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e
Elastic-scattering cross sections of photons for momentum transfer in the range 0.1 x 2.2 A with

E~ =59.5 and 316 keV were measured in order to test the limits of momentum transfer within which the
scattering by real samples can be considered as being due to free-atom Rayleigh scattering. Polycrystal-
line aggregate, liquid, perfect-single-crystal, and crystal powder samples were used as scatterers. The
measurements for E~ =316 and 59.5 keV were carried out in the angular ranges 9=0.5'—10' and 2'-23'
with a geometrical resolution of 0. 1' and 1', respectively. At the present time, most of the experimental
data on elastic photon scattering have been measured using solid molecular structures as scatterers. The
present results allow the conclusion that highly precise data (Ado/dO 2%) on elastic scattering of

o

photons can be compared with free-atom Rayleigh-scattering theories only for x )2 A

PACS number(s): 32.80.Cy, 32.90.+a

INTRODUCTION

Elastic scattering of photons is an important process to
obtain information about atomic wave functions and
structures, to test perturbational theories and associated
computational methods. These data are important in
many interdisciplinary problems where the information
about the interaction between photons and matter plays a
very important role. From the solid-state point of view,
an accurate knowledge of the interaction between pho-
tons and free atoms is required for understanding in-
terference effects due to molecular structures.

In the low-energy range, under 100 keV and near the
absorption edges, the elastic-scattering process (known as
anomalous scattering) is particularly important due to the
strong variation of the scattering cross section with the
incident photon energy. Many experiments were per-
formed in order to measure the elastic cross section and
many of them were compared with Rayleigh-scattering
theories [1],where it is assumed that the atoms are free.

In a former work [2,3] we have reported the oc-
currence of interference effects in photon scattering by
polycrystalline aggregates due to Bragg scattering. It
was shown that for low-momentum transfer, the scatter-
ing cannot be explained as being due to free atoms being
necessary to consider solid-state scattering processes. On
the other hand, for high-momentum transfer, due to the
thermal vibration of the atoms, the free-atom model is a
good approximation. The limit for the application of the
free-atom model was found to be (x ~ 2 A '), where x is
related to momentum transfer and is described as

x =A, ' sin(8/2),

where A, '=E/12. 398, E is the energy of the incident
photon in keV, and 8 is the scattering angle.

In this work, we study elastic scattering by liquid (Hg),
perfect crystal (Si), and powder (Si) samples in order to
verify the occurrence of interference effects in molecular
structures other than polycrystals. We have also studied
the limit between the scattering regimes with 145-keV
photons and a high-resolution experimental setup to test
if the momentum transfer is a good scaling for the
scattering intensities in this range of x.

THEORY

Elastic-scattering amplitudes of photons by atoms,
with photon energy ranging from a few keV to MeV, are
usually calculated with the assumption that the atoms are
free [free-atom approximation (FAA)]. The most com-
mon of such calculations are based on the form-factor ap-
proximation (FFA) either in the nonrelativistic, relativis-
tic, or in the modified relativistic version. Extensive
tables were published by Schaupp et al. [4] and Hubbel
et al. [5]. In this approximation, the scattering intensity
due to a free electron is multiplied by the Fourier trans-
form of the electronic density. Different ways of obtain-
ing the electron wave functions correspond to different
form factors. The best agreement with experimental data
was obtained with the modified relativistic form factor
(MRFF) also called the 6 factor. The wave functions are
in this case obtained from a Dirac-Hartree-Fock calcula-
tion considering spherical symmetry for the atom.

The most complete (and computer time-consuming) ap-
proach is the second-order perturbation theory, first
developed by Brown, Peierls, and Woodward [6] and im-
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proved by Kissel, Pratt, and co-workers [7,8]. The
method is still a one-particle model, but considers all pos-
sible (permitted and forbidden) transitions to intermedi-
ate states in the scattering process.

Both methods are described in detail in Ref. [7]. A
comparison between different theories and experimental
data for x ) 1 can be found in Refs. [8] and [9].

For x (2 A ', the cooperative effects due to the ag-
gregate state of the atoms in the sample may render
meaningless the direct comparison of the experimental
data on the Rayleigh cross section with the results of
free-atom theories. In considering the transition between
both scattering regimes (by free atoms and correlated
atoms) it is possible, although not completely true, to
suppose that the elastic scattering of photons by atomic
electrons is well described by the form-factor approxima-
tion.

Following Azaroff [10], for low-momentum transfer
(where the form-factor approximation is expected to be
valid), the intensity of elastic-scattered radiation (energy
by unit area by unit time at a distance 8 from the scatter-
er) from many atoms samples, is given in electron units
by

I, =I f gee

I, =ro/R [(1+cos 8)/2],

where I, is the Thomson scattering intensity at a distance
R from the electron, Io is the intensity of incident radia-
tion, ro is the classical electron radius, 0 is the scattering
angle, f, f„are the atomic form factors, R (R„) is the
position of the mth (nth) atom, and ~K~ =4m.x/h is the
momentum transfer.

