The density matrix of the radiation p; becomes
r=lo){0|®]0;)(w,|® - &lwg ) o] . (2.27)
Let the classical field B(#) be expressed as
k
B(t)= 3 Bj[eiexp(—iw;t)+efexplio.t)], (2.28)
k=1

where e, is the polarization unit vector and e} is its com-
plex conjugate. If the matrix element {w, |V|w, ) is com-
puted, according to Eq. (2.18), one proves that the eigen-
value a;, of the kth coherent mode |w; ), the strength A,
of its interaction with the spin system, and the classical
amplitude B, fit in the correspondence relation

B, =% o] (2.29)

14

On quasiclassical states, the radiation term reduces to a
simple expression. By inserting Eq. (2.27) into Eq. (2.23),

A, Trimylprag, - ax )

:i")\.kl "'}\,kn.N{akl "'akn} . (230)
The function N{ay, -
ting the product a kO

- a; } must be calculated by put-

a; in normal order and then re-

placing a; by a; (a_j;=afy). In most practical cases
4 P

the value of |a, | is so high that normal ordering can be
neglected, so yielding the very simple result
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k) T A Mg Ny - ay

+n
=i AL
)\'kl k, %k, akn

=(iy)" [[ By, -

i=1

(2.31)

It must be pointed out that the radiation term does not
contain information concerning the polarizations of the
radiation fields. The polarization states e; have been in-
cluded in the definition of the vertices S of the radiation
term [Egs. (2.18), (2.23)] and contribute to “build up” the
spectroscopy selection rules.

Equations (2.25) and (2.31) allow the derivation of the
explicit expression of the nonlinear susceptibilities
¥V, x'?, ..., x'™ coming out in the expansion [Eq. (1.7)]

¥'"[— sgn(k, )cokl, ..., sgn(k, )wkn]

=(i‘}/)n2[{kl,”,kn}(ia) . (2.32)

Equation (2.32) pertains to the component at frequency @
[Eq. (2.24)] of the nth-order response. Equation (2.32)
evidences the contribution to the frequency @ coming
from each step of the n-atom-—radiation interactions.

III. STOCHASTIC MODEL
OF THE ATOM-BATH INTERACTION

A. Generalities

Until now all the results have been derived in a pure
quantum-mechanical way. The factorization of the
response expressed by Eq. (2.22) enables us to concentrate
only on the unperturbed system A ®B. Nonetheless, in
order to reduce the huge number of bath variables to a
manageable, reduced set, assumptions must be intro-
duced. In this spirit the bath variables will be replaced
with classical stochastic variables, by defining a mul-
ticomponent vector W=(W [, W,,...,W,). It is as-
sumed that the stochastic properties of W can be de-
scribed by a Markov, stationary process [37]. The transi-

tion probability p(W,t|Wy,t0)=T.(W|W,) where
T=1 —1, fits in the master equation:
O T (WIWy)=T,T.(WIW,) . 3.1)

at

The explicit expression of the operator Iy, is
T,= [dW'P(W|W')— [fdw'P(w'IW) . (32)

P(W|W’) is the transition probability per unit time from
W’ to W. If the range of W is discrete, the integrals are
replaced by sums. Equation (3.1) can be cast in the more
intuitive form

%TT(W|W0)=de’P(WlW')TT(W’IWO)
- [de’P(W’IW) T.AW|W,) . (3.3)

By assuming the bath B to be a closed, finite, isolated
system, detailed balance follows [37]:

P(W|W')T(W'|W)=P(W'|W)T_(W|W,), (3.4)

where T, (W|W,) denotes the equilibrium distribution of
the stochastic variable W, i.e., T.(W|W;) for 7— .
The detailed-balance property can be applied to the
present case, by considering the atom system as a small
subsystem of the larger system including the bath. Ow-
ing to detailed balance, the general solution of Eq. (3.1)
can be conveniently expressed in terms of a proper set of
eigenfunctions. To ensure a symmetric form to I',, let us
define a scalar product between any two functions b (W)
and ¢ (W) as

_ [ (W)e(W)
(ble)= [ T wiwg ¢V - (3.5)

In the above equation a quantumlike notation in terms of
round bra and kets has been introduced for the bath
states. With respect to the above scalar product T, is a
symmetric  operator, namely, (b|T,c)=(c|T,b)
=(wa|c). Thereby, a complete set of orthornormal
eigenvectors is found so that ' b, =Ab,, with A<0. In
particular, there is one eigenvalue A=0 which is not de-
generate with eigenfunction b, =T, (W|W,). The eigen-
values can be discrete or continuous or both. Hence-
forth, the notation for discrete eigenvalues denoted by
the index A is used.
The completeness is expressed by

DXWIAW) _ s —wr) (3.6)
< bo(W') ‘

so that the solution of the master equation with initial
To(W'W0)=8(w_W0) iS

b;, (W)b, (W)
T.(W|Wy)= EL#

e M. (3.7)
< bo(Wp)

Equation (3.7) proves that detailed balance is sufficient
to ensure symmetrization of ', and then an expansion of
T,.(W|W,) in terms of a basis of eigenvectors.

If the constraint of detailed balance is relaxed, one usu-
ally tries to expand T.(W|W,) on a biorthogonal set,
which is complete if all the eigenvalues of Ty are
different. In this case the non-Hermitian operator Iy
can always be diagonalized by a similarity transforma-
tion. If some eigenvalues coincide, completeness becomes
questionable and the procedure is reliable if only a few ei-
genvalues close to A=0 are relevant. Tricks can be ap-
plied to special cases. A thorough discussion concerning
the case of I'y coinciding with the Fokker-Planck opera-
tor is given by Risken [38].

In a stochastic description the term H ,5 of the unper-
turbed Hamiltonian H [Eq. (2.2)], accounting for the in-
teraction between the system A and the bath B, becomes
a function of both the quantum variables of the system A
and the classical stochastic variable W [H .z =H ,5(W)].
The feedback of the system A on the bath is neglected, so
that I'y is independent of the degrees of freedom of the
system A. Finally, the quantal Green function K;(¢)
[Eq. (2.3)] is replaced by the stochastic propagator
K$9(¢) [2,37]:
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K$(t)=0(t)exp[T7t] , (3.8)
where I' - is the stochastic Liouville operator:
Ty=i[H,+Hg+H,z(W)+V]*+Ty, . 3.9

' consists of a conservative part sharing the rigorous
character of a Liouville operator built up according to
the rules of analytical mechanics and a dissipative one.

In the stochastic scheme the trace operation on the
bath variables is replaced by an average on the range of

where the deterministic propagator G (z) [Eq. (2.17)] is
replaced by the stochastic propagator G *Y(z) defined as

G‘st’(z)zz—_l—r—, C=i[HX+H5(W)]+Ty .
In conclusion, due to Egs. (2.22), (2.25), (2.31), and (3.11),
in a stochastic framework the nth-order response exhibits
a spectrum whose amplitude at frequency @ [Eq. (2.24)] is

(3.12)

n

S MBI, i)

(3.13)

The susceptibility x'” maintains the same form of Eq.
(2.32). Henceforth, the superscript “(st)” will be dropped
to simplify the notation.

B. Expansion of the atom-bath term

The expression of the atom-bath term 2, k,

......

given by Eq. (3.11) is worth noting. It emerges that the
central quantity is the propagator G (z) governing the
free relaxation of the system A under the influence exert-
ed by the bath B. In the linear case (n=1) the evaluation
of the response involves a single matrix element of G (z).
Differently, the nonlinear response (n> 1) is expressed by
products of different matrix elements of G (z). By proper-
ly designing the experiment, it is possible to select partic-
ular matrix elements. This feature discloses a wide-
ranging field of applications of the nonlinear spectros-
copies and will be brought into sharp focus later.

Let us expand the atom-bath term, as expressed by Eq.
(3.11), by inserting identity operators. The reduction of
the expression to a manageable form is obtained by ob-

|

A, k) (2)= 2 2

k, }(Z):Tr[ﬂ] {PA <Sk>:G(St)(an ) e SkiG‘s”(zkz )Sk)jG(St)(Zkl)ySt)A } N

n—1 a .
2 <pAlS:”no_"> I—I [a,HG» r+l.kr+l r+1%r0r ’(zk )] i

W weighted by the classical equilibrium distribution
pp(W):

(X)= (X)),
(X)‘S“EdepB(W)X(W)=(b0|X|bO) ) (.10

Stochastic assumptions do not affect the general factor-
ization of the response A A4 (z) [Eq. (2.23)]. The atom-
bath term is changed as

(3.11)

—

serving that the vertices, namely, the superoperators S;°,

can be expanded on a small set of orthornormal eigenvec-
tors in the case of practical interest § = 4.

