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Dispersion coef5cients for alkali-metal dimers
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Knowledge of the long-range interaction between atoms and molecules is of fundamental importance
for low-energy and low-temperature collisions. The electronic interaction between the charge distribu-
tions of two ground-state alkali-metal atoms can be expanded in inverse powers of R, the internuclear
distance. The coefficients C6, C„and C~o of, respectively, the R ', R ', and R ' terms are calculated
by integrating the products of the dynamic electric multipole polarizabilities of the individual atoms at
imaginary frequencies, which are in turn obtained by solving two coupled inhomogeneous differential
equations. Precise one-electron model potentials are developed to represent the motion of the valence
electron in the field of the closed alkali-metal positive-ion core. The numerical results for the static mul-

tipole polarizabilities for the alkali-metal atoms and the coefficients C6, C8, and C~o for homonuclear
and heteronuclear alkali-metal diatoms are compared with other calculations.

PACS number(s): 34.20.—b, 34.40.+n, 82.20.Kh

I. INTRODUCTION

Advances in laser cooling and trapping technology
have rekindled interest in the knowledge of the long-
range forces between atoms and molecules. Confinement
of alkali-metal atoms at sub-Kelvin temperatures depends
on their determination of the asymptotic long-range
properties [1—3]. At large separations, the atomic charge
distributions hardly overlap and the internuclear poten-
tial V,b(R) between two atoms a and b can be represent-
ed as a sum of electronic potentials. This interaction be-
tween the charge distributions of two atoms or molecules
can be expanded in a power of R ', where R is the sepa-
ration distance between the charge centers. Each term in
this series corresponds to a particular multipole moment
of the charge-charge interaction [4—9].

In this work, we concentrate on the multipole mo-
ments which arise in the second order of perturbation ex-
pansion, and determine the coefficients for the dipole-
dipole interaction C6, the dipole-quadrupole interaction
C8, and the dipole-octupole and quadrupole-quadrupole
interaction C&0 in the expansion

transformed into integrals over the solutions of two cou-
pled inhomogeneous differential equations. Section II
contains a brief derivation of the expression for the mul-

tipole coefficients and a detailed discussion of the numeri-
cal procedure for solving the coupled inhomogeneous
equations. The numerical results including values for the
electric multipole polarizabilities, and the dispersion
coefficients for the homonuclear and heteronuclear cases,
are presented in Sec. III, followed by a discussion. A de-
tailed comparison with other theoretical values is includ-
ed.

II. FORMULATION OF THE PROBLEM
A. Theory

n —1

Cz +2=
k=1

j=min(k, k —n & n

k+j k —j
X f a~„k~(ito)ak(ito)dto for n )2

0

The coefficients of expansion in Eq. (1) are convenient-

ly represented in the compact form [12]

C,
V (R)=— C8 C,0

The calculation of the long-range interactions between
atoms can be reduced to the evaluation of electric dynam-
ic multipole polarizabilities at imaginary frequencies
[10—12]. Many theoretical studies have been reported us-
ing a variety of methods on the evaluation of the mul-
tipole polarizabilities of the alkali-metal atoms [13—26],
and it has been demonstrated that model potential
methods are capable of achieving high accuracy [18].

In this paper we present a method for computing dy-
namic multipole polarizabilities at imaginary frequencies
that is exact given the assumption of a model potential
for the motion of a valence electron in the presence of a
frozen core. The infinite second-order sums are

where at(i to) are the dynamic 2 polarizabilities at imagi-

nary frequencies:

4~ I «lr,'" ls & I' I(olro" ls & I'
at(i to) =

2l +1 E E0+co E E0
+

(3)

The initial state is represented by the eigenstate IO& and

eigenenergy E0. The sum in Eq. (3) is over a11 possible

discrete and continuum states. r0" represents a tensor of
rank l and zero magnetic quantum number. Its alterna-
tive definition is ro'=r'Y iro()where Yt are the usual

spherical harmonics.
The sums in Eq. (3) can be evaluated exactly by trans-
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forming into a differential equation form as

a)(i co)= Re(0iro("G(ED i—co)ro" i0),8m.
(4)

