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Resonances and recurrences in the absorption spectrum of an atom in an electric field
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We use closed-orbit theory to study the absorption spectrum of an atom in an electric field. In previ-

ous work we examined absorption spectra above the zero-field ionization threshold. Only one closed or-

bit exists there, and it is unstable. Now we examine the situation below threshold. Here, the orbit paral-

lel to the electric field is stable and, as the energy decreases, many other closed orbits bifurcate out of it.
These closed orbits have simple patterns, and the associated recurrences are most clear if the absorption

spectrum is measured using a scaled-variables method. The relation between the semiclassical Einstein-

Brillouin-Keller-Marcus (EBKM) theory and periodic-orbit or closed-orbit theory is examined: they are

complementary methods in the same sense that energy and time are complementary variables in quan-

tum mechanics. Our numerical calculations show that sinusoidal fluctuations contributed by the closed
orbits combine into peaks, and these peaks are in the locations predicted by EBKM theory.

PACS number(s): 32.60.+ i, 32.80.—t, 32.70.Cs, 05.45.+b

I. INTRODUCTION

There are two complementary approaches to semiclas-
sical theory: the Einstein-Brillouin-Keller-Marcus
(EBKM) method of action quantization, which applies to
integrable or near-integrable systems, and the periodic-
orbit theory, which has primarily been applied to chaotic
systems, but which can be used for integrable systems as
well. The EBKM theory describes individual quantum
states: it says that each discrete state is associated with
an "eigentrajectory" or "eigentorus" —a regular quasi-
periodic trajectory having appropriately quantized values
of its action variables.

Periodic-orbit theory begins with a description not of
individual states, but of recurrences. It asserts that each
periodic orbit produces a sinusoidal fluctuation in the
density of states as a function of energy. The closely re-
lated closed-orbit theory of atomic absorption spectra as-
serts that each electron orbit that is closed at the nucleus
produces a sinusoidal fluctuation in the photoabsorption
rate as a function of energy. In both cases, recurrences
(returns of a particle to its original location in phase
space or in configuration space) produce large-scale struc-
tures in quantum properties (sinusoidal fluctuations that
are visible when we average over a number of individual
states).

Whenever both theories are correct, they must agree
with each other. The EBKM quantization rules must be
expressible as a periodic-orbit sum and conversely, the
sinusoidal fluctuations in the density of states must com-
bine themselves into Dirac 5 functions with unit weight
at each eigenvalue. This relation was first shown by Ber-
ry and Tabor [1] in 1976.

In this paper we carry out a somewhat analogous study
of closed-orbit theory for the absorption spectrum of an
atom in an electric field [2]. For such a system, quantum
mechanics tells us that there are no truly bound states,

but only quasi-discrete resonances. However, the equa-
tions of motion are separable, a family of bound classical
orbits exists, and these orbits constitute a two-parameter
family of tori. EBKM quantization of these tori correctly
predicts the energies of the resonances [3].

We will show that, also as a consequence of separabili-
ty, the closed orbits of the electron have simple patterns.
We will explain that associated recurrences will be most
clear if the absorption spectrum is measured using a
scaled-variables method, varying the photon energy and
the applied electric field simultaneously. We will display
numerically that the sinusoidal fluctuations indeed com-
bine into peaks, and that these peaks are in the locations
predicted by EBKM theory.

It follows that the EBKM theory and periodic-orbit or
closed-orbit theory are complementary methods in the
same sense that energy and time are complementary vari-
ables in quantum mechanics. EBKM theory predicts in-
dividual resonances on the energy axis, and the Fourier
transform describes the recurrences. Closed-orbit theory
predicts individual recurrences in time, and the Fourier
transform give the resonances.