Let us define the scalar product between two operators
acting in the A space as

(X|Y)=Tr 4(x'Y}, (3.14)

where Tr 4, is a trace operation in the A space and X t
the Hermitian conjugate of X [in the B space the scalar
product is defined by Eq. (3.5)]. Indicating x as the direc-
tion of € » Skir =§,+iS, are eigenoperators of S with
eigenvalue 1 and both the identity and S, are eigeno-
perators with zero eigenvalue. Therefore for the case
S=1
$¥-e, =3 ISi,0, (0,8 | =IS¢ ,0,)(a,,5 |

9,

= 3 2a,|SZ’,0,)(a,,S;’|,

g,=%l o,

(3.15)

where o, denotes further quantum variables rendering
the description of the system A complete. Inserting Egs.
(3.6) and (3.15) in Eq. (3.11) leads to the expansion of the
atom-bath term. The matrix element related to the rth
propagation assumes the form

f1r+lk

Lyl

r+lar+1;arkror (Z)

=(b, , {0, 1S G (IS 0, )b,),  (3.16)

where the upper indices refer to the states of the system

A and the lower ones to the bath states. Now we are in a
position to express the atom-bath term [Eq. (3.11)] as

:a k o

(3.17)
Lyl r+1
r=0

The indexes i, and i, are limited to iy =i, =0. |S:§00> =| A4 ). The arguments of G (z) are to be evaluated according to
the iteration Eq. (2.21) with 2z, =z Owing to Eq. (2.32), the atom-bath term and the susceptibility may be related by

letting z =i@ in Eq. (3.17). For readers’ convenience and for later use the explicit expressions of the atom-bath term at
frequency @ is derived for n=1,2,3:
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Ay (iB)= 3 Ta(pslSclo)€o,,S;! (G @) 4)
a; =%l o
=—idg ,lid). (3.182)
1

The susceptibility ‘!’ obtained by inserting Eq. (3.18a) in Eq. (2.32) coincides with Eq. (1.3a) (oc=p 4pp)- At higher
orders

U xyid= 3 3 2a,az(pAISZ:UZ)(oz,S:;l(bolG(i6+isgn(kz)wkz)lb,-l)ls,?l‘,al)

a,a,=*l1 iy oy,0,
X (01,8, (b |G (i@)|bo) 4) (3.18b)
9 (iw)= S aasip4ISiios)
[y Ky ky) (1D 2 2 122038p 418 03
al,az,a3=:tl i1,iy 0,050
X(U3,S,?;l(bolG[ia-Hsgn(kl)wkl+isgn(kz)mkz]lbiz)lS;:;,oz)
X(UZ,S,fzzl(b,-glG[ia-i-isgn(k1)cokI][b,-l)IS:ll,ol)(crl,S:l‘l(b,-IIG(icTJ)Ibo)lA) : (3.18¢)

Apart from the case n=1, in the above expressions it is impossible to identify terms to be interpreted as equilibrium
correlation functions, since the bath average in the atom-bath term is performed on the overall propagation [see Eq.
(3.11)]. This can be understood since the atom and the bath dynamics occur in general on comparable time scales dur-
ing the propagations governed by G. In Egs. (3.17) this is signaled by the presence of the matrix elements (b,|G (z)|b ;)
[see Egs. (3.16)] measuring the degree of correlation between the bath states during the development of the atom state.
This correlation vanishes for time intervals of more than 7, (7, =~A, the first eigenvalue of I', in our stochastic picture).
The overall average appearing in Eq. (3.11) can be split in a product of averages if the bath correlations vanish during
the relaxation of the atom state. The condition is T >>7,, where T is the time scale of the relaxation of the atom state.
Atom states relaxing on time scales exceeding 7, will be referred to as slow states.

The splitting process of the overall average can occur in two basic ways.

(i) The observable A itself is slow. In this case the atom-bath term reduces to

AU i D =Tr(pa(SEG(z ) - SEG(z IS Gz, ) A} . (3.19)

f

trates the coarse-grained view of the relaxation of the
slow atom state set by the radiation field at the first ver-

(ii) The absorption or emission processes set the spin
state so that the overall atom state is slow during the fol-

lowing propagation. For example, if the setting occurs at
the first atom-radiation interaction, the atom-bath term
becomes

QI{ kl

kD =Tr{pa(SEG(zZ )~ 5. )

X<G(zk2)><Sk)jG(zk‘)>A} .

.....

(3.20)

The above cases are general paradigms. The bath state
can be assumed to be the equilibrium state ®; in the two
vertices 1 and 2 before and after the slow propagation
driven by ( G (z)), respectively. The general treatment of
the propagator (G (z)) when the atom is in a slow state
is discussed in I in terms of proper coarse graining of the
time scale. This procedure is correct provided that the
new time scale At is chosen according to the prescription
T>>At>>7,.

The case (ii) discussed above is sketched in the Feyn-
man diagram of Fig. 2 [the case (i) is analogous]. The
empty dots are the initial states. Waves denote photon
absorption or emission occurring in the vertex (black
dots). Figure 2(a) depicts the general case of comparable
dynamics of the atom and bath states. Figure 2(b) illus-

tex. On the scale At the only significant amplitudes come
from matrix elements involving as right and left bath kets
|by). On a more physical basis this means that the bath

(a) ) )

o5

N

ESGALE

FIG. 2. (a) Normal propagation of the observable A in the
presence of two interactions with the external fields. (b) Slow
atom state set by the radiation at the first atom-radiation in-
teraction act.
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fluctuations can always be thought of as relaxed on the
scale At.

C. Analytical treatment of the propagator G (z)

The amplitudes [Eq. (3.16)] are the central quantities
needed to evaluate the atom-bath term included in Eq.
(3.17). In this section analytical methods will be outlined
to evaluate these amplitudes. The procedures will ac-
count for both comparable and separated time scales.
The general expression of the amplitudes is

(Bl(b;1G(2)|6p)|A) , (3.21)

where B and A are atom states and b is a bath state. If
atom states are slow, the relevant amplitudes follow from
the Laplace transform of

Upa(D=(bo|(B|A(1))|by)=Tr (B (A1)} .
(3.22)

¥ 4(t) can be interpreted as a cross correlation function.
There is a substantial difference between Wy ,(¢) [Eq.
(1.5)] and 9p 4(2). ¥p,(2) is weighted by the equilibrium
density matrix of the atom-bath joint system p., whereas
¥ 4(2) is weighted only by the bath equilibrium distribu-
tion. This may be understood since the atom states, dur-
ing the multiple interactions with the external fields, do
not relax to the equilibrium state. Instead, bath fluctua-
tions relax during the time evolution of the slow atom
state.

Analytical expressions of the Laplace transform of Eqgs.
(3.21) and (3.22) can be achieved by resorting to the frame
of generalized Langevin equations [28]. On the other
hand, Eq. (3.22) can be recast to evidence the average
( A(1)). The equation of motion of { 4(z)) is provided
by the cumulant expansion [39-41]. The generalized
Langevin equation is a more general tool than the cumu-
lant expansion, which is convergent only when good sep-
aration between macroscopic and microscopic time scales
takes place. Nonetheless, in this case the cumulant ex-
pansion delivers a systematic procedure for the elimina-
tion of fast variables. Details about the two methodolo-
gies are found in the appendixes of I. Below, the main re-
sults are summarized.

1. Generalized Langevin equation
Let us consider the quantity WV ,(¢) defined as

Wy, (t)=(B, A (1)), (3.23)
where (B, C) denotes a suitable scalar product [Eq. (1.5)
shows the usual case of a weighted trace operation]. The
time evolution is governed by

AW)=iH* A1) . (3.24)
H is not necessarily a Hermitian operator. The approach
based on the generalized Langevin equation expresses the
Laplace transform ¥y ,(z) of the correlation function
W, 4(2) as a continued fraction

(B, A)
b3 ’
b3

z—a,— -

Py a(2)=

Z—apg—

z—a,—

(3.25)

If the correlations vanish at the initial time, i.e.,
(B, A)=0, one finds the modified expansion

By a2)=i" (B,H™"A)z "
BA ’
, by
z—ay— -
2
—_ ! — bz
z 01 —
z—a,

(B,H*™A)=0, 0<m <n, (3.26)

where 7 is the first integer for which (B, H *™ A4) does not
vanish. a,a’, b,b’ are complex numbers.

Analytical expansion of the Laplace transform of
W, 4(2) is provided by introducing a proper biorthogonal
basis set. The set is generated by starting with two seed
states f,= A and f,=B and iterating for the right states
according to

f1=iHXfo_aofo ’

X ) (3.27a)
fn+l=lH fn_anfn _brzfn—l
and for the left states according to
fx=foin—aofo ,
= % - . (3.27b)
fn+1=fan —anfn_bn n—1>
where
FuriH > f) (Fusfs)
a,,=(f"~l L i= L LY (3.28)
(frnfn) (frr-l’fn—l)
2. Cumulant expansion method
Let us decompose the operator H as
H=H,+H,, (3.29)

with Hy=(H) and H,=H —H,, according to Eq.
(3.10). To deprive the dynamics of A (t) of the “free”
motion due to Hy, one defines the interaction representa-
tion

A0 (r)=exp(—iHJt)A (1),

(3.30)
H\ > (t)y=exp(—iHJ t)H { exp(iH ')
so that Eq. (3.24) becomes
AO(n=iHP*(1)4%(z) . (3.31)

Starting from Eq. (3.31) an exact equation of motion
for the average value of A'%(z) follows which takes the
form

%(A(O’(t))=7{‘°)(t)( A49))

(3.32)
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with with
» O oy= [ 04|y —
ﬁ(O)(t)= 2 ‘7{('2](” . (3.33) .7{2 (o0) fO dleZ (t‘t Tl) ’ (3.35)
m=2
where
Vgl — )= — ( [0 0% (5
The detailed derivation of Eq. (3.32) can be found in L. kP (tlt —7)=—C(HP* (OHP (1 —1)) . (3.36)

The terms K\%(¢) are usually named ordered cumulants
and rules have been derived for building them up
[39-41].

