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Many-body calculation of photoionization cross sections in CO
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Total and partial photoionization cross sections are computed for CO at the fixed equilibrium internu-
clear separation. Finite basis sets were used, with no explicit recourse to continuum orbitals, and there
is no need for input of empirical data such as the ionization threshold. By the present method the first

step is to compute the (real) polarizability a(ig) on the imaginary frequency axis. Many-body perturba-
tion theory is used for that purpose, and the expansion is complete to second order in the Coulomb in-

teraction. In the next step the cross sections are obtained from a(ig) by inverting a simple integral equa-
tion of the Fredholm first kind (dispersion relation). For the partial cross sections, extra approximations
may be necessary, as some diagrams to first and second order make contributions to more than one
specific partial cross section. The computed total cross section is in very good agreement with experi-
ment, and good agreement is also obtained for the 1m partial cross section. For the strongly interacting
0 shells, the comparison with experiment is less certain. The present results, which include comprehen-
sive correlation corrections, are also compared with existing theoretical results that are on the
independent-particle level of accuracy.

PACS number(s): 32.80.Fb, 33.80.Eh

I. INTRODUCTION

The many-body effects encountered in the photoioniza-
tion of atomic and molecular systems represent a per-
manent challenge to theorists in the field of atomic and
molecular physics. In the atomic case several sophisticat-
ed methods have been derived that at least to some extent
include correlation effects [1—3]. A common feature of
the atomic techniques is that they are based on numerical
methods, and explicit wave functions for the outgoing
electron have to be found. Thus, the atomic methods are
not easily applied to multicenter systems such as mole-
cules.

In the molecular case rather different techniques have
been derived based on the use of finite basis sets. The
most successful and widely used method so far tends to
be the Stieltjes method [4—6], which represents an alge-
braic approach to the problem without explicit recourse
to continuum orbitals. Several molecular calculations
have been carried out according to the Stieltjes method
[6—11]. Another approach using basis sets is the analytic
continuation method [12—15]. Successful applications of
the analytic continuation method are, however, so far
mostly limited to very small atomic and molecular sys-
tems.

Molecular single-center expansions represent a method
of carrying atomic techniques over to the molecular sys-
tems [16—21]. Various variational techniques may then
be combined with the single-center expansion to obtain
continuum orbitals in the molecular case [18—23].

Although the molecular methods referred to above
should be capable of including many-body effects, little
work has been presented that actually includes true
correlation effects. Even the most sophisticated methods
in current use in the molecular case are on the
independent-particle level of accuracy, as only single ex-

citations are included. An example is the random-phase
approximation, which is basically similar to the time-
dependent Hartree-Fock method. To incorporate what is
customarily termed true correlations [24), at least double
excitations have to be considered. Even in the atomic
case it is well known that independent-particle methods
may yield unreliable predictions of the cross sections
[2,3], in particular when Hartree-Fock one-electron orbit-
als are used. The incompleteness of such models is often
clearly revealed through large discrepancies between the
results obtained with the length and velocity versions of
the theory.

It is certainly of considerable interest to find simple
and workable independent-particle methods that yield
reasonable agreement with experiment, as such models
are basic to our physical understanding of the ionization
process. However, even in cases like the present example
where such simple models are quite successful, it is
nonetheless of great importance to investigate the many-
body effects with the objective of a more comprehensive
and profound theoretical description.

The present work presents computations of the total
and partial photoionization cross sections for CO based
on many-body perturbation expansions to second order in
the Coulomb interaction. A more extensive discussion of
the method has been given in two earlier publications
[2S,26] (hereafter referred to as I and Ill. The present ap-
proach represents another basis-set method, with no ex-
plicit recourse to continuum orbitals, and there is no need
for input of empirical data such as the threshold for ion-
ization. The strength of the present method is its ability
to make a comprehensive inclusion of true-correlation
effects, in particular for the total cross section. Narrow
resonances cannot, however, be reproduced, but the
method should be well suited to predict broad shape reso-
nances.

A main objective of the present investigation is also to
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study the effects that different choices of independent-
particle models will have on the many-body perturbation
expansion. For the occupied orbitals the Hartree-Fock
model represents a variationally optimized solution,
whereas there is no such unique model potential for the
excited states. Three diferent independent-particle po-
tentials for the excited orbitals will be investigated: (i) the
Hartree-Pock potential ( V type of potential), (ii) a V
type of potential where the excited states are obtained in
the field of an ionic core with one valence electron re-
moved. [this potential will be referred to as a V ' (II)
potential], and (iii) a potential constructed in a more sub-

tle way to yield approximations to the excited orbitals
that would be obtained with the coupled Hartree-Fock
model in the static case [this will also be a potential of
V ' type, referred to as V ' (I)]. In addition results
will also be presented for the "shifted" Hamiltonian,
which is another special way of partitioning the Hamil-
tonian for the perturbation expansion (cf. I and II).