Substituting Eq. (8) into Eq. (7), we find the following
coupled system of second-order inhomogeneous
differential equations:

where G(ED i—co) is the Green's function evaluated at
complex energies, and Re represents the real part of the
matrix element. Upon carrying out the angular integra-
tion of the matrix element we obtain

d2

87
+2[E()—V)(r ) ] g"'(r)

7

2co—y()"(r)=2r'+'R, (r ),
(9)

a)(ico) = Re Ro(r )9'i(ED i co;—r )r dr,
00

~ . 1+2
0

where

I)
V)(EO i co;—r ) =— g)(E0 i co; r—,r')Ro(r')r'+'dr'

(6)

+2[ED —Vi(r)] y) (r)+2coy) (r)=0 .
d l(l+ 1) (R)

7' 7'

From Eq. (8), it can be seen that g()"' ' should satisfy the
same boundary conditions as for Vi. Vpon determining
the solutions of Eqs. (9), the evaluation of the multipole
polarizability reduces to a one-dimensional integral:

1 d 2 d
7'

72 I7' lr
l(1+ 1)

f 2

+2[ED i co V—i(r )—] J)(EO ico;r )—=2r'Ro(r ),

and R0 is the radial wave function for the ground state
and gi is the radial Green's function for the multipole or-
der of l. Equation (6) can be written as an inhomogene-
ous differential equation [27]

00

a (ico)= 2l+1 0
R (r)y' '(r)r'+'dr . (10)

The multipole expansion coeScients are obtained from
Eq. (2) by substituting for the polarizabilities from Eq.
(10) and performing the integration over co. At co=0, the
system of differential equations in (9) becomes decoupled
and the imaginary part of or) becomes identically zero as
the second differential equation does not possess a solu-
tion for 1%0 at energy Eo.

where the central field potential Vi(r) is in general an l-

dependent function of the radial coordinate. The bound-
ary conditions on the solution of Eq. (7) can be extracted
from the integral expression for V& in Eq. (6). In the
small-r region P& —const and for the large-r region
Vi~0. Because the energy in Eq. (7) is complex, solu-
tions of Eq. (7) take on the complex form

B. Numerical method for solving coupled inhomogeneous

differential equations

We opted to use the Numerov method to solve the set
of coupled inhomogeneous equations

dr
y=Fy+g

where y is the solution vector and g contains the inhomo-
geneities. For the problem at hand, y, F, and g have the
following explicit expressions:

~(R)(„)
'

y(r)= (I), g(r)—:
y) (r)

2r'+'R (r)

(12)

F(r) —:

l(l+1) —2[E —V( )]
7"

l(l + 1)
[ )

In matrix notation, the Numerov recursion formula for
the coupled inhomogeneous equations takes the form [28]

h 5h
1 Fn+ j yn+] 1+ Fn yn12

h h+ 1 — F.-l y. -l=
1

(g. +1+10g.+g. -l»
12 " " 12

(13)

where h is the step size and F,g, and y are the func-
tional values of the matrix F and vectors g and y, evalu-
ated at the mth point on the radial scale. Equation (13)
can be rewritten as a tridiagonal system of linear inhomo-
geneous equations where all the coe%cients are matrices.
Upon applying the boundary conditions on y, the solu-
tions at the kth radial point, yk, are obtained.

Due to the chaotic sensitivity of the inhomogeneous
solutions to the initial conditions (i.e., near the origin),
special care must be taken to ensure that the numerical
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solutions are stable. This task is made more difficult by
the singular nature of the potentials arising in atomic
physics. We therefore exercise care in choosing the grid
scheme for numerical integration. The commonly used
square root and arctangent mesh schemes, though quite
useful for solving homogeneous equations, do not provide
sufficient grid-point density near the origin for the solu-
tion of inhomogeneous equations. We chose the logarith-
mic scale x =lnr near the origin. As r~0, the range of
integration will tend to increasing negative x values such
that even a modest step size of 10 in the negative x

I

d' -==—y=Fy+g,
dr (14)

where now

direction wi11 result in a very small step size on the r
scale.