For Eq. (3.32) to become of practical interest, we must
distinguish between two time scales. The first is the time ~ #\"( 0 )=H)( 0 )+ H (),
scale on which { 4%(¢)) varies appreciably. We charac- (3.37)
terize this scale by T ;. The second time scale is deter-  #0)( 0 )= _%f del([H(IO)X (O, HO X (t —71)]s)
mined by the autocorrelation time 7, of H{®*(¢). As 0
soon as 7,<<T,, the properties of ordered cumulants  where [X,Y],=XY+YX. The integrand function of
lead to successive Markovian approximated forms of Eq.  #'Py( ) [#'%)( )] is an even [odd] function of ;.
(3.32) of a higher and higher order with respect to This second-order approximation in H{”* () can be
H (10)>< (t), which are effective on the coarse-grained time  pursued further. The fourth-order approximation to Eq.
scale At such as 7, << At << T 4. On this scale #'®(¢) can  (3.32)is

The second-order cumulant #5”)( ) can be separated in

a Hermitian and anti-Hermitian part, #'%)(0) and

F'%( ), respectively,

be replaced by # (0 ). 5
At second order Eq. (3.32) reduces to gt_< AW =[HP(0)+H(0) (4 )) ,  (3.38)
9 40051} = F(O) ©)
at(A (1)) =HP(0){ 42)) , (3.34) 4
|
(0) — ® ( t 4 t,
Fa (o) fo d’1k4°’<‘|’x>—fodt1fo dtzfo dty (k5 (t]1)k ) (2 [t)+ KOtk (1, 11,)) (3.39)
where

o )
kg°>(t1|t4)=ﬂ4 dr, fu dts CHO> (0 )H O (0 H X (£)H O (1,) )

—CHOX e DHP* (6,))(HOX (1) HO% (1,))

(3.40)

|
The Markovian form of Eq. (3.32) deserves some com-  where 4, and Q,(W) are an operator acting in the A
ments. space and a classical function of the stochastic variable

The order-cumulant expansion (3.33) of #9(¢) is often =~ W, respectively. A, is not necessarily Hermitian, even if
employed in the limit of short correlation times 7. In  H, must be. This implies that in general Q (W) is
fact, it can be proven that the order of magnitude of  complex. (H ,5) is supposed to vanish. Otherwise, the
F(2) is H?* (£)™r™ ~! and the series (3.33) is expected  averaged value must be included in the definition of H 4

to converge for small values of the expansion parameter  Let |a)), [b)), . . . be the eigenstates of H , with energies
H (lo’x(t)‘rc. However, it must be pointed out that the @,,0p, . .. . Equation (3.34) becomes

smallness of the parameter H'\Y* (¢)7, is a sufficient but

not a necessary condition in order to guarantee meaning- —a—( AR =S HD () 49()) (3.42)
fulness to Eq. (3.32). The basic requirement is the time ot od

scale separation between the dynamics of { 4°(¢)) and

h _ . . ...
H (10)x (¢). In I, cases have been presented where the ex- Where X, Calxlp ) By inspection it is seen that

pansion (3.33) has been extended to the region 7{(202 Jo)=expliloy—wgtIR; (3.43)
HO% ()7, >>1. o e
For later use we specialize #,’() in Eq. (3.34) to the ~ Where ,,, =0, —w,, and &, _ is a constant quantity
usual case for stationary stochastic processes (X* is the complex
_ conjugate of X). From Eq. (3.35), disentangling the dou-
H 4p § 2(W)4, , (3.41) ble commutator in Eq. (3.36) gives

© iwg,s io, s
R~ 2 fo ds Copls) |8p0 3 AG, Afe " — AL Afpe ™™
a,B n

+Cpo(—s) [a,,c S AB A% — 42 4B o'
n

(3.44)
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C g is the correlation function defined as
Coup(s)=(Q,(T+5)Qp(1)) . (3.45)

In Eq. (3.42) only the terms { 4.9'(¢)) and { 4'9(2)) for
which the inequality

0y —w,y| <<1/At (3.46)

holds are significantly coupled to each other. This secu-
lar approximation reduces Eq. (3.42) to

9 (sec) )
E< AR =3 expli(wy—wy)t]
¢,d

XRy (AQ0), (3.47)
where the sum is now limited to terms which obey Eq.
(3.46). Combining back to the original representation
yields

(sec)
%(Aab(t))=icoab(Aab(t)>+ S RE(AgyD) .
c,d

(3.48)

Equation (3.48) shows that the time evolution of the sys-
tem A is described on the coarse-grained scale Az by a
linear differential system with constant coefficients. On
this scale the propagator G reduces to G where

|60 (bl

GO(z)=—— O
O CGH R

(3.49)

GO is the effective propagator describing the dynamic

behavior of slow atom states, namely, states of the system
A relaxing on time scales T longer than the correlation
time of the bath .. The general properties of the supero-
perator 72, can be found in many textbooks [2,33,35].
Relevant to the present discussion is the identification

ﬁzam=l"cqa, c#a ,
(3.50)
7{2 = 2 Fa—»n ’
aaaa n#a
il

Ay o i@)= 3

aj,a,=*1 0,0,

1

X<0l,S:1‘

io—(iH; +R3)

where ', _, , expresses the transition rate from the level ¢
to a of the atom system. According to Eq. (3.37), the re-
laxation matrix 7, can be separated in a Hermitian and
an anti-Hermitian part # |, and R _,, respectively,

Ry=R TR,

- (3.51)
Rip==1 [ “dr((HO* (1), HOX(0)].) .

1, describes all relaxation effects whereas % _, pro-
vides a (usually much smaller) contribution describing
frequency shifts. A useful property which can be proved
by inspection is

i2abcd = ii{ *izcdab ’ (352)
which results in
r...=r,... (3.53)

Equation (3.53) implies that at equilibrium the atom lev-
els are equally populated. This is a consequence of the
assumed classical character of the thermal bath. Howev-
er, arguments based solely on bath thermodynamics imply
the correct detailed-balance condition [37]

_ —hw, /kT

c—a

—ho /kT
e

r T,... (3.54)

A correct quantum-mechanical picture of the bath still
recovers Eqs. (3.48) and (3.54) [13,33].

In order to gain insight into the role played by the slow
atom states, let us take into consideration their effect on
the atom-bath term by referring to the cases with n=2,3.
The case n=1 is skipped since it is of limited interest for
the present discussion.

For n=2 three possibilities are given: either the ob-
servable A, the intermediate state |S:22,0'2>, or both are

slow. If the observable A is slow, the atom-bath term
given by Eq. (3.18b) reduces to

S aa,{p 4 IS;:;Uz)(Uz,S::HG[lTa)JFi sgn(kz)wkz])’S:]’,ol)

’A> . (3.55)

The other two cases are obvious. In all cases the overall bath average of the atom-bath term with n=2 is factorized as a
product of two bath averages. The slow variable is driven by the coarse-grained propagator G °© [Eq. (3.49)].
The form of Eq. (3.55) deserves some comments. It can be rewritten as

~
%fkl,kz](lm)z—l 2 zalfb a
a,=%1 o Sky3 Sk, 101

[im+i sgn(ky)oy 1 C o (i),

(3.56)

1,
Sk A4

namely, the atom-bath term may be expressed as a weighted sum of the Laplace transform of two correlation functions
[Egs. (1.4), (3.22)]. The superscript in the ¥ function signals that the time evolution is governed by the coarse-grained
propagator G©. Inserting Eq. (3.56) into Eq. (2.32) provides the expression of the second-order susceptibility y'*’. The
reader is advised to compare this expression with y'!’ [Eq. (1.3a)].

This generalization of the linear-response theory can be extended to higher orders. Anyway, by increasing the order
n the vertices of the atom-bath term [Egs. (2.23), (3.17)], i.e., the atom-radiation interaction acts, increase and a number
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of different choices can be made in the design of the spectroscopy. This richness has as counterpart a more involved in-
terpretation. This limitation steps in for n=3 and becomes more and more apparent for schemes with n> 3. Nonethe-
less, for n=3 it is worth noting the case in which the first atom-radiation act sets the atom in a slow state. In this case
the atom-bath term reads

g[[kl’kzvksl(ia): —i

2 2 alaz(,ﬁ Saz [iCT)+l Sgn(kl )a)kl +i Sgn(kz )Cl)kz]

a,a,=*1 0,0, Sks; kz"’z
X$O . . lio+isgnk)op 1§ o [id@]. (3.57)
llfaz'sk:;skl,,al[tm i sgn(k, wk1]¢al,sk:;A[lm]
Inserting Egs. (3.56) and (3.57) in Eq. (2.32) delivers the expression of the nonlinear susceptibility y* and x*. y'* and

x'¥ extend in a natural way the form of the linear susceptibility x'", in that they are related to a product of Laplace-

transformed equilibrium correlation functions. The above derivation has put into evidence the critical role played by
the presence of the slow states.