Computed total and partial photoionization cross sec-
tions are presented for the electronic ground state in CO
at the Axed equilibrium internuclear separation. There
has been a considerable interest in experimental photo-
ionization studies of CO in the past [27—31], probably
also stimulated by the interest in photoionization of CO
adsorbed on solid surfaces. Several computations of CO
cross sections have also been published, all of which
are on the independent-particle level of accuracy
[10,20,32,33].

II. THEORY

A. The dynamic polarizability

The total cross section for photoionization 0 (co) is ob-
tained from the imaginary part Ima(co) of the complex
polarizability a(co) through the well-known relation [34]

4m.
0(co)= anima(co) .

In the present work the photoionization cross section is
derived by inverting the simple integral equation (cf. I
and II)

where a(ii)) is the (real) polarizability computed for
purely imaginary frequencies i g. Hence, by the present
method the computational problem basically consists in
calculating the dynamic polarizability a(co) on the imagi-
nary frequency axis. The dynamic polarizability
represents the linear response of an atomic or molecular
system to an external electric field and is defined by the
relation

p =a(co)F,

where p is the electric dipole moment, and F is the ap-
plied external field. In the case of a diatomic molecule
the well-known expression for a(co) takes the form
[34,35]

a~~(co) =,(co)

k (&n)

1 1

En EI ~ E~ —EI +

(4)

where d, denotes the component of the electric dipole
moment of the molecule along the molecular axis. The
expression for the perpendicular component ai(co)
=a„(co)=a (co) is similar to that of Eq. (4) with d, re-

placed by the perpendicular components d or d . For a
freely rotating diatomic molecule the observable (real) po-

larizability will be an average over the three perpendicu-
lar molecule-fixed directions [35], i.e.,

a(co) =
—,
' [2a,(co)+aii(co) ] .

To compute a(co) is a difficult problem since the eigen-

states and energies of Eq. (4) are those of the total zero-

field Hamiltonian of the system. In the present investiga-
tion the dynamic polarizability will be computed by use

of many-body perturbation theory, as discussed in more
detail in I. In the many-body linked-cluster expansion
a(co) takes the form [36,37]

c 0 (co)
a(ii)) = dco,

2
O

2 + 2
(2) with

(6)

1
~ ~ ~

Eo —Ho+ ~

The Hamiltonian Ho and H' of Eq. (7) and the total
Hamiltonian H are defined by

N i Z Z
Ho= g ——V; — — + Vt

~ia

1 NH'=g —g V, ,
~J i=]

H =Ho+H', (8)

where Z, and Z& indicate the charges of the two nuclei of

t

the molecule. Only the electronic ground state is of
current interest, and Eo of Eq. (7) denotes the lowest ei-

genvalue of Ho with corresponding eigenstate l&0). The
linked-cluster expansion of Eq. (7) with no interaction
with d, yields the correct expression for the ground state

l %o) of the total Hamiltonian H of Eq. (8).
B. Diagrammatic representation of a(co )

The representation of the linked-cluster expansion of
Eqs. (6) and (7) in terms of diagrams was discussed at
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some length in I, and only a brief outline is reproduced
here for the sake of completeness. A careful selection of
the single-particle potentials V; of Eq. (8) is of utmost im-

portance for a successful many-body expansion. The po-
tentials V; determine the single-particle states p„(r,. )

from the relation

Pir ---X
ql~li

4. ~
(b)

P/& &Li q-- ~

(c)

Pj' 'I) --~

Z Zy——'|)'z — — + V; y„(r, )=e„y„(r;) .
~a

(9)

FIG. 2. Four most important first-order diagrams contribut-
ing to a(m). The cross represents interaction with the eB'ective

operator of Eq. (10).

For a diatomic molecule the standard procedure is to
represent the single-particle states by analytic expansions
in terms of a finite set of known basis functions. In this
way the continuum is described by a finite set of virtual
states. The Hartree-Fock potential VHF is a favorite
choice for the single-particle potentials. %ith that choice
all the matrix elements of the effective potential V,z
defined by

&gk I V,sled &
= g &ti, p IOlpip & &gk I Vlgi &

n=1

where

II), the zero-order diagram in Fig. 1 should yield a fair
approximation of the coupled Hartree-Fock result. This
conclusion of course rests on the assumption that there is
a fast convergence in the iterative solution to the coupled
Hartree-Fock equations. Provided that assumption
holds, the single-particle potentials constructed in this
way should yield rapid convergence of the perturbation
expansion. Such single-particle potentials also tend to be
more attractive than the Hartree-Fock potentials (cf. II),
and they will thereby resemble the V ' type of poten-
tials. This is actually the V ' (I) potential mentioned in
the Introduction.

O=(1 —P,i)
P)2

will vanish for a closed-shelf system. Even for open-shell
systems the Hartree-Fock potential will normally lead to
rather insignificant contributions from V,z. Hence, in
particular for closed-shell systems the Hartree-Fock po-
tential will lead to an extensive cancellation of terms in
the perturbation expansion.