In this paper we also give some attention to a common-
ly overlooked aspect of periodic-orbit theory. The
periodic-orbit sum contains denominators which vanish
at certain points. Gutzwiller [4] noted the existence of
these points, and he repaired the singularities, more or
less, by throwing them away. This was adequate for his
purposes, but not for ours, because the singularities cor-
respond to real physical effects. They are points of classi-
cal frequency resonance between the period of an orbit
and the period of stable oscillation across an orbit. The
vanishing denominators produce bifurcations in classical
mechanics and focal points in quantum mechanics. (A
correct quantum treatment would replace the singularity
by large finite amplitudes. Such a treatment is being
developed, but it is not available yet. ) Therefore we keep
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II. CLOSED CLASSICAL ORBITS
OF AN ATOMIC ELECTRON

IN AN ELECTRIC FIELD

Treating the electron's motion according to classical
mechanics, we seek those orbits which go out from the
nucleus and later return to it. The Hamiltonian is (Fig. 1)

20= +V(p, z)=E,
2m

—Ze 2

V(p,z)=, +eI'z .
( 2+ 2)1/2

(2.1)

Transforming to scaled semiparabolic coordinates [5],
and considering the case 1., =0, the Hamiltonian be-
comes

h =
—,'(p„+p„)+V(u, U ) =2,

V(u, u)= —,'(u —
U )

—s(u +U ),
e=E/F'~

(2.2)

The transformation from (u, u) to (p, z) is a 2~1 map-

ping, most easily described by polar coordinates in each
space. Let s =(u +v )', 6=tan (U/u ) and
r (p +z )'~, 8=tan '(p/z). Then s=(2r)' F'
8=8/2. The total energy of the electron E in (2.1), di-
vided by the (electric field strength}', plays the role of a
force constant in (2.2). We consider the case e(0. The
transformed Hamiltonian (2.2) also has an effective po-

the singularities in the formulas, but carefully avoid them
in our computations. We will show that the effects of
these focal points, bifurcations, and frequency resonances
should be visible in experimental measurements.

tential energy V(u, u }, which is shown in Fig. 2. In the
( u, v ) plane it has two reflection symmetries,

V( —u, U ) = V(u, —
U ) = V(u, U ) . (2.3)

A number of general results about such systems were
established in Ref. [8]. In particular, any orbit which re-
turns to the origin at time T, is periodic with period 2T, .
Therefore we can learn everything about the closed orbits
by learning about the periodic orbits.

We define a Poincare map (uo, p, )~(v„p„), by in-
0 1

tegrating the (u(t), U(t)) equations, stopping whenever
u =0 and p„)0 [6]. Every periodic orbit (PO) of the
differential equation is a periodic orbit of the map with
the same period.

The associated surface of section (SOS} is shown in Fig.
3 at an energy below the zero-field ionization threshold.
Since the Hamiltonian in Eq. (2.2) is separable, each
curve is defined by the formula

h„(p„U ) = —,'p, + V„(U)=e, =const,

V, (U)= —EU —
—,'U

(2.4a)

(2.4b)

Because of the form of (2.4a), we call e„"the energy asso-
ciated with v motion" and V„(v ) "the potential energy as-

sociated with v motion" (though these quantities have no
simple relationship to the energies defined in pz coordi-
nates). The SOS has two X points and their associated
separatrices, which define the boundary between orbits
which are bound to the atom forever and those which es-

cape. The separatrix trajectory can be obtained using
Eqs. (2.4) and the separatrix condition: the energy e„
equals the maximum of the potential energy associated
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FIG. 1. Contour plot of the actual potential energy V(p, z).
Around the origin is an infinitely deep Coulomb hole, and out
the positive z axis V(p, z) is increasing (approximately linearly
at large z). For large negative z, V(p, z) decreases linearly, so
there is a saddle point dividing the Coulomb hole from the es-

cape region. A stable PO called the "parallel" orbit lies on the
positive z axis, and an unstable PO lies on a parabolic curve be-
tween the Coulomb hole and the saddle point. All other PO's

organize themselves around these two fundamental ones.

FIG. 2. Contour plot of the effective potential energy
V(u, u). The infinitely deep Coulomb hole has been converted
into a quadratic well. Because of the 2:1 mapping from (u, u ) to
(p, z), the effective potential energy at large distances has ac-
quired a quadrupolar structure, positive on the +u axis and neg-
ative on the +v axis. The stable PO ( the "parallel orbit") lies
on the u axis. The unstable PO is now two PO's that lie parallel
to the u axis and pass through saddle points of V(u, v ).
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V

with u motion,

e„=max[ V„(v)]=a /2 .