We conclude the present section by rewriting Eqs. (3.56) and (3.57) in a slightly different fashion, by replacing the
response function ® with the relaxation function W. This replacement is desirable for applications. The response func-
tion involves a commutator [Eq. (1.4)] whereas if canonical equilibrium is assumed, the relaxation function is delivered
by the simpler form [Eq. (1.5)] which can be directly interpreted as a correlation function. Resorting to Eq. (1.3) yields

%Ilkl,kz}(icT))=“‘i 2 zaI{XOS 'Sal

+i3[ia+isgn(k2)wk2]¢/s o [i5+isgn(k2)mk2]},’/)ccsal (iD)
k TSk, s

a,=%1 o, ky Sk, 271 S5k, 071 A
(3.58)
Ak ky ey (D)= 2_ 3 alaz{xos <o, +iBlio+isgn(k,)oy +isgn(k;)oy, ]
a,a,=%1 0,0, ky'Vky 92

X ¥ [id+isgn(k,)o, +isgn(k,)w, 1)
S, :S o 1 2
kyky 22

X§C o o lidtisgnk)or 1 o [i@]. (3.59)

Extensive experimental studies of second- and third-
order nonlinear spectroscopies with slow atom states
have been carried out for a long time [29,30]. Both slow
observables and slow intermediate states have been ob-
served and may be dealt with by Egs. (3.56)-(3.59). In
those papers the bath effects were accounted for by a
Bloch theory. The present approach shed light on the
good agreement which is found between that rough relax-
ation theory and the experimental findings about the re-
laxation of the slow states. The basic motivation lies in
the fact that the relaxation of slow atom states is ac-
counted for by Bloch relaxation times, as widely detailed
inL

In the next section a fairly general model of the system
A is presented. Section V will discuss in detail the case
of a second-order spectroscopy (the case with n=3 is
postponed to a later paper).

IV. MODELING THE SYSTEM A

This section is devoted to modeling the system A . The
plan is identical to the one presented in I. We start by as-
suming A to be a two-level system (TLS). This allows us
to make clearer some features of the nonlinear response.
Then, in order to ensure a satisfactory level of generality,
we address ourselves to multilevel systems. The system
A will be modeled as a particle with spin § =1 interact-
ing with a second particle with arbitrary spin I. After a

0,,5,%:8,",0
2 kz’ k1 1

ol,Skl ;A

—

general discussion, examples will be drawn for the case
I =1 (four-level system: FLS).

The atom and atom-bath Hamiltonians to be specified
in Eq. (3.12) are assumed to be of the general form

H,=wS,+o;S,1, ,
H 5 (W)=0(W)-S+S-@(W)-I
= 2 o WSt T oy(W)S T, .

k=x,y,z kl=x,y,z

(4.1a)

(4.1b)

o, and w; are scalar quantities. ©(W) and o(W) are a
vector and a matrix with elements w, (W), k =x,y,z, and
0y (W), k,l =x,y,2, respectively, depending on the sto-
chastic variable W. In a magnetic resonance experiment
g and o, coincide with the Larmor (w,=vy#,, #, being
the static magnetic field) and hyperfine frequency, respec-
tively. #, defines the z axis. It is assumed that

(0 (W))=(w,(W))=0, (4.2)

yielding (H ,5(W))=0. The case ( H ;5(W))50 can be
handled by including the averaged value in H ,. Asin I,
the discussion will be limited to the region

B '>wp>0;, (0f(W)2 (b (W))2.  (43)
The rms amplitude of the fluctuating fields { w2 (W))!/2
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(@%,(W))1”2 is a central quantity governing the relaxa-
tion property of the observable of interest (see I). Hence-
forth its order of magnitude will be referred to as A. In
the next section the explicit form of the coarse-grained
propagator G<Y [Eq. (3.49)] is discussed for the present
model.

A. Relaxation properties of the slow atom states

The discussion is split into two parts dealing with the
cases of two-level and multilevel systems, respectively.
The coarse-grained time scale Az will always be assumed
to be larger than 1/w,. Two motivations are adduced.
First, a number of physical systems of current interest ex-
hibit fluctuation phenomena with correlation times 7,
longer than 1/w,. Furthermore, while for , longer than
1/wq a single slow atom state will be seen to be present,
for 7. comparable to or shorter than 1/w, the fluctua-
tions are so fast as to favor the emergence of a set of slow
atom states, according to the model Hamiltonian [Eq.
(4.1)]. To gain insight into the role of slow atom states,
this appears to be an inessential complication.

With a view to helping the reader during the following
discussion, the mutual position of the resonances of the
atom, the bandwidth 1/At covered by the coarse-grained
procedure, and the rates of the atom relaxation processes
are illustrated by Fig. 3. Some of the quantities will be
introduced below.

1. Two-level structure

For a TLS there is only a resonance frequency w,. The
spin S spans states which are superpositions of

So=S

z

(4.4)
Si:SxiiSy .
The eigenstates of H , are
1)
HA|i>>=i-23|i>> : 4.5)

On the scale At >>1/w, (Fig. 3, top), according to Egs.
(3.46) and (3.50), Eq. (3.48) reduces to

%(AH(:)):—FM_(AH(z))

+0__ ., (A4__(), (4.62)
iu (1))=—-T_ (A__@))
ar T ot

+T, (A, (), (4.6b)
) . .
-a?(A+~(t))=(lw0+7{2+‘+7)(A+_(t)> . (4.6¢)

By the above equations and Eq. (3.52), one derives the
relevant i functions (a shorthand notation is introduced)

76(2)=(5,|{(GS(2)]s, )=+ —1

—, (4.7a)
4 241!
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P C(2)=(S,|[{GC(2))|s,)
1 1

= : (4.7b)
2 z—i(wg+Aw)+T5!

¥ C(2)=(S_[{G(2))|s_)
2 z+i(wp+Aw)+ Ty 4.7¢)

where the scalar product defined by Eq. (3.14) reduces to
a trace over spin states and the usual relaxation times and
dynamical shifts are defined as

T '=r,  _+I__ . =2,  _, (4.8)
T{‘=—Re{7€2+_+7}=—Re{7€+2+*+k} , (4.9
Ao=—Im{R, _}=-Im{R_, _}. 410

¥<C correlation functions other than Eq. (4.7) vanish on
the coarse-grained scale Ar>>1/w, It must be noted
that in the high-temperature limit Bw, < 1, the ¥ correla-
tion functions [Eq. (1.5)] reduces to

Y=1ly. (4.11)

2. Multilevel structure

In the multilevel system described by the model Hamil-
tonian [Eq. (4.1)] with I+0, the coarse-grained scale Az,
defined in Sec. III C by demanding 7, << At << T 4, can be
chosen with different levels of accuracy (Fig. 3). High ac-
curacy requires that At=Aty <1/w;. The opposite
choice At=At; >1/w; implies low accuracy. Improved
low accuracy must ensure At;>At; >1/w;, where At; !
is the order of magnitude of the intermultiplet relaxation
rates (a multiplet is a set of levels characterized by the
same electron spin state). In many systems of interest the
value of the hyperfine constant w; is larger than T ,. So,
the discussion will be essentially limited to the relaxation
effects still present on the coarse-grained scale At;, even
if some insight in the relaxation regime occurring on Aty
will be provided.

Let us consider the three subspaces of the states of the
system A given by

A, =(1S,,P, ;n=0,21,m=—1,—I+1,...,I—1,I},
4.12)

where S, are defined in Eq. (4.4) and P, denotes the pro-
jector on the eigenvector of I, with eigenvalue m. The
scalar product [Eq. (3.14)] for the system A requires trac-
ing over both the states S and I. Note that

AFA @A @A _; . (4.13)

The subspace A, is invariant on the coarse-grained time
scale At; >1/w;, according to Eq. (3.48). In fact, Eq.
(3.46) with At =At; > 1/w; implies

Wgp =g - (4.14)

Invariance of A, is equivalent to saying in the
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FIG. 3. Mutual positions of the resonances of the atom, the
bandwidth 1/At covered by the coarse-grained procedure, and
the rates of the atom relaxation processes. w, is the Zeeman
splitting, w; is the hyperfine splitting of the 21+ 1 levels forming
each multiplet. Az,"!, At; ! are the order of magnitude of the
intermultiplet and intramultiplet relaxation rates, respectively.
At is the time interval on which coarse graining is carried out.
Top: TLS case. Middle: FLS case, high accuracy Atz !> w; vs
low accuracy At; ! <w;. Bottom: FLS case, improved low ac-
curacy At; !> At; !, See text for details.