The perturbation expansions represented by Eqs. (6)
and (7) are best visualized in terms of diagrams (cf. I). In
the present work the expansion will be complete to
second order in the Coulomb interaction H' of Eq. (8).
Figure 1 displays the zero-order diagram, and the most
important diagrams to first order in H' are shown in Fig.
2. The first-order diagrams are particularly interesting
since they can be used to redefine the single-particle po-
tentials, as discussed in II. It is well known that a
double-perturbation expansion such as the present one is
normally an ineScient approach to computing static po-
larizabilities (co=0). The coupled Hartree-Fock scheme
is generally better for that purpose. Caves and Karplus
[38] have studied the iterative solution of the coupled
Hartree-Fock equations in terms of diagrams. They
found that the zeroth iteration leads to the lowest-order
diagram of Fig. 1, whereas the next iteration yields the
first-order diagrams of Fig. 2. Hence, by choosing the
single-particle potentials so that the sum of all the first-
order diagrams of Fig. 2 vanishes in the static case (cf.

C. Partial photoionization cross sections

The cross section 0 (co) obtained by inversion of Eq. (2)
will certainly be the total cross section when a(ir)) is the
total polarizability computed for the whole system. Now,
the inversion of Eq. (2) is a linear process, and partial
cross sections may be derived, provided that the corre-
sponding contributions to a(i rI) can be identified.

The lowest-order diagram of Fig. 1 certainly yields
separate contributions for excitation or ionization from
the distinct occupied orbitals. The same conclusion ap-
plies in the next order to the diagrams of Figs. 2(a), 2(c),
and 2(d). From the diagram of Fig. 2(b) the contribution
to the z component of a(ill) takes the form [cf. Eqs. (9)
and (10)]

&pld. jl&&jq lolpr && i ld, Iq &

a,+—(ig) = —g p-
(e~ —s.+iq)(e —s;+ig)

and there is a combined contribution from the occupied
orbital p as well as the oribital q.

Now, separate contributions from electrons in different
shells may be obtained from Eq (11) by. transforming
those terms where p and q refer to electrons in different
shells, i.e., s AE . A simple partial fraction decomposi-
tion for the terms of Eq. (11)with e WE leads to

&pld, li &(iqlolpi &(ild, lq &

a,

*(ivy�)

=-
( Ep

—F1
+r 7/ )( E~

—(k el rl )

(pld, lj& „&jqlOlpr &&ild. lq&~
E E+irI,. (s —s;)—(E—

~
—

E, )

(12)

FIG. 1. Zeroth-order contribution to the dynamic polariza-
bilities a(co). The heavy dots indicate interactions with the di-
pole operator.

where the prime on the first summation means that only
terms with c~=c, are included, whereas the double
prime on the summation over q and i means that terms
with c =e are excluded.
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o (ai) =g a„i(„(a~), (13)

with

k A)

gi„(co)=S(co co())co e— (14)

BIld

k =S C"-'
n 0 (15)

In Eq. (14) S(co—coo) is a unit step function that ensures
that cr(co)=0 for co(coo. Use of the step function may
reduce the number of terms needed in Eq. (13). If need-
ed, the step function will in practice be made smooth so
that it gradually increases from zero to 1 over a range of
frequencies around ~o. ko and C (C) 1) of Eq. (15) are
real constants to be adjusted for an optimal solution of
Eq. (2}.

The computed values of o.(co) yield the real part of the
polarizability Rea(co) on the real axis through the

Now, the first part of Eq. (12) yields the contribution
from the different shells from interactions within the
relevant shell only, whereas the second part in principle
yields the contributions from individual occupied orbitals

p from intershell interactions (E Ws ). In practice
difficulties may arise in the evaluation of the second part
of Eq. (12). There may accidentally be denominators in
the summation over q and i that will nearly vanish even
though c is different from c and there is a summation
over just a finite set of discrete orbital energies c., and c,
This problem is in particular relevant for molecules
where the orbital energies of different shells may come
quite close. Working with continuum orbitals and in-

tegration over continuous orbital energies this problem is
handled by principal-value integration [39]. By the
present method in which the continuum is represented
through a finite set of virtual orbitals a few singular terms
in the second part of Eq. (12) may have to be omitted. In
practice this is accomplished by adding a small imaginary
quantity to the denominators in the summation over q
and i and then exploring the real part of the sum as the
added imaginary quantity tends to zero. In the case of ir-
regularities one may have to use the real value of the sum
for a finite small value of the added imaginary quantity.
Such singularities are obviously related to a specific
choice of the single-particle potentials (cf. Sec. II B), and
the singularities will be removed or shifted by another
choice of potentials. Hence, there is an opportunity to
test the consistency of the present procedure by different
choices of potentials.