Equations (11) are integrated along the x axis in the
range x E [

—30,0.53] corresponding to r E [10 ', 1.7]
a.u. , and then switched to the linear r scale. The
transformed equations in the x coordinates are

yi '(x)
y(x)= ~1), g(x)=

y( (x)

2e(I+5/2)xR
( x)

F(x)=
l(l+ 1)+—,

' —2e "[Ep—V(e'))

2e cg

CO

l(l+1)+ ' —2e2X[Ep —V(e")]

(15)

such that the relation between y(r) and y(x ) is

y(r ) =exp(x /2)y(x ) . (16)

The accuracy of the numerical scheme was tested for
the following case. Let VI(r ) = —1/r in Eqs. (9). Ep and
R p ( r) are then the ground-state energy and wave function
for the hydrogen atom. Defining up=rRp and u, as the
reduced wave functions for the 1s and 2p states of hydro-
gen, we premultiply Eqs. (9) once by up and again by u,
and integrate over r to obtain the following four identi-
ties:

t up(r )yI '(r) +cof u p(r )g '(r)dr
p r

+ f u (rp)r dr=0, (17a)

f up(r)&I '(r) —ip f "up(r)yI"'(r)dr =0,
p r

(17b)

(E& Ep) f u &(r )y—I '(r)dr

+cot u &(r )g '(r)dr+ f u &(r )up(r)r dr =0,
(17c)

with the analytical results of Chan and Dalgarno [29).
The corresponding values for the dispersion coefficients
C6, C8, and C,p in hydrogen are 6.499, 124.399, and
3285.833, in agreement with Chan and Dalgarno who
give 6.499, 124.400, and 3285.500 [29].

C. Parametric model potential

Zl(r ) +c —(r/r )6

[1—e ' ], (18a)

where a, is the static dipole polarizability of the
positive-ion core while the radial charge Zi(r) is given by

To describe the motion of the valence electron for the
alkali-metal atoms we developed a model potential along
the lines of Laughlin and Victor [30] and Greene and Ay-
mar [31]. These potentials which are parametrically
fitted to one-electron energy levels have been successful in
predicting many observed phenomena such as the two-
electron resonances in the spectra of alkali-metal cations
[31]and alkaline-earth atoms [32].

The form of this potential which can depend also on
the orbital angular momentum of the valence electron, I,
1S

(E& Ep) f u&(r)g '—(r)dr —co f u&(r)yI '(r)dr =0 .
p 0

(17d)

ZI(r)=1+(z —1)e ' r(a3+a—4r)e

(18b)

Although up and u, are known analytically, in order to
test our numerical efficiency we continue to compute Ep,
E

&
u p and u

&
. We find that these identifies are satisfied

to within one part in 10 . A more stringent test is howev-
er provided by the static dipole, quadrupole, and octu-
pole polarizabilities arising in hydrogen-hydrogen in-
teraction, for which analytic results are available. Our
numerical values for the multipole polarizabilities of hy-
drogen cx&=4.500, a&=15.000, and F3=131.250 agree

where z is the nuclear charge of the neutral atom and r,
is the cutoft radius introduced to truncate the unphysical
short-range contribution of the polarization potential
near the origin. The potential in (18) is I dependent, but
this does not introduce any practical difficulties.

The five-parameter nonlinear fit of Eqs. (18), with a,
kept fixed, to the alkali-metal-atom Rydberg energies
were carried out. The optimized parameters in (18) are
listed in Table I. For each value of angular momentum I,
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TABLE I. Optimized parameters for the 1-dependent model potential.