Schrodinger picture that (i) electron coherences and pop-
ulations do not mix together while time passes, and (ii)
nuclear coherences are not effective on the scale
At =At; >1/w;. The observable 4 of the spectroscopy
may usually be expressed as a linear combination of states
belonging to A, (for example, in electron spin resonance
the observable is the electron magnetization).

Let us analyze first the relaxation of the states of the
subspace A, which will be referred to as the population
subspace. The eigenstates of H , are

[0
H,l+,m)= iTo+ma)I l+,m N =0, |+t,m)

(4.15)

and in the subspace A, Eq. (3.48) reduces to the rate
equation [ A,(2))=( A, (1))]

ai(Aj:m(t)>=_— 2 rj:m—»ik<Aj:m(t)>
¢ k (#m)
+ 3 Tikoim(A40))

k (#m)

— X Timo sk A, (1)
k

+ 3 Triim{ Az () . (4.16)
k

Equation (4.16) yields the general form of the 2(2I+1)

coupled differential equations governing the time evolu-
tion of ( 4.,,(2)). Some features of the solution of the

above system deserve consideration. First of all we note
that [Eqgs. (3.44), (3.50), (4.3)]

I-‘:tm—):tk Te Te
=~ 3 55 >1,
Fimosk 140}/ 14037

T, >>a)0_1 .

(4.17)

Equation (4.17) assumes that the magnitudes of the ran-
dom fields contributing to 'y, 4, and Ty, , 4, are
comparable and shows that, provided that 7, >>wj, !, the
transition probability between states with opposite spin is
fairly smaller than the transition probability between
states with same spin.

Two time scales in the relaxation of the system A are
then identified (Fig. 3): A first scale At;=1/T4,, 4 on
which ( 4,,,(2)) relaxes due to couplings with elements
(A4, (1)) with km belonging to the same multiplet,
and a second scale Atg=1/I'y,, , +;,>>At; on which
(A4, (1)) relaxes due to couplings with elements
( 4 £ ,(2)) belonging to the other multiplet.

The low-accuracy coarse graining occurs on the scale
At; >1/w;. On the other hand, it is required that
At <<Atg. Improving the accuracy requires
At <<At; <<Atg. The identification At =At¢; may be
questionable in that sometimes At; ~w; !. In Fig. 3 (bot-
tom) this identification is presumed.

Let us analyze the requirement At; <<Atg. If A is the
order of magnitude of the random fields {w?(W))!/2,
(@%,(W))172 it comes out that

-1
1 A’r, [N
Atg~ ~ >— . (4.18)
P Tk | 1todr A’
At; may be chosen to be much less than Atg, if
A% /ogw; <<1 . (4.19)

Moreover, in the limit of long correlation times
7. > 1/w,, which represent the region of prominent in-
terest of the present paper,

Atg ~wir, /A (4.20)
and then the inequality
Aol <1 @.21)

implies that A¢; may be chosen so that At; <<Atg.

Both Egs. (4.19) and (4.21) do not follow directly from
Eq. (4.3). Nonetheless the additional limitations that are
imposed on the range of the parameters are rather weak,
since the leading factor of Eqgs. (4.19) and (4.21) is the ra-
tio A /wy which is usually much less than one. For exam-
ple, in many practical cases either A=w; or w,;7,>1,
then Eq. (4.3) implies Egs. (4.19) and (4.21), respectively.

We start to analyze the solution of the system of Egs.
(4.16) on the scale At;, henceforth assumed to be shorter
than Atg. For the moment the accuracy is assumed low
and let At; >>At;. On this scale, at any time ¢, the fol-
lowing equation holds:
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S Tipmosk{Adipin()
k (#m)

= 3 Taam{ i) .

k (#m)

(4.22)
Equation (4.22) states that on the scale At; >>At; each
multiplet rearranges instantaneously and Eq. (4.16)
reduces to
3
E( Aipim ()= = ZThp 54 As i (1)

k
(4.23)

+ 2F$k—>im<A$k$k(t)> .
k

With a view to solving Eq. (4.23) we write the solution as

(Aipim(®))=ai(t)exp[ —Bwoi,,] . (4.24a)

a, (1) is a function to be determined. { 4 ,,+,,(?)) in the
form of Eq. (4.24a) fits in Eq. (4.22). Equation (4.22)
states that on the scale A¢; >>At; the multiplets are in
internal equilibrium but not in equilibrium with respect
to each other. The exponential factor of Eq. (4.24a)
meets the detailed balance [Eq. (3.54)]. However, the sto-
chastic frame implies that transition probabilities are re-
lated by Eq. (3.53). The correction is irrelevant in the
frame of the high-temperature approximation [Eq. (4.3)].

So, henceforth we approximate
(Aipim(t))=ayl(t) (4.24b)

and assume Eq. (3.53). By replacing Eq. (4.24b) in Eq.

(4.23) and summing up the index m we obtain
[a,(2)+a_(t)=Tr{ A} =0 for states belonging to A ]
d 1
- - 1), (4.25)
at“i(” T, a.(t)
where
L L S AT ). (426)

T, 21+1 25

Equation (4.26) states that on the scale A¢; >>A¢; the de-
cay of the ensemble averaged matrix elements
{ A4 py+m(1)) occurs with a single exponential law whose
time constant is 7;. It must be noted that in I 1/T, is
expressed by a much more involved formula [Eq. (104)].
The full equivalence between the two expressions has
been proven [42].
Now, Eq. (3.22) becomes

1 1
42I+1) z+T71

) S8(2)=(S,P,I{GC(2))|s,P, )=

(4.27)

According to the definition of § $¢ [Eq. (4.7a)], it is found
that
PH=+—1

—Q> (4.28)
4 z+T17!

which is formally identical to the related expression for a

TLS [Eq. (4.7a)].

A more accurate view of the relaxation process is
delivered by the improved low accuracy (Fig. 3, bottom)
which requires Af; <<At; <<Atg.

On this scale a transient is present for time shorter
than T, accounting for the rearrangements of the multi-
plets towards internal equilibrium [note that on the en-
larged scale At; >>At; the rearrangements occur instan-
taneously, see Eq. (4.22)]. For ¢t < T, the time evolution
of the transient is governed by

d
S;(Aimim(t»:_ 2 Fim—»ik<‘4imim(1)>
k (#m)
+ 3 Tikim{ (),
k (#F¥m)

(4.29)

which is derived by neglecting the second line of Eq.
(4.16).

The general solution of Eq. (4.16) is expressed as a sum
of 2(2I+1) decaying exponentials with eigenvalues 0,
/Ty, and y, (k=1,...,4]). Due to Eq. (4.17),
Yk <<1/T,. The most general expression of the ¥ func-
tion is

# $Sm(2)=(S, P, [(GC(2))|S,P,)

Co cy docp
=—+

+
z z+U/T, “Z z+y,’

(4.30)

where ¢, is a constant. For stochastic models ¢,=0.

A relevant observable belonging to A, is 4 =5, i.e.,
the component of the magnetization parallel to the static
magnetic field #, In I the show character of {S,(t))
has been extensively studied, by resorting to the correla-
tion function

2020 +1)

Bwo
20r+1) sn

)
= —i)—;bz (1) .
2(21 +1)
S,(#) can be interpreted as the relaxation of the magneti-
zation after it has been prepared by upsetting it from the
value at thermal equilibrium (directed along the static
magnetic field #,, see I for details).

It was proved that (i) on the scale At (T >>At >>7,)
S,(t) relaxes as a single exponential with time constant
given by T, and (ii) the time scale separation (T, >>7.)
is ensured, i.e., (Sz(t)) is slow, on the sole basis of small
amplitude of the fluctuating fields [Eq. (4.3)]. The con-
straint is mild, since it is independent of 7.. In I these
findings were derived by assuming either dichotomic
correlated or Gaussian uncorrelated fluctuations.
Nonetheless, to date, they have been extended also to un-
correlated dichotomic and correlated Gaussian fluctua-
tions [43].

In order to complete the discussion let us turn to the

§z(t) Tr[S,I]{<SzSz(t)>}

S,(S,(1))}

(4.31)
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relaxation behavior of slow states belonging to the sub-
spaces A 4.

From I we know that, differently from 1,, the relaxa-
tion of ¢, and ¢, exhibits time scale separation only for
short values of the correlation time 7., more precisely if
A7, <<1, where A is the order of magnitude of the fluc-
tuating fields. This implies that the slow character of
atom states belonging to A ., (for example, S, and S,) is
less strong than for states belonging to A .