In solving Eq. (1) we should consider how the atoms
are placed in the sample. For a single crystal, in which
the atoms could have just small displacements around the
original positions in a cell, we have shown [3] that the
term K (R —R„)could be taken as

iK (R —R„) ik (p —p )

where p (p„) are the instant atomic displacement of the
mth (nth) atom from the original position in the crystal
cell. The scattering intensity can then be written as

f2+( 1 e 2M)+I e 2M

where IB„ is the Bragg scattered intensity without con-
sidering thermal vibrations and e is the Debye factor,
proportional to the momentum transfer and to the tem-
perature.

Similar to the polycrystal case [3], we expect that for
perfect crystals and crystal powder samples the applica-
tion of the free-atom approximation will depend on the
sample (chemical element and atomic structure) and on
experimental parameters (momentum transfer, geometri-
cal resolution of the setup, and temperature). The only
difference is that for a perfect crystal, the detection of the
diffraction peaks depends on the orientation of the sam-
ple. By choosing the sample orientation in the experi-
mental setup, it is possible to avoid the Bragg peaks. In

this case the scattered detected photons are due to
thermal diffuse scattering, and the free-atom approxima-
tion is applicable.

For liquids the process is quite different. In this case
there is a short-range order, but it is much larger than in
a crystal. The atoms are not linked to a fixed position,
but can move in any direction inside a small volume. In
this case, the summation over m and n in Eq. (1) could be
changed [10] by an integral over the possible values of
r „=R —R„:

sin(kr „)
I, =I,f N 1+f 4nr p(r) dr

~mn
(3)

Following this and different from the crystal case, the
oscillations in the scattered photon intensity are expected
to be broad, independent of the experimental angular
resolution. For high-momentum transfers the function
sin(kr)/kr tends to zero, making the free-atom model ap-
plicable. The next item will present experimental data
obtained in order to investigate the limits for which the
free-atom scattering models apply.

EXPERIMENTAL PROCEDURE

RESULTS

The experimental results are presented in Figs. 1 —3.
The results are compared with theoretical calculations
which include Compton- and Rayleigh-scattering cross
sections. The Compton cross sections were obtained
from the incoherent-scattering functions [5], while the
theoretical Rayleigh cross sections were obtained from
the modified-form-factor approximation [4], or per-
formed by Kissel [12] using the second-order pertubation

Two experiments were performed depending on the
photon energy used. The first experiment was performed
at the Nuclear Physics Department of the Universidade
Federal do Rio de Janeiro. The relative elastic-scattering
differential cross section (der/dQ)„& was measured for
polycrystalline aggregate (Pb and Si), for a perfect crystal
(Si), and for a liquid sample (Hg). The experimental setup
was the same as that described in Ref. [2] using an ameri-
cium y-ray source (Am ', Er =59.5 keV, I =100 rnCi).
The polycrystalline samples used were lead (0.137 g/cm )

and silicon crystal powder (1.196 g/cm ). The perfect
crystal was Si (3.215 g/cm ). Mercury (0.487 g/cm ), in-

side a Plexiglas capsule 0.25 mm thick, was used as the
liquid sample.

The second experiment was performed at the Hahn-
Meitner Institut of Berlin, with a strong iridium y-ray
source (' Ir, E =316 keV, I =50 Ci). The experimental

setup was similar to that used at 59.5 keV, but with much
higher geometric accuracy (0.1' described elsewhere [11]).
The targets used were a polycrystalline aggregate (Pb,
3.40 g / cm ), a perfect crystal (Si, 4.66 g/cm ), and a
liquid sample, which consisted of 2.70 g/cm of Hg, in a
glass capsule 1.0 mrn thick. The results for the liquid
samples were corrected by subtracting the contributions
for the scattered photon intensity due to the capsule ma-
terial which was measured separately.
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FIG. 1. Comparison between experimental scattering cross
sections (circles) for Pb with 59.54- and 316-keV y-ray and
free-atom scattering theories. Theoretical curves were obtained
from the form-factor approximation [4] (solid lines) and
second-order pertubation theory [7] (dashed lines) added to the
Compton cross sections obtained with the incoherent-scattering
factor [5]. The dotted lines binding experimental points are
only a guide to the eye. Experimental errors ( ~ 7%) are small-

er than the point size.
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FIG. 3. Same as Fig. 1 for the Si perfect crystal (59.54 and
316 keV) and Si powder (59.54 keV). The smooth dot-dashed
lines are the Compton (inelastic) scattering cross sections plot-
ted to compare with the total scattering cross sections.

theory as developed by Kissel, Pratt and co-workers [7,8].
It is a numerical method within the framework of exter-
nal field quantum electrodynamics and a description of
independent bound atomic electron states in a relativistic
self-consistent central potential. Due to limitations in
computer time, outer subshell amplitudes are obtained
with modified-form-factor approximation. Although
many cases were already published [8],a complete tabula-
tion is still not available.