ac
Li

0.1923
Na

0.9448
K

5.3310
Rb

9.0760
Cs

15.6440

1=0 al
Q2

Q3

rc

2.477 18079
1.841 509 32

—0.021 697 12
—0.119883 62

0.613408 24

4.822 231 17
2.454 498 65

—1.122 550 48
—1.426 31393

0.454 894 22

3.560 794 37
1.839 096 42

—1.747 01102
—1.032 373 13

0.831 675 45

3.696 284 74
1.649 152 55

—9.860 691 96
0.195 799 87
1.662 421 17

3.495 463 09
1.475 338 00

—9.721 430 84
0.026 292 42
1.920 469 30

1=1 ai
Q2

Q3

a4

c

3.454 146 48
2.551 510 80

—0.216465 61
—0.069 900 78

0.615 664 41

5.083 825 02
2.182 268 81

—1.195 346 23
—1.031 428 61

0.457 987 39

3.656 704 29
1.675 207 88

—2.074 166 15
—0.890 304 21

0.852 353 81

4.440 889 78
1.928 288 31

—16.795 977 70
—0.816 333 14

1.501 951 24

4.693 660 96
1.713983 44

—24.656 242 80
—0.095 431 25

2.133 830 95

1=2 a)
Q2

Q3

a4
rc

2.519098 39
2.437 124 50
0.325 055 24
0.106024 30
2.341 262 73

3.533 241 24
2.486 979 36

—0.756 884 48
—1.278 523 57

0.718 753 12

4.127 13694
1.798 374 62

—1.699 351 74
—0.989 135 82

0.832 16907

3.787 173 63
1.570 278 64

—11.655 889 70
0.529 428 35
4.868 51938

4.324 661 96
1.613 652 88

—6.701 288 50
—0.740 951 93

0.930072 96

1~3 a)
Q2

Q3

a&

rc

2.519098 39
2.437 124 50
0.325 055 24
0.106024 30
2.341 262 73

1.110566 46
1.054 587 59
1.732 034 28

—0.092 656 96
28.673 505 9

1.423 10446
1.278 611 56
4.774 414 76

—0.948 292 62
6.502 943 71

2.398 489 33
1.768 105 44

—12.071 067 80
0.772 565 89
4.798 31327

3.010483 61
1.400 000 01

—3.200 361 38
0.000 345 38
1.999 696 77

a minimum of five measured energies were used in the
fitting procedure. The accuracy achieved in this calcula-
tion was one part in 10 .

D. Core polarizability

If the motion of the outer valence electron in the pres-
ence of the core is taken, in the spirit of Born-
Oppenheimer approximation, to be adiabatic, then it can
be shown [33] that the core perturbation due to the exter-
nal electric field of the valence electron manifests itself in
a correction to the multipole operator Ql as

where a,'" is the core 2' tensor polarizability and r,' is a
cuto8' radius to be determined empirically. We have
chosen it so that the corrected values of the neutral
alkali-metal static dipole polarizabilities are in agreement
with the experimental data [34]. The numerical values of
r,', are, respectively, 2.354 239 2, 0.379 866 0, 4.439 587 1,
4.3397730, and 4.9164157 for Li, Na, K, Rb, and Cs,
producing substantial corrections to the electric dipole
moments.

III. DISCUSSION OF RESULTS

—(r/r,
-( I)

~ 2E+1

Q( Q( 1—,, [1—e '
]

r
(19)

The dipole polarizabilities calculated with and without
the core polarizability correction are listed in Table II.
By construction, the corrected values are in agreement

Source Li

TABLE II. Dipole polarizabilities a&(ao ).

Na Rb Cs

[&3]
[18]
[21]
[22]
[24]
[25]
[35]
[38]

170.0
164.3
163.7
165.8
164.1

165.0

162.6
162.4

151.0

298.0
287.1

295.6
292.0

333.0

343.3
334.0
328.0

416.5

440.6
413.7
405

experiment
a
b

164.0+3.4
164.9
164.0

159.2+3.4
165.8
159.2

292.8+6.1

306.8
292.8

319.2+6.1

344.2
319.2

402.2+8.1

443.6
402.2

'Present results without the core-polarization effect on the dipole operator.
Present results with the core-polarization cutoff radius chosen to reproduce the experimental polariza-

bilities.
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TABLE III. Quadrupole polarizabilities a2(ao). TABLE V. Values of C6, C„and C,o in a.u. for Li-Li.