On the coarse-grained scale At =At; > 1/w, (low accu-
racy), according to Eq. (4.14), Eq. (3.48) reduces to

'aaj< A mim () =[Filogtmo)t R, L Fmim]

XAz pmim(0) 4.32)
and
9% (0=(5,P,[{(G%2))|S:P, )
_ 1 1
T 2020 +1) zFilwg+mao;+Aw, )+1/T]
(4.33)

where, according to Eq. (3.50),

1/TT=—Re{R, }=—Re{R,

)
—m,m,—m,+m

(4.34)
} .
(4.35)

In Eq. (4.34) [Eq. (4.35)] only R, (R_) contributes.
Low-accuracy coarse graining requires 1/7T5 <<w;. For
sufficiently long correlation times 75 !(m) (=~A?r,) be-
comes comparable to the spacing »; and ﬁg?,,(ia)) with
different values of m start to overlap and merge together.
In this region high accuracy is needed and one must put
At =Aty <1/w;. In cases of interest the spectral overlap
is a precursor of the breakdown of the time scale separa-
tion occurring at T !(m)=~r,, i.e, A22=1. In the re-
gion T, l(m)<‘rc, the treatment of overlapping spectra
can still be carried out in the framework of E.q (3.48).
However, states of the subspaces A, with different m
are now coupled to each other, causing % $C (iw) to be
described by a sum of Lorentzians. We skip the detailed
analysis of this case, which is secondary to the purposes
of the present paper.

Finally, we note that, due to the high-temperature ap-
proximation [Eq. (4.3)], the relationship between the 3
function and the ¥ function is

e 1
\P=2(21+1)¢'

+m,—m,+m,—m

}=—Im{R,

Aw,, =—Im{

24, —m,+m,—m —m,m,—m,+m

(4.36)

V. NONLINEAR RESPONSE
OF TWO- AND FOUR-LEVEL SYSTEMS

In this section illustrations of the above findings will be
presented by analyzing in detail an example of second-
J

|AS,|=B,B,|x' (0, —0,) + X~ wy0,)]

=V’B1B,|Tr4)(p 4SX{{ G (—iw))S X Gli(0,—®,)]) + (G (i0)SXG [i (w;—,)])}S,)] .

order nonlinear spectroscopy whose scheme involves slow
atom states. The slow state is precisely the observable
A=S,.

As representative of second-order spectroscopies we
choose the longitudinally detected electron spin reso-
nance (LODESR) spectroscopy [29]. In a LODESR ex-
periment (Fig. 4) two microwave fields act on the sample
S. The fields, which are linearly polarized at right angles
with respect to the applied static magnetic field B, have
angular frequencies ,, », and amplitude B,, B,. The
directions of the microwave fields and B, define the x and
the z axis, respectively. The nonlinear character of the
response of the spin system to the external fields is ex-
posed by the presence of a signal at frequency |0, —w,| in
the z component of the magnetization. This component
can be phase detected by a coil C with axis parallel to B,
so we identify the observable 4 with S,.

Apart from the zero-frequency (static) term Y,, the first
nontrivial contribution to the LODESR susceptibility is
x'?. In fact, due to the polarization of the two external
fields, the angular-momentum conservation law makes
x'! virtually vanish, namely, no linear response is ob-
served. Small contributions to x'!’ come from angular-
momentum exchange processes [driven by the bath fluc-
tuations due to terms proportional to S, , in Eq. (4.1b)].
In the absence of them, namely, if the system A ex-
changes angular momentum solely with the radiation,
one finds exactly y'!’=0.

By increasing the amplitude of B, B,, other contribu-
tions to the susceptibility such as x'¥, ..., x'*" appear,
enriching with harmonics the response frequency spec-
trum. For example, in the low-frequency portion of the
spectrum the harmonics of le —wzl are observed. How-
ever, the amplitudes B,, B, are maintained small, so
henceforth we will be concerned with y*. With 4 =S,
Eq. (1.7) yields

AS,(1)=B,B,Re{[ (0, —0,) + ¥ —wy»,)]
Xexp[i(w,—w,)t]
+ X~ 01,0,)+ X0y, —0))]

Xexpli(w,—w)t]} . (5.1)
Equation (5.1) describes the low-frequency part of the
response. High-frequency contributions at frequency
o, 1o, are neglected. It can be easily shown that the
second line of Eq. (5.1) is the complex conjugate of the
first one. The discussion of Sec. II and particularly Eq.
(2.32) allow us to relate the susceptibility to the underly-
ing atom-radiation interaction process. For example,
x?(@;, —w,) pertains to a process involving first the
emission of an w, photon followed by the absorption of a
photon @,. Due to the phase detection of the signal, the
recorded line shape is proportional to the amplitude of
AS, (1), expressed by its modulus |AS, |,

(5.2)
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(o) w
;- 0, 1 2

FIG. 4. Block scheme of the LODESR spectroscopy. C is
the detecting coil, S is the sample, w, , the frequencies of the
two microwaves. By is the static magnetic field.

The second equivalence follows from Egs. (2.23) and
(2.32) (both the microwave fields are along the x axis). To
proceed further we must expand each vertex of the
atom-bath term. According to Eq. (3.15),

SX=318,+iS,,0){0,S,+iS,|

—ISy—iSz,UHU,Sy—iSZI , (5.3)

where the set o denotes a complete set of
(2I +1)X (21 +1) operators in the space of the spin I.
Insertion of Eq. (5.3) in Eq. (5.2) and straightforward
rearrangements lead to the final expression in terms of
the matrix elements of the propagator G (z). The general
expression is rather involved and will not be reported
here.

Profiting from the slow character of the observable .S,
very compact expressions are derived. Preliminarily, we
remark that

\/I\/X’Sz(iiwl'z)zo , (5.4)

where X is a generic atom state. Equation (5.4) asserts
that the spectrum of (S,(iw)) does not extend up to fre-
quencies of about w; ,, namely, thai

T <o, . (5.5)
Since (S, ) =0, it follows that
Xos.:s .0=0 - (5.6)

Furthermore

. s .
lwl,ZWSx;Sy,a(lwl,Z) ® |
~—=>>1,
Xos,;s,.0 AQ

(5.7

where A means the spectral extension of ‘T’s S o
x’"y?

around w,. The inequality follows from Eq. (4.3).

In I it was proved that under the sole hypothesis [Eq.
(4.3)] {S,(2)) is slow. Accordingly, in Eq. (5.2) the sus-
ceptibilities may be evaluated by resorting to the expres-
sion Eq. (3.58) for the atom-bath term. In the light of
Egs. (5.4)—(5.7), on the scale At; >>At, Eq. (5.2) reduces
to

|AS,| =7*B B, |xP(w,, —0,) + X' (— 0y,

=By?B,B,lo¥,,(i0,)—0,¥,,(—ie,)

Xl{l;zCG[i(wf_wz)“ , (5.8)

where ¥, EWSX,Sy and, due to Eq. (4.28),

190 —ay)]| =l (5.9)

4V (0,—w,)*+T;2

One of the main aims of the present paper is to elucidate
the relationship between the nonlinear response and the
relaxation properties of selected observables. In Sec.
III C we have pointed out the role of slow variables to
provide a “‘natural” extension to the relationship between
linear susceptibility and equilibrium correlation function
[Eq. (1.3)]. This relationship is stated by Egs. (3.58) and
(3.59) for the second- and third-order susceptibility in
terms of products of Laplace transform of equilibrium
correlation function. It is of remarkable experimental in-
terest to investigate if, under proper conditions, the spec-
trum of the nonlinear susceptibility matches the spectrum
of a single equilibrium correlation function. It will be
shown that, under the sole basis of Eq. (4.3), the signal of
the LODESR spectroscopy reproduces the spectrum of
¥ ©C in the regime w,7, >> 1.

Let us discuss first the case of fast fluctuations, namely,
wy <<, <AL

For a TLS, on the scale At >> o, |

~ I A A

¢xy—_z(¢+_',j}~) .
On account of Egs. (4.7) and (4.11), by deleting off-
resonance contributions, Eq. (5.8) becomes

(5.10)

’B,B, 1

32 Ve —w, P +T;?
@

i(0,—wy—Aw)+T; !

As,| =B~

X

@3
i(wg+Ao—wy)+T5"!

) (5.11)

where Egs. (4.8)-(4.10) provide the expressions of T ',

T, !, and Aw, respectively. Equation (5.11) coincides

with Eq. 5 of Ref. [29] derived in the Bloch-like scheme.
For the multilevel case, Egs. (4.28), (4.33) yield

2
Y°BB, 1
|AS,|=B —
3221 +1) /(@ —w,)*+T;
21 +1 W,
X 203

m=1 l(wl_ﬂ)o—mw[_A(Dm)—}'l/Tg’

W)
ilwgtmo;+Aw, —0,)+1/TF |

+

(5.12)

The parameters 1/T% and Aw,, are defined by Egs. (4.34)
and (4.35), respectively. It is interesting to note that, if
|, —,] is less than T, ! for a TLS and the smallest of
1/T% for a FLS, Egs. (5.11) and (5.12) approach the limit
form



49 RELATIONSHIP BETWEEN A NONLINEAR RESPONSE AND . ..

IAS |=B‘J’23132 1 o Ty
‘ 16 V/(0,—w,2+T;? (0= +T; "
(5.11")
2
v°B B o}
Vo —0,)*+T;
2 +1 /T
X

,,,2=1 (@—wotmay?+(1/TFP?
(5.12")

To derive the above equations, the small dynamical shift
Aw must be neglected with respect to T; !. Equations
(5.11') and (5.12') evidence that, if we sweep w, and o,,
their offset |, —w,| being constant, the LODESR signal
|AS,| reproduces the spectrum of W, corresponding to
the spectrum recorded in a usual electron spin resonance
experiment [3,13,28,29].