The contributions to the partial cross sections from
intershell interactions to second order are obtained by a
procedure similar to that described above for the first-

order diagram of Fig. 2(b). However, whereas the possi-
ble first-order singularities of the first-order diagram of
Fig. 2(b) are rather straightforward to handle, the
second-order diagrams may lead to second-order singu-
larities that need a particularly careful treatment.

The inversion of Eq. (2) proceeds as described in I.
The cross section is expanded in a finite set of known
functions tt „(co).

Kramers-Kronig dispersion relation [40]
i

Rea(co)= PI dc@' .
27T 0 co co

(16)

Rea(a~) gives information on important optical proper-
ties such as the index of refraction.

III. COMPUTED RESULTS

A. The dynamic polarizability a( i g )

The dynamic polarizability a(irt) has been computed
for the ground state in CO by use of many-body perturba-
tion theory as outlined in Sec. IIB. A11 computations
were carried out for the fixed internuclear separation
R =R, =2. 132 a.u. The basis sets used for the present
calculations were extensions of the sets of Slater atomic
orbitals with optimized exponents published by Cade and
Huo [41]. With the orbital exponent in parentheses, the
specific extensions are as follows: o 2s, (0.60), 02so (0.90),
o2p, (0.60), crq (0.80), ir2p, (0.80), n2p, (0.80)

rr3d, (0.50), ir3d, (0.80), ir3do (0.50}, rr3do (0.80). In
addition a set of seven 5 orbitals were included, based on
three 3d orbitals on C with exponents 0.50, 0.85, and
1.45, and four 3d orbitals on 0 with exponents 0.50, 0.85,
1.45, and 2.45 ~ A few tests were made with slightly larger
basis sets (more diffuse orbitals), without obtaining
significant changes in the computed results.

Computed values of a(i7)) are given in Table I for a
few selected g values. Hartree-Fock potentials were
used, and the perturbation expansion is complete to
second order in the Coulomb interaction H' of Eq. (8).
The static polarizability obtained for g=0 may be com-
pared with experimental results as well as other theoreti-
cal predictions. The most recent theoretical values seem
to be those of Rerat et al. [42], and they find

a, (0)=14.96 a.u. when their configuration interaction
approach is combined with an extrapolation method.
Kello et al. [43] obtained a, (0)= 15.07 a.u. from a finite

field method combined with a perturbation expansion to
fourth order. The experimental value is 15.72 a.u. [44].
The present result from Table I is a, (0)=14.15 a.u. , and
thus about 5% lower than the other most refined theoret-
ical values. A characteristic feature of Table I is the slow

convergence for a, (0). Another characteristic feature is,
however, the rapid increase in the convergency with in-

creasing values of g.
For the perpendicular component the theoretical value

of Rerat et at. is a„(0)=11.25 a.u. , whereas the experi-
mental result is 12.15 a.u. [44]. The present result
a, (0)=9.91 a.u. is thus in rather modest agreement with
the experimental value. Similar to a, (0) the rate of con-
vergence for a (0) is seen to be rather poor, however,
with rapid improvement for increasing g. Thus, the
present results are in agreement with the general con-
c1usion that a double perturbation expansion based on
zero-field single-particle states yields an inefficient ap-
proach to computing static polarizabilities. However, the
cross section o.(co) is through Eq. (2) determined from
a(i l) four a larger range of i) values where the convergen-
cy is quite fast. Hence, accurate cross sections may be
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TABLE I. Computed values of a(ig) (in a.u. , 1

R =2.132 a.u.
a.u. =0.1482 A') for the ground state of CO at

z component, order x component, order

Total Total

0.00
0.30
0.60
1.00
2.00
4.00
8.00

12.30
10.97
8.414
5.602
2.362
0.7656
0.217

—2.23
—2.31
—2.16
—1.65
—0.777
—0.270
—0.078

4.08
2.90
1.26
0.232

—0.148
—0.082
—0.027

14.15
11.56
7.51
4.18
1.43
0.414
0.112

9.072
8.129
6.341
4.366
1.972
0.682
0.202

0.477
—0.109
—0.752
—0.906
—0.559
—0.212
—0.063

0.359
0.014

—0.201
—0.173
—0.083
—0.035
—0.013

9.91
8.03
5.39
3.29
1.33
0.435
0.126

obtained, even though the static polarizabilities are in
modest agreement with experiment.

Table II lists static polarizabilities obtained with the
two difFerent V ' types of potential mentioned in the
Introduction, in addition to those computed with the
Hartree-Fock potential. V ' (I) is a potential based on
a partial cancellation of the diagrams of Fig. 2, as dis-
cussed in Sec. IIB. A full cancellation could not be
achieved due to a considerable 0-m. interaction in the dia-
grams of Figs. 2(b) —2(d), in particular in diagrams (c) and
(d). The total result to second order obtained with the
V ' (I) potential is only in slightly better agreement
with experiment, whereas the lowest-order result (11.30
a.u. ) for a„(0) represents a substantial improvement com-
pared with that of the Hartree-Fock potential.