Source Li Na Rb Cs Source 10 C6 10 'C8 10 C 10

[15]
[18]
[22]
[23]

Present

1428
1383
1486
1428
1423
1424

1799

1878

4587

5000

5979

6495

9742

10462

with measurement [34]. The correction is very small for
Li, but amounts to 10% for Cs. The increasing magni-
tude of the correction as the core size grows has been
noted previously [20,21]. The experimental value of
164.0+3.4 [34] for Li has been reproduced by accurate
many-electron calculations. The theoretical value of
164.lao of Pipin and Bishop [24] is probably the most
precise result. We include in Table II the values of
Maeder and Kutzelnigg [18]and the calculations of Mull-
er, Flesch, and Mayer [21] and Kello, Sadlej, and Faegri
[35]. The close agreement suggests that the empirical
correction procedure we have adopted adequately reflects
the contribution from the core-electron transitions and
should lead to reliable values of the van der Waals
coefficients.

The quadrupole and octupole polarizabilities are given
in Tables III and IV. For these the core corrections are
small and may be neglected. There are no experimental
data. For Li the most accurate value of the quadrupole
polarizability is due to Pipin and Bishop [24] who, using
correlated products of Hartree-type basis functions, ob-
tained a value of 1423ap in perfect agreement with our
value of 1424ap. For the heavier alkali-metal atoms, the
only useful comparison data are the results of Maeder
and Kutzelnigg [18]. The values reported by Adelman
and Szabo [36] are based on the method of Dalgarno and
Pengelly [37], which is less accurate than the present pro-
cedure. Our values are considerably larger than those of
Maeder and Kutzelnigg [18]. For Li, their value is cer-
tainly too small and we suspect it is a characteristic of
their method.

A similar behavior occurs for octupole polarizabilities
given in Table IV. Our values are again consistently
larger than those of Maeder and Kulzelnigg [18]. For Li,
there are useful comparison values of e3 from Knowles
and Meath [22], who used an R-dependent ab initio
nonexpanded method for the calculation of dispersion en-
ergies. We have quoted the values from the basis-III
column of their Table III. Their procedure overestimates
a2 and may also do so for a3.

The coefficients C6, C8, and C,p of the R,R, and
R ' terms in the long-range interaction between two Li
atoms are presented in Table V, which also includes a

[18]
[21]
[22]
[5]
[39]
[38]

Present

1.391
1.389
1.386
1.445
1.389
1.383
1.360
1.388

0.8089

0.8847

0.7578

0.8324

0.6901

0.7902

0.4817

0.7365

TABLE VI. Values of C6, Cs, and C&o in a.u. for alkali-metal

atom pairs.

10 'C(,

Source

[18]
[21]

[39]
[38]

Present

Na-Na

1.540
1.518
1.470
1.698
1.330
1.472

K-K

3.945
3.574
3.680
4.721
3.780
3.813

Rb-Rb

4.768

4.350
5.726
4.700
4.426

Cs-Cs

6.855

6.660
9.469
6.500
6.331

selection of previous results. The agreement amongst the
different values of C6 is close except for value of Knowles
and Meath [22], which is too large. Our value of 1388
a.u. lies very near to the value of 1391 a.u. obtained in the
most refined ab initio many-electron calculation [13].
The self-consistent-field polarization potential method of
[21] gives a value of 1386 a.u. For Cs and C,o, our values

lie between those of [22] which are likely to be overesti-
mates and those of [18] and [38], which are likely to be
underestimates, as suggested for [18] and [22] by the dis-
cussion of polarizabilities and for [38] by the low value of
C6. The large discrepancies with the results of Bussery
and Aubert-Frecon [39] are unexpected.

Table VI is a compilation of values of C6, C, , and C,p

for the homonuclear cases Na-Na, K-K, Rb-Rb, and Cs-
Cs. Our results for C6 are consistently lower than those
in [18]and are consistently larger for Cs and C,o. Part of
the difference can be attributed to the inclusion of the
core-polarization potential and its contraction effect on
the electric dipole operator. We have no explanation,
however, for the occasional large differences with the re-
sults of Bussery and Aubert-Frecon [39]. With one ex-
ception, our results are consistent with the upper and
lower bounds of Tang, Norbeck, and Certain [40] which
however do not place rigorous bounds on the values.