The presence of secular terms in H ,5z(W) [Eq. (4.1b)],
namely, terms commuting with S, causes T, to be short-
er than T, when A~ !>>7,>>w; !. In this region, if one
sweeps the offset |, —w,| in a range larger than T; ! but
smaller than T'5 !, Egs. (5.11') and (5.12’) predict

K
\/((01—602)2+ T1—2

|AS, | = = |§SOli(0— w1l ,

lo;—w,| << T35, (5.13)

where K is a constant. Equation (5.13) shows that in the
limit of fast fluctuation, more precisely if
A7'>>7,>>w5 !, the spectral profile reproduces the
spectrum of | SO[i(w,—w,)]|. This relationship is
found for both two-level and multilevel systems. It is de-
rived for a homogeneous line, but it is recovered also in
the presence of inhomogeneous broadening mechanisms
[29]. Numerical evidence of this effect will be given later.

Now, let us discuss the case of slow fluctuations, name-
ly, Ar,>>1. Because of Eq. (5.10) and neglecting off-
resonance terms, Eq. (5.8) becomes

v’B1B, 1
16 V(0 —w, 2+ T2

X le\ll+(iwl)+a)2\p_( _iﬂ)z)l .

|AS,|=8

(5.14)

The breakdown of the time scale separation for the relax-
ation of the transverse part of the magnetization does not
allow the writing down of ¥, (iw) as a sum of Lorentzi-
ans. One must resort to the general approach of the gen-
eralized Langevin equations outlined in Sec. III C which
express W (iw) as continued fractions of the kind given
by Eq. (3.25).

From the structure of Eq. (3.25) it can be shown that, if
= o,, Eq. (5.14) reduces to

’B,B, )

8 Vio—w,) +T?

|As, | =B~ Re{¥, (io))} .

(5.15)
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The above relation tells us that also for slow fluctuations,
if we sweep @, and w,, their offset |0, —w,| being con-
stant, the LODESR signal |AS, | reproduces the spectrum
recorded in the usual electron spin resonance experiment
[3,13].

One more interesting question about Eq. (5.14) is to
check if one recovers the profile of | S°[i(w,—,)]|, by
sweeping the offset |, —,|, also in the presence of slow
fluctuations. A rough estimate provides the answer. For
slow fluctuation ¥, (iw) is expected to vary when o is
swept over a range comparable with A, the order of mag-
nitude of the fluctuating fields. On the other hand, the
region of interest of | °[i (w,—w,)]| is swept if (4.26)

loy—w,| =TT '=——<«<A (5.16)
WoT,
since, due to Egs. (4.3),
W7, >>AT, >>1 . (5.17)

So, once again, we expect also for slow fluctuations
(A7, >>1) that

K

|AS, |t ————
\/(a)l—mz)z-i-Tl_z

=19 S%i(0,—w,)]] . (5.18)

It will be shown later on that the further contribution to
the linewidth given by the inhomogeneous broadening
enhances this effect.

In the next section the general Hamiltonian [Eq. (4.1)]
will be specialized to deal with two- and four-level sys-
tems affected by dichotomic noise. The model will be
used to check the findings of this section.

A. Basic equations of the model

The model which will be outlined is the same model
studied in I. It deals with a two-level system and a four-
level system. The TLS is a particle with spin S =1. The
FLS is a particle with spin § =1 interacting with a parti-
cle with spin I =1. The bath is pictured by introducing a
scalar stochastic variable {2, namely, W=Q. According

to definitions given by Eq. (4.1) the spin Hamiltonian is
separated as
H=H,+H,(Q), (5.19)

where H , is the part of the total Hamiltonian H indepen-
dent of the stochastic process, which in turn affects
H 5(Q). ForaTLS

HA =w()Sz ’
H5(0)=0,(Q)S, +0,(Q)S, .

(5.20a)
(5.20b)

®,(Q) and w,(Q) are scalar functions of the stochastic
process (). The Hamiltonians of Eq. (5.20) drive a parti-
cle with spin S =1 which is put in a static magnetic field
B, directed along the z axis. The particle precedes with
Larmor frequency wy,=v,B, and is affected by a stochas-
tic field with components w,(Q) and ,(Q) along the z
and x axis, respectively. For a FLS
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H =0, +0,S,1,
H,3(Q)=0,(Q)S, +0,Q)S,

(5.21a)

+ 0, (S, I +o, (S I, . (5.21b)

0,(Q), 0, (Q), v, (), and w,,(Q) are scalar functions of
the stochastic process (). Equations (5.21) differ from
Egs. (5.20) both in static and fluctuating terms which
model the hyperfine interaction of the spin S with a
second species with spin I =1 [13].

The structures of H 45({) of the TLS and the FLS in-
clude all the relevant kind of terms which are responsible
for spin transitions, namely, secular, nonsecular, and
pseudosecular terms. Secular terms flip neither spin S nor
spin I, nonsecular terms flip spin S only, pseudosecular
terms flip spin I only. The model Hamiltonian [Eq.
(5.21)] is richer than the corresponding one of I, due to
the nonsecular term o,, ().

We model the amplitudes w,(£) as

0, (Q)=0QA,, a=z,x,zx,xz , (5.22)

where () is a dichotomic, stationary Markov process
(DMP) and A, is the noise strength. With this choice,
cross correlations occur between different w,(€). This
effect is present in the notable case of motion of paramag-
netic species in ordered fluids [28].

The DMP () has only two possible realizations, *+1.
The singlet distribution is expressed by the two-

component vector P(Q,t)={1,1} and the transition
probability T.(Q[Qy)=T_.(W|W,) obeys [Eq. (3.1)]
%T,(QIQO)=FQTT(QIQO), (5.23)
where I is a 2 X2 matrix
T 1 1
Fo=3v |1 —1]|- (5.24)

With the above choices () is with zero mean and ex-
ponential autocorrelation

(Q)=o0,
Q)Y =exp(—yl|t —1t']) .

A useful result about DMP’s is established by the follow-
J

(5.25)
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ing theorem [44]. If Q is Markovian and if Y[Q( - - )] is
a functional involving only times prior to ¢, then for
>t

(QUOQNIV[Q( )] =(QUQ I(Y[Q(---)]) .

(5.26)
The observable of interest 4 evolves under the joint
influence either of the spin Hamiltonians (5.20) or (5.21)
affected by the DMP. The overall effect is accounted by
the stochastic Liouville operator which introduces an
effective non-Hermitian Liouvillian I of the form given
by Eq. (3.12),

Ir=iH*4T, . (5.27)

B. Results

In this section the nonlinear response and the relaxa-
tion behavior of the slow variables will be compared for
the TLS and the FLS under the influence of dichotomic
noise.

Let us introduce the parameter

ASz(wl,Cl)l _Cl)z)
17}\2[1'((1)1 _0)2)]

By trivial manipulations |AS,| can be recast in a form de-
pending on ®,; and the offset w;—w,. The parameter
R (w;,0,—w,) evidences the discrepancies between the
spectra of the LODESR spectroscopy and the relaxation
of the longitudinal part of the electron magnetization. A
weak dependence of R on the offset w;—w, over a range
larger than T ! signals that the two spectra nearly coin-
cide (apart from inessential constants).

In this section all the evaluations of |AS, | start from the
general expression given by Eq. (5.2). The expansion as
continued fractions of the relevant matrix elements of the
propagator G is derived by resorting to the generalized
Langevin equation method (see Sec. III C). The method
also provides the numerical expansion of f[)z. However, it
must be noted that, if Eq. (4.3) holds, {b\z is virtually given
by the approximated form ¢ [Eqgs. (4.7a) (4.28)] for
both the TLS and the FLS (see I). Relevant to the
present discussion are the expressions of the relaxation
times T; and T, for the dichotomic relaxation model
which, at second order in A, yields

R(w,0,—w,)= (5.28)

A2
2 - > (TLS) (5.29)
1 0ty

T, |[a2 A2

LR eeE Y L | (FLS), (5.30)
[
and
Let us analyze first the results for the TLS model.

A2 1 The plot of R (wy,w; —®,) against ©, —w, is reported
z ST, (TLS) in Fig. 5 for different regimes of fluctuations. The con-
1 _ 14 1 (5.31)  versence of R(wypw,;—w,) to a constant value R (by
T, Az AL y 1 ’ proper units R=1) is expected for 7, ' =y <<@,. For the

TLS the convergence is fast, being the unit value in prac-
tice reached for ¥ <0.1w,. For fast fluctuations (y = w,)
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FIG. 7. TLS model. Plot of the ratio R against the offset

(0,-0,)T,

FIG. 5. TLS model. Plot of the ratio R against the offset
®,—o, for different fluctuation regimes. wy=1, A, =A,=0.1.
Continuous line, ¥ =0.1; dashed line, ¥y =0.7; dotted line, y =1;
dot-dashed line, ¥ =0.01.