The V ' (II) potential is a more standard V ' type
of potential obtained from a partial cancellation of the di-
agrams of Figs. 2(a) and 2(b), with neglect of the 0-m. in-

teraction in diagram (b). Compared with the V ' (I)
potential the V ' (II) one is more attractive. With the
V ' (II) potential the excited (virtual) states are ob-
tained with either one 50. or one m. electron removed, de-
pending on the component of a(i ri) and the symmetry of
the excited orbital. From Table II it is clear that the
V ' (II) potential to lowest order yields results for
a, (0) as well as a, (0) that are quite impressive compared
with the experimental values of 15.72 and 12.15 a.u. , re-
spectively. The convergence of the perturbation expan-
sion for this potential is, unfortunately, poor, in particu-
lar for a, (0},and the second-order result for a, (0) is in-
ferior to those obtained with the other potentials. Thus,
the V ' (II) potential represents an accurate effective
potential for an independent-particle model, but it is un-
physical in the sense that it does not provide a useful

basis for a perturbation expansion. Similar arguments
obviously also apply to the results obtained with the
shifted Hamiltonian (cf. I and II). This is another way of
partitioning the total zero-field Hamiltonian to create an
effective potential that is quite similar to the V ' (II}
potential.

Various other V ' types of potentials were tried, nor-
mally with divergent results for a, (0) caused by large
contributions from the effective potential of Eq. (10). The
problems encountered in computing a, (0) tend to stem
from the Rydberg character of all the five lowest excited
'X states in CO, as pointed out by Rerat et al. [42].

In view of the failure to find a V ' type of potential
that could give improvements compared with the
Hartree-Fock potential that are substantial for a, as well

as a„, it was decided to make use of the Hartree-Fock po-

tential. An important argument in favor of that decision
is also that the effective potential of Eq. (10) vanishes for
the Hartree-Fock single-particle potential.

B. Dynamic polarizabilities related to partial cross sections

Tables III and IV list dynamic polarizabilities that can
be related to excitation or ionization from the lm. , 5o, 40.,
and 30. shells respectively. As discussed in Sec. II C, the
first-order diagram of Fig. 2(b) makes a combined contri-
bution to the cross sections for orbitals p and q, and the
separate contributions were obtained from Eq. (12).
Separate contributions related to the various orbitals are
harder to extract from the second-order diagrams (see I
for examples of second-order diagrams). For some of the
diagrams to that order the separation process leads to
terms that are nearly singular, and where the singularity
is of second order. These terms had to be omitted, lead-

TABLE II. Static polarizability a(0) (in a.u. ) for CO computed for three different potentials with a
standard (Moiler-Plesset) partitioning of the Hamiltonian, and for a V (Hartree-Fock) potential for the
shifted (Epstein-Nesbet) partitioning (cf. text).

Potential

z component, order

Total

x component, order

Total

V~ (HF)
VN —I (I)
V~-' (II)
Shifted
V (HF)

12.30
12.86
15.00
16.23

—2.23
—1.76
—5.70
—8.88

4.08
3.46
7.45

11.55

14.15
14.56
16.75
18.90

9.07
11.30
12.34
11.99

0.48
—2.39
—5.16
—3.10

0.36
1.10
1.99
1.08

9.91
10.01
9.17
9.97
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TABLE III. z component of o,{ig) (in a.u. ) that corresponds to absorption or ionization from the
various listed orbitals.

Orbital

V' potential, order
1 2 Total 0

V' ' (ll) potential, order
1 2 Total

0.00
1.00
4.00

8.04
3.22
0.34

—4.94
—2.52
—0.31

4.30
1.42
0.14

7.40
2.12
0.17

9.25
3.02
0.30

—7.42
—2.54
—0.26

6.81
1.78
0.15

8.64
2.26
0.19

0.00
1.00
4.00

3.09
1.54
0.21

2.62
0.76
0.035

—1.32
—1.01
—0.14

4.39
1.29
0.11

4.40
1.46
0.15

2.12
0.82
0.086

—1.73
—0.91
—0.11

4.79
1.37
0.13

0.00
1.00
4.00

0.00
1.00
4.00

1.02
0.72
0.16

0.14
0.12
0.044

0.47
0.26
0.023

0.037
0.024

—0.003

—0.13
—0.14
—0.029

0.065
0.055
0.021

1.36
0.84
0.15

0.24
0.20
0.062

1.21
0.74
0.14

0.15
0.13
0.041

0.51
0.29
0.043

0.043
0.031
0.003

—0.78
—0.48
—0.083

0.12
0.10
0.035

0.94
0.55
0.10

0.31
0.26
0.079

ing to an approximate inclusion of the second-order
corrections that stem from intershell interactions. This
will in particular turn out to affect the 40. and 5o. cross
sections due to strong 40.-50. interactions.