Thus the momentum p, on the separatrix equals

p„(v)=p,„(v)=+(v +e) .

(2.5a)

(2.5b)

The plus and minus signs give the upper and lower
branches of the separatrix, respectively. The X points
represent the unstable PO's which pass through the sad-
dles in Fig. 2.

The stable PO at the center is the "parallel" orbit P~~,

which lies on the u axis (the positive z axis). The neigh-
bors of this PO wind around it on the SOS. We seek all
the other PO's that begin at the nucleus (u =O, v=0}, so
they all start on the p, axis. In general, a period of U

motion is longer than a period of u motion, and points on
the SOS map clockwise; the angular coordinate of each
point increases in each iteration of the map at an average
rate a(e,p„), which depends upon the scaled energy and

0

the initial value ofp„. The winding rate on the SOS is the
ratio of periods of u to v motion,

a(e,p„) T„(e,p„ )

T„(s,p„ )
(2.6)

In Fig. 4 each curve represents an iterate of the posi-
tive p„axis. At the energy displayed here, points close to
the central point advance clockwise slightly more than —',
of a revolution at each iteration of the map. Orbits more
distant from the center wind more slowly, and especially
they slow down in the vicinity of the X points. Accord-
ingly, successive iterates of the positive p, axis become
ever more tightly wound spirals.

The general orbit is quasiperiodic. Periodic orbits
occur whenever the average winding rate a(s,p, )/2m is a

0
rational fraction m /l. Every periodic orbit is a member
of a continuous one-parameter family of periodic orbits,
and these one-parameter families have shapes like Lissa-

FIG. 3. Poincare surface of section (p„,v) at c=—0.258.
The center 0 point is the parallel orbit on the u axis, and the X
points are the unstable orbits at the saddles of V(u, v ).

FIG. 4. The first 20 iterates of the positive p, axis at
c= —0.258. To display the structure near the separatrices, the
coordinates have been stretched according to the following
definitions: p„'=p, (1+Sgp,'+u2), u'=u(1+8'(/p2+u')
Points close to the origin wind more rapidly than those further
away. The first iterate is the curve that goes out from the origin
at about "5 o'clock" and curves over to the upper right separa-
trix. The second iterate goes out near "10 o'clock". Points
where iterates intersect are PO's that touch the origin. The 2/5,
1/3, and 1/4 orbits are marked by dots. On close examination
one can find others, such as the 3/8 orbit, which lies between
2/5 and 1/3.

mT„(E,p, )=IT„(e,p„)=T=IT (2.8}

Therefore, near each integer multiple I of the period of

jous figures (each family is distinguished by its frequency
ratio, I /I, while within each family the members are dis-
tinguished by the initial relative phase of u and v motion}.

Within each of these one-parameter families of PO's,
there is one PO that touches the origin. These PO's show
up in Fig. 4 as points where spirals intersect. Visible in
Fig. 4 are orbits with average winding rate 2/5, 3/8, l/3,
and 1/4.

Since the only orbits that produce recurrences visible
in the absorption spectrum are those that start at and
later return to the origin, we see from Fig. 4 that the
relevant closed orbits of each period are isolated, and that
they fall into orderly patterns.

To understand the pattern let us think about the
periods of u and U motion. At fixed energy c, the period
of u motion is not very sensitive to p, , and for our pur-

0

poses we can say T„(s,p, ) = T„(E,p, =0)=
T~~~, the

period of the parallel orbit. The period of v motion is
very sensitive to p, : this period is shortest when p, =0,
and it goes to infinity at the separatrix. Accordingly the
average angular speed a(s,p, } goes from a maximum at

0

the parallel orbit

a,„(s)=a(E, O)

to zero at the separatrix. A PO occurs when T„/T, is ra-
tional,
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IT„ IT

m m
(2.9)

where m is any positive integer less than or equal to
m, „(I,F) with

the parallel orbit, there is a cluster of periodic orbits hav-
ing

BvI dvI

Bvo Bp