Since we are interested in a relative differential cross
section, this was obtained from

where N(Z, E,Q, 8) is the count rate of the scattered ra-

MERCURY

diation. 1/F,«(Z, 8, , 8, ) is the correction for y attenua-
tion for both incident and scattered beam. For normal
incidence (8;=90') and 8=8„1/F,« is given by

—p,a /cos8,
e &'—e

F,«a p(1 —1/cos8, )

where a is the sample thickness in g/cm, and p is the to-
tal attenuation coefficient in cm /g. The error associated
with the experimental momentum transfer is given by

5x = A I [(E/2) cos(8/2)58] + [sin(8/2)5E ]2 I
'~

where E is the photon energy, 8 is the scattering angle,
and A =1/12. 398 (A ' keV ').

For both photon energies (316 and 59.54 keV) the re-
sulting momentum-transfer accuracies have the same or-
der of magnitude (0.1 and 0.2 A '), which makes it pos-
sible for a direct comparison between both experimental
data. In order to compare measured and theoretical
data, and since the obtained experimental data are rela-
tive cross sections, it was necessary to multiply the
theoretical values by a normalization factor obtained
from

10-i
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FIG. 2. Same as Fig. 1 for Hg. It was not included in the
second-order pertubation theory curve. The dotted-line binding
experimental points are only a guide to the eye. Experimental
errors ( ~ 7% ) are smaller than the point size.

where a is a chosen scattering angle in a region where no
interference effects were expected.

In the considered range of momentum transfer (0.05
and 2.0 A ), the maximum Compton shift is 1.0 keV for



892 GONQALVES, SANTOS, EICHLER, AND BORGES 49

59.5 keV and 3.0 keV for 316 keV, which does not allow
us to distinguish the elastic from the inelastic process.
For Pb and Hg the maximum contribution from Comp-
ton to scattered amplitude is 7%, while for silicon it rises
up to 70%. The peculiarities of each measurement with
different structures are described in the next items.

A. Polycrystalline aggregate and crystal powder

Metal structures and crystal powder are similar in
describing the scattering process [3]. As reported early
for metals, the observed oscillations are due to interfer-
ence effects (Bragg peaks) convoluted with the geometri-
cal accuracy of the experimental setup [2].

The measurement with lead, already reported [2], was
repeated in order to control the experimental conditions
and also to compare the results with the new 316-keV
data. The results for Pb and Si are presented in Figs. 1

and 3. In Fig. 1 it is possible to notice that, for lead and
x 0.5 A ', the experimental data show a good agree-
ment with both calculations. Also, for silicon powder
(Fig. 3), it is possible to notice that, depending on the
desired accuracy, the free-atom model could be used to
describe the experimental data for x & 0.5 A

B. Perfect crystals

The experiment performed with the perfect single crys-
tal of Si was done trying to avoid the Bragg conditions.
This was done by fixing the incidence angle in 90'. In this
case, the interference between the elastic-scattered pho-
tons is expected to be destructive, and no elastic-scattered
photon should be detected.

Owing to the angular divergence of the beam, the
Bragg diffraction could not always be avoided, resulting
in diffraction peaks for x =0.53 and 0.67 A ' for 316
keV and peaks for x =0.26, 0.53 and 0.83 A ' for 59.5
keV (Fig. 3). For the corresponding scattering angles, a
new data set was measured by rotating the crystal in or-
der to avoid the Bragg conditions. As expected, the scat-
tered intensities were drastically reduced (points marked
as 6 in Fig. 3).

From the experimental results for Si it is possible to
say that the free-atom approximation applies for x ) 1.0
A '. The remaining scattered photon intensity is due to
Compton scattering and to thermal diffuse scattering
(TDS) and this procedure can be used as a new way to
measure these two effects.

C. Amorphous structure (liquid)

Figure 2 shows the results for mercury (59.54 and 316
keV). As described in Ref. [13],the interference effect in

this case is due to a molecular correlation which
represents a mean distance between the molecules. It im-
plies that the obtained interference peaks depend weakly
on the geometrical resolution. As in the metals, the more
the momentum transfer grows the more the thermal
motion of the molecules will grow, which makes the
free-atom model applicable for high-momentum transfer.
In Fig. 2, it is possible to observe that the x limit for the
application of the free-atom model for mercury lies
around 0.6 A

CONCLUSIONS

The agreement between both data sets on both energies
is very good, confirming that momentum transfer is a
good choice to scale the dependence of the scattered pho-
ton intensity with angle and energy in low-momentum-
transfer range. From the two experimental data sets it is
possible to conclude that, for each atomic structure, there
are limits above which the free-atom approximation ap-
plies. These limits depend on the temperature, on the
molecular structure, and on the experimental resolution
[3]. In the present work it was found that for x &1.0
A ' no more oscillations were detected when consider-
ing an experimental resolution of about 0.1A

Due to the complex dependence of the interference
process on temperature and experimental setup, and due
to the impossibility of knowing most of the molecular
structure with the necessary accuracy, it is impossible to
predict the exact limits for which the free model applies.
Since within 10% no oscillation was detected for x & 1.0
A ', it is possible to take 2.0 A ' as the limit. For more
accuracy, a careful systematic measurement should be
done.
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