A prominent feature of Table III is the slow conver-
gence for the the z component of a(ig) For .the most at-
tractive V ' (II) potential the perturbation expansion
through the three lowest orders yields oscillating terms
with very slow convergence. For the V potential the sit-
uation is somewhat better, but the contributions from the
second-order terms are also in this case too high for a sa-
tisfactory termination of the perturbation expansion to
that order.

However, the results of Table IV show that the situa-
tion is significantly better for the component of a(i'),
which also yields the major contribution to the cross sec-
tions. The best rate of convergence for the x component
is obtained for the V potential, and that was also the
case for the z component.

The second-order terms make important contributions
to a(ir)), as pointed out above. Furthermore, it is of in-

terest to note that triple excitations, which are normally
neglected in many-body photoionization computations,
are found to make substantial second-order contribu-
tions. From other areas of many-body work it is known
that quadruple excitations are often more important than
triple excitations. This might certainly be the case also
for photoionization, and a major source of inaccuracies in
the present many-body results could be the lack of quad-
rupole excitations which do not occur to second order.

C. The total photoionization cross section

The computed total photoionization cross section for
the ground state in CO at R =R, =2. 132 a.u. is given in
Table V and displayed in Fig. 3. The (real) isotropic po-
larizability

a(i') =
—,'[2ai(ill)+ai(i'll)]

was computed at 22 g values in the range g=0.0 to 12.0
a.u. (cf. Table I), and the discrete values were fitted to a
series of exponentials to obtain a smooth and continuous

TABLE IV. x component of a(ig) C,
'in a.u. ) that corresponds to absorption or ionization from the

various listed orbitals.

Orbital

V' potential, order
1 2 Total

V' ' (Ill potential, order
1 2 Total

0.00
1.00
4.00

3.92
2.20
0.36

0.46
—0.24
—0.11

0.32
—0.039

0.004

4.70
1.92
0.25

4.82
1.95
0.26

—0.70
—0.34
—0.085

0.67
0.25
0.053

4.79
1.86
0.23

0.00
1.00
4.00

3.62
1.32
0.16

—0.19
—0.58
—0.069

0.36
—0.055

0.0009

3.79
0.69
0.092

5.51
0.96
0.11

—3.70
—0.36
—0.020

0.23
0.013

—0.019

2.04
0.61
0.069

4o. 0.00
1.00
4.00

1.47
0.79
0.12

0.27
—0.071
—0.033

0.21
0.053
0.029

1.95
0.77
0.12

1.94
0.67
0.087

—0.79
—0.13

0.024

1.66
0.49
0.066

2.81
1.03
0.18

30 O.OO

1.00
4.00

0.059
0.053
0.024

—0.012
—0.011
—0.008

—0.009
—0.006

0.001

0.038
0.036
0.017

0.060
0.053
0.021

0.022
0.019
0.009

—0.024
—0.015

0.0006

0.058
0.057
0.031
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0.25 0.12 1.58 0.00
0.30 2.01 3.10 0.16
0.35 4.34 4.63 0.49
0.40 6.73 5.95 0.92
0.50 10.70 7.57 1.95
0.60 13.00 7.81 2.97
0.70 13.81 7.12 3.81
0.80 13.59 5.98 4.41
0.90 12.80 4.75 4.79
1.00 11.74 3.62 4.98
1.10 10.61 2.68 5.03
1.20 9.50 1.93 4.97
1.40 7.51 0.96 4.66
1.60 5.86 0.46 4.22
1.80 4.51 0.21 3.73
2.00 3.42 0.10 3.25
2.50 1.59 0.02 2.17
3.00 0.67 1.34
4.00 0.10 0.42

0.14
0.70
1.04
1.19
1.10
0.79
0.33

1.70
5.27
9.46

13.60
20.22
23.78
24.74
23.98
22.34
20.34
18.32
16.40
13.27
11.24
9.49
7.96
4.88
2.80
0.85

1.53
5.22
9.58

13.93
20.87
24.60
25.51
24.58
22.67
20.38
18.05
15.87
12.15
9.26
7.01
5.27
2.43
1.02
0.15

representation of a(i'). In the next step the cross section
o(co) was obtained by inverting Eq. (2), as briefly dis-
cussed in Sec. IIC (cf. I). A set of four basis functions
g„(co) [cf. Eq. (13)] was found to be sufficient, based on
the parameters ko =2.8 and C =2.0 of Eq. (15). The step
function S(co—coo) of Eq. (14) was not needed. The
present way of computing the cross section yields a con-
tinuous curve which is actually a measure for the total
absorption coefficient. Thus, there should be a zero result
for frequencies below the first excitation energy which is
0.296 a.u. in the present case (A 'lI state). The photoion-
ization cross section is obtained for frequencies above the

a (Mb}

TABLE V. Computed total and partial absorption (ioniza-

tion) cross sections (Mb) +o second order by use of the Hartree-
Fock single-particle potential ( V~).