None of the calculated values takes explicit account of
contributions from core excitations. An uncertain can-
cellation of errors occurs in attempts to include core con-
tributions [5], and it is probably more accurate to ignore

Source Li Rb

TABLE IV. Octupole polarizabilities a3(a 0 ).
10 'C8 [181

[39]
Present

1.098
1.028
1.119

3.834
3.894
4.096

5.244
6.115
5.506

9.025
12.910
9.630

[18]
[22]

Present

36 495
41 675
39 688

51 167 150 161 212 657 339 920

55 518 176 940 236 850 395 343

10 Clo [18]
[39]

Present

1.036
0.6939
1.107

4.522
4.069
5.248

6.836
6.316
7.665

13.010
14.510
15.200
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TABLE VII. Dispersion coeScients in a.u. for different alkali-metal-atom interactions.

Li-Na
Li-K
Li-Rb
Li-Cs
Na-K
Na-Rb
Na-Cs
K-Rb
K-Cs
Rb-Cs

'References [18].
bReference [21].

C6 (units of 10')

1.460,' 1.427, 1.448
2.334,' 2.293, 2.219

2.469
2.934

2.443,' 2.348, 2.309
2.526
2.993
4.108
4.903
5.286

C8 (units of 10')

1.068
2.517
3.137
4.586
2.614
3.250
4.727
5.123
7.547
8.120

C ~0 (units of 10')

0.982
2.651
3.413
5.303
2.949
3.784
5.844
6.726

10.369
11.793

them [18],particularly since the core-polarization contri-
bution to the dipole polarizability has been arranged so
that the experimental values are reproduced. Probable
upper limits to this error have been given by Dalgarno
and Davision [5].

For the heteronuclear cases, we have listed the values

for the dispersion coefficients in Table VII. The magni-

tudes of the dispersion coefficients lie between the values

for the corresponding homonuclear cases. For instance,
the C6 coefficient for Na-K falls between the value of Cs
for Na-Na and the value of C& for K-K. Table VII also

includes results from [18] and [21] for the C& coefficients.
Once again, the values in [18] are larger than ours, main-

ly due to their neglect of the core-polarization effects.
It is often assumed that C,p=1.3(Cs/Cs) [41]. For

the cases in Tables V —VII, the ratio of C,p to (Cs/Cs)
varies between 0.74 and 1.48.

IV. CONCLUSIONS

Using an efficient numerical algorithm originally
developed for obtaining absorption line profiles, we calcu-
late the dispersion coefficients in the long-range 1/R ex-

pansion of the electrostatic interaction between two
ground-state alkali-metal atoms. First, we describe the
motion of the valence electron in the presence of the
closed-shell core by the well-established method of para-
metric model potential. This angular-momentum-
dependent central potential includes the effect of the core

polarizability which is cut off at the core boundary to
eliminate the unphysical nature of the polarization poten-
tial near the nucleus. We then evaluate the dispersion en-

ergy coefficients by integrating over the dynamic electric
rnultipole polarizabilities of the product dimer at imagi-
nary frequencies. The polarizabilities are obtained by
solving two coupled inhomogeneous differential equa-
tions. We have extended the single-channel Numerov
differential equation solver method to handle coupled in-

homogeneous equations. In this vein, our calculations in

the spirit of perturbation theory are "exact", i.e., no ap-
proximation is made in solving the inhomogeneous equa-
tions.

We also investigate the effect of the core polarization
on the electric dipole of the valence electron and show
that this effect leads to a general lowering of the 1/R
dispersion energies, as expected in view of the fact that
the polarization of the core amounts to a contraction of
the dipole moment. We present a comprehensive cornpi-
lation of the multipole polarizabilities and dispersion en-
ergies for alkali-metal dimers.
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