R (wg,0,—w@,) departs from the unit value because
T,=T, and Eq. (5.11) cannot be approximated by Eq.
(5.13) on a range of values |®, —w,| comparable with T.
For slower fluctuations (y <w,) T, fairly exceeds T, and
R (wg, 0 —®,) tends to one. For even slower fluctuations
(y>A) T, cannot be defined. Nonetheless the conver-
gence of R (wy,w; —w,) to one goes on.

In Fig. 6 the convergence is studied for different ampli-
tudes of the fluctuating fields. Note that the fluctuation
rate y is fast. For slower rates R (wg,o;—®,) would be
much closer to the unit value, according to Fig. 5. The
trends of Fig. 6 are easily understood, if one recalls that

1.0 —m—
—_— BRREE
(2]

)
EO.B-‘
=
2 1 1 1 1
e
H o
— ~--~“~~_
Y, A
0.8 -
I I 1 1
1 2 3 4 5

(0,-w5) T,

FIG. 6. TLS model. Plot of the ratio R against the offset
@, —, for different amplitudes of the fluctuating fields. wy=1,
y=1. Upper part: A, =0.1; continuous line, A, =0.1; dashed
line, Az=0.2; dotted line, A, =0.3. Lower part: A,=0.1; con-
tinuous line, A,=0.1; dashed line, A, =0.05; dotted line,
A,=0.02.

®,—®, in the presence of inhomogeneous broadening. @,=1,
v=1, A,=A,=0.1. Dashed line, Awy=0; dot-dashed line,
Awy,=0.01; continuous line, Awy;=0.1.

R (wg, 0, —®,) is closer to the unit value if either the sec-
ular terms are more effective, the nonsecular terms are
less effective, or both the above conditions are fulfilled.

In Fig. 7 the effect of the inhomogeneous broadening is
presented. Inhomogeneous broadening can be introduced
by distributing the Larmor frequencies w, [13]. The ratio
R defined by Eq. (5.28) is evaluated by replacing AS, with
its value averaged on the distribution of w,, AS,. Figure
7 presents the results for a Gaussian distribution with a
width Aw, centered at @,. It points out that the inhomo-
geneous broadening improves the agreement between AS,
and 1//1\2.

Figure 8 presents the effects arising in the region
A=~w, where Eq. (4.3) breaks down. In this region the

R (arb. units )

FIG. 8. TLS model. Plot of the ratio R against the offset
;— @, for different approximated expansions of the first vertex.
wp=1, y=1. Upper part: A,=A,=0.6. Lower part:
A, =A,=0.8. Continuous line: exact expansion; dashed line:
excited bath state neglected; dot-dashed line: spin state Sy
neglected; dotted line: only S, and equilibrium bath state in-
cluded.
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FIG. 9. FLS model. Plot of the ratio R against the offset
| — o, for different fluctuation regimes. The curve indicated as
“REF” is a reference curve to facilitate the comparison with the
curves plotted in Fig. 10. wy=1, A,=A,=A,=A,=0.1.
Upper part: ©;=0.01; continuous line: y=0.1; dashed line,
¥ =0.2; dot-dashed line, y =0.4; dotted line, ¥y =0.5. Lower
part: w;=0.1; dashed line, y =1; continuous line (REF curve),
v =0.4; dotted line, ¥y =0.2.

atom state S, is not slow. To better understand Fig. 8
one must recall that AS, is evaluated via Eq. (5.2) by
resorting to the general expression Eq. (3.18b). During
the propagation, due to the decreased time scale separa-
tion at the first atom-radiation interaction (i.e., at the first
vertex labeled by 1) the bath cannot be considered in
equilibrium. Technically, this implies that in the correct
vertex expansion, besides the bath equilibrium state IbO ),
also the excited bath states, namely, states |b'1) with

i; >0 must be included. Furthermore, the reduced time
scale separation mixes up the time evolution of the three
components of the spin and this implies that the vertex
expansion must also include all the three components of
the spin and not only S,. The curves show that if A=w,
the excited bath states and spin states other than S, play
relevant roles in the definition of the spectrum of AS,.
This effect explodes if A is closer and closer to w,. More-
over, in the region A=w, R is fairly different from the
unit value.

Figures 9-11 show the results for R (w,+tw;/2,
®;—w,) by referring to the FLS model. No remarkable
differences between the TLS and FLS cases are observed.
Figure 9 exhibits the dependence of R on the offset
o;—w, for several fluctuation regimes and different
values of the hyperfine splitting ;. The curve marked as
“REF” is a reference curve to compare Fig. 9 with Fig.
10 where the dependence of R on the amplitudes of the
fluctuating fields is studied. Finally, Fig. 11 shows the
effect of inhomogeneous broadening included in the cal-
culations, as for the TLS.

The results presented in Figs. 68, 10, and 11 shed
light on the deviation from the unit value of the ratio R
when ¥ =w,. It must be stressed that, if y,A <0. 1w, this

R (arb. units)

1.0

S~ Ss-a
~—a

0.8 T T T T

FIG. 10. FLS model. Plot of the ratio R against the offset
©;— w, for different amplitudes of the fluctuating fields. wy,=1,
0;=0.1, y=04. Top: changing nonsecular terms,
A,,=A,=0.1; continuous line, A,=A,,=0.1; dotted line,
A, =A,,=0.08; dot-dashed line, A, =A,,=0.06; dashed line,
A, =A,,=0.01. Middle: changing secular term,
A,=A,,=A,,=0.1; continuous line, A,=0.1; dashed line,
A,=0.12; dot-dashed, A,=0.2; dotted line, A,=0.3. Bottom:
changing pseudosecular term, A,=A,,=A,=0.1; continuous
line, A,, =0.1; dashed line, A,, =0.2; dot-dashed line, A,, =0.3;
dotted line, A,, =0.8.
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FIG. 11. FLS model. Plot of the ratio R against the offset
®|—, in the presence of inhomogeneous broadening, w,=1,
0;=0.1, A,=A,,=A,,=A,=0.1, y=1. Continuous line,
Awy=0.01; dotted line, Aw,=0.03; dashed line, Aw,=0.04;
dot-dashed line, Aw,=0.05.
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deviation becomes negligible for any practical purposes
(see Figs. 5 and 9).

V1. CONCLUSIONS

The present paper has investigated the relationship be-
tween the nonlinear response of a system of interest, the
atom system, subjected to external disturbances and the
relaxation effects caused by a thermal bath. This topic
has attracted great interest in the recent past and sub-
stantial work was done by Kubo and collaborators
[2,19-25], Louisell [35], Van Kampen [37], and Risken
[38]. The point of view of the master equation and its
generalized forms [45] has been developed by Agarwal
[46], Montroll and West [47], and Zwanzig [48], whereas
applications to problems in nonlinear response and optics
are discussed in great detail by Haken [49].

A general quantal scheme has been proposed to extend
the classical results of the linear-response theory in order
to discuss the relationship between the nonlinear response
and the relaxation induced by colored noise. The scheme
takes into account in a systematic way the higher-order
contributions to the susceptibility with respect to the am-
plitude of the external fields. It has been proven that
each contribution referring to a definite order of pertur-
bation can be factorized in two terms, namely, the radia-
tion term including solely the degrees of freedom of the
external fields and the atom-bath term including solely
the degrees of freedom of the atom and the bath.

Closer resemblance with the results of linear-response
theory comes into view by selecting properly “slow”
atom states whose relaxation time T is longer than the
microscopic correlation time 7.. The relaxation behavior
of slow atom states has been thoroughly examined in a
previous paper [31]. A general discussion on the methods

of separation of coupled systems with widely differing re-
laxation time scales is provided by Haken [49]. Show
atom states play a fundamental role in order to relate the
nonlinear response to equilibrium correlation functions.
We have derived expressions for the second- and third-
order susceptibilities ¥? and x'*, respectively, in the
framework of a general stochastic scheme. Y2 and y**
have been related to the response and relaxation func-
tions ® and VW, respectively.

This paper has examined the character of the nonlinear
response for a fairly general model of the atom system in
magnetic resonance experiments. In this framework we
have identified a regime characterized by slow fluctua-
tions (Y <wg) with small amplitudes (A <w®,) where non-
linear spectroscopies of proper design exhibit line shape
proportional to the spectrum of the slow atom state.
Comparing the predictions of the theory with previous
experimental work (see Ref. [29], and references quoted
therein) has clarified the degree of meaningfulness of pre-
vious Bloch-like treatments.

The findings of the present paper claim that measuring
nonlinear susceptibilities provides competitive and viable
routes to pulsed methods to measure relaxation phenome-
na even in cases where practical studies put extreme
demands on technical conditions.
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FIG. 3. Mutual positions of the resonances of the atom, the
bandwidth 1/At covered by the coarse-grained procedure, and
the rates of the atom relaxation processes. @, is the Zeeman
splitting, w; is the hyperfine splitting of the 21+ 1 levels forming
each multiplet. At,”', At;"' are the order of magnitude of the
intermultiplet and intramultiplet relaxation rates, respectively.
At is the time interval on which coarse graining is carried out.
Top: TLS case. Middle: FLS case, high accuracy Aty '>w; vs
low accuracy At; ' <w;. Bottom: FLS case, improved low ac-
curacy At; !> At !, See text for details.