CO Sum of
(a.u.) 1m ' 5o ' 4o ' 3o. ' partials Total o(co)

ionization threshold of 0.515 a.u.
From Fig. 3 the present results to second order in the

many-body expansion are seen to be in good agreement
with experimental values [28,31], as well as with the re-
sults of Padial et al. [10] obtained with the separated-
channel static-exchange approximation. The good agree-
ment between the present many-body results and those of
Padial et al. , which are actually based on a rather rough
independent-particle model, is quite remarkable. The
present results clearly indicate that higher-order effects
are important in the computation of a(irl), in particular
the first-order ones, and also that the results to lowest or-
der will depend very much on the chosen single-particle
potentials. Thus, the static-exchange frozen-core poten-
tials of V ' type used by Padial et al. for their
independent-particle model seem to be a very fortunately
choice for CO.

The independent-particle results of Davenport [32] ob-
tained with the scattered wave (SW) Xa method (local
potentials) are also shown in Fig. 3. This independent-
particle method clearly does not make very accurate pre-
dictions of the total cross section.

Figure 4 shows the dispersion curve Rea(co) obtained
from Eq. (16) and the computed values of o (co). Charac-
teristic features of the dispersion curve are the maximum
close to the excitation energy 0.296 a.u. of the lowest ex-
cited state ( A 'll), and the free-electron behavior n Ico-
for the higher frequencies, where n is the number of
"free" electrons.

D. Partial cross sections

Computed partial cross sections related to the 1m, 5o.,
4o, and 3o shells are visualized in Figs. 5 —9, and numeri-
cal values are given in Table V. The cross sections were
derived from Eq. (2) and the computed parts of a(i')
that are pertinent to the relevant shell, as discussed in
Secs. II C and III B.

Figure 5 displays the partial cross section for ioniza-
tion from the 1a shell, which is also the dominant partial

30-

20-

10-

20.0

x
(

X

10.0

I

I

O.Q
g i.o 2.0 co (a.u. )

1.0 2.0 m (a.u.)

-5.0—

X „~X
X ~X

FIG. 3. Computed total absorption (photoionization) cross
section for CO. , present results; e, Padial et al. [10];O,
Davenport [32]; X, experiment [28];~, experiment [31].

FIG. 4. Dispersion curve [real part of also) on the real fre-
quency axis] for CO. The vertical dashed line indicates the en-

ergy (0.296 a.u.) of the Srst excited A 'H state.
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1.2 .
~ (Mb)

1.0 .

0.8-

0.6 .

0.4 .

0.2-

0.0 7 8
~ (a.u.)

FIG. 9. Partial cross sections for 30 ionization. Solid line,
second order V; dashes, first order V; dotted, lowest order
V; 0, experiment [31].

predictions of Padial et al. [10] based on a V ' poten-
tial are also shown in Fig. 5 (short dashes) and are seen to
be in reasonable agreement with the present results.

Partial cross sections for ionization from the 50. and
4' shells are shown in Figs. 6 and 7, respectively. For
the 50. cross section a considerable improvement com-
pared with experiment is obtained in going from the
lowest order (long dashes) to the second order (solid line)
for the V potential. There are, however, still significant
disagreements between the present second-order results
and the observed values, as might be expected in view of
the poor convergence for the z component of a(iri) in
this case (cf. Table III). The best agreement with experi-
ment is obtained with the attractive V ' (II) potential
to lowest order (dotted line), but severe convergency
problems in the perturbation expansion for the z corn-
ponent as well as the x component of a(i ri) (cf. Tables III
and IV) yield highly unreliable higher-order corrections
in this case. Figure 6 also includes the computed
independent-particle results of Padial et al. [10] and the
more refined independent particle (Hartree-Fock) single-
center results of Lucchese and McKoy [20]. It is quite
interesting to note that of those two independent-particle
models the most refined one of Lucchese and McKoy
clearly makes predictions that are inferior to those of the
simpler model of Padial et al.

For the 4o. cross section shown in Fig. 7 the improve-
ment obtained by going from the lowest order to second
order is less substantial than for the 1~ and 5o cross sec-
tions. The convergency of the perturbation expansion is
also in this case quite slow, and there remain significant
disagreements between the present second-order results
obtained with the V potential and the observed values.
Very good agreement with experiment is, however, ob-
tained with the V ' (II) potential to lowest order (dot-
ted line). The convergency of the perturbation expansion
for the V ' (II) potential is, unfortunately, as for the lrr
and 5' shells, very poor, and reliable higher-order
corrections based on the V ' (II) potential are unattain-

able. Also in this case are the independent-particle re-
sults of Padial et al. [10] in good agreement with experi-
ment, whereas the SW (Xa) values of Davenport [32] ob-
tained with a local potential are hardly even in qualitative
agreement with the experimental results.

In Fig. 8 are shown experimental and theoretical
values for the sum of the 4o. and 5o partial cross sec-
tions. As expected from Figs. 6 and 7 the lowest-order
predictions based on the V ' (II) potential are in excel-
lent agreement with observations. %hat is more interest-
ing, however, is that the second-order results obtained
with the V potential for this sum is also in very good
agreement with experiment. The reason why the sum is
much better predicted than the individual 4cr and 5o.
cross sections is clearly related to the strong interaction
between the 40. and 5' shells, which pushes the related
polarizabilities strongly in opposite directions. Thus, the
sum of the cross sections can be obtained very well from
a perturbation expansion, whereas the individual ones are
hard to describe in a perturbative manner.

Finally, the computed partial cross section for the 3o.
shell shown in Fig. 9 is seen to be in excellent agreement
with the observed values for low frequencies. For higher
frequencies the first-order prediction (dashed curve) is
seen to be in best agreement with experiment, and the
largest deviation from experiment is found to lowest or-
der (dotted line). Here again the convergency of the per-
turbation series is slow due to large interaction with the
4o. and 5a shells. The results shown in Fig. 9 were ob-
tained with the V potential which to lowest order yields
results quite identical to those of the V ' (II) potential
(cf. Tables III and IV). The convergency of the perturba-
tion expansion based on the V ' potential is, however,
also in this case clearly inferior to that based on the V
potential.

A final comment should be added to Table V. For the
lower frequencies up to about 1.40 a.u. there is good or
fair agreement between the total cross section and the
sum of the partial ones. At higher frequencies the sum
tends to be somewhat larger than the total cross section.
This discrepancy mainly arises from the approximations
made in the second-order corrections for the polarizabili-
ties used to determine the partial cross sections. Inaccu-
racies in the computed a(ill) values will through the nu-
merical inversion of Eq. (2) in particular lead to rather
large relative errors in the small o (co) values for high fre-
quencies.

IV. CONCLUDING REMARKS

The present method to compute photoionization cross
sections from a many-body expansion for the (real) dy-
namic polarizability a(iri) on the imaginary axis tends to
work quite well for the total cross section. For low g
values the rate of convergence may seem slow, and the
static polarizabilities obtained are in rather modest agree-
ment with experiment. However, the rate of convergence
improves very fast with increasing q values, and the com-
putation of cr(co) from a(ig), which is based on a broad
range of g values, should be a sound procedure. Another
familiar problem to be underlined is the high sensitivity
of the computed results to the single-particle potentials.
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Among the potentials tested in Table II the so-called
shifted Hamiltonian actually represents an attractive
V ' potential that is seen to yield excellent results for
the static polarizability to lowest order. However, this
potential is nonetheless quite ill-behaved as there is no
convergence to second order in the perturbation expan-
sion for a, (0). To overcome the rather arbitrary depen-
dence on the potential, the calculation certainly has to be
carried beyond the independent-particle level of accuracy
(lowest order). The results of the V (HF) and V ' (I)
potentials of Table II illustrate this point quite mell.
Those potentials do not necessarily yield accurate or
close results to lowest order, but they lead to reasonable
convergencies of the perturbation expansion, and to
second order the results come quite close.

For the partial cross sections the present method
suffers from the same deficiency as other basis-set
methods in that extra approximations have to be made.
The present results, however, indicate that the effect of
the extra approximations are of minor importance com-
pared with those arising from the termination of the per-
turbation expansion, even when it is brought to the
second order.

A general conclusion would be that the theoretical

handling of the many-body effects involved in photoioniz-

ing a molecule like CO is far from a straightforward pro-
cess. First of all the choice of independent-particle po-
tential is crucial. The V ' (II) potential, which is ex-

pected to yield a reasonable representation of the poten-
tial affecting the outgoing electron, is found to make

quite accurate predictions of the cross sections to the
lowest order in the perturbation expansion. However,
large and hardly convergent higher-order terms result by
use of that potential. Thus, the V ' (II) potential mere-

ly represents a rather accurate phenomenological
independent-particle description of the ionization process
in CO. The Hartree-Fock (V ) potential on the other
hand yields poor lowest-order results, but the perturba-
tion expansion based on that potential tends to be conver-
gent, although too slowly to lead to accurate second-
order results for some of the partial cross sections.

Correlation effects are normally identified as correc-
tions to the results obtained with an independent-particle
model. The variationally optimized Hartree-Fock model
is generally accepted as the best independent-particle
description of the occupied orbitals. However, computed
photoionization properties are very sensitive to the quali-

ty of the excited continuum orbitals used, and for the ex-
cited orbitals, there is, unfortunately, no such unique
independent-particle mode1. Thus, it may be hard to
identify well-de6ned correlation effects and many-body
effects in photoionization work. For atoms with weak in-
teractions between the different shells it is possible to
identify a unique and efficient V ' type of model where
the excited orbitals are obtained in a potential with one
valence electron removed. This situation also tends to
apply to hydrides like OH and HF, and explains why a
V ' potential was found to be superior to the Hartree-
Fock potential in those molecules (cf. II), contrary to the
present results for CO. In the case of CO no unique
V ' potential could be obtained due to the strong in-

teractions between the 40, 50., and 1m valence shells.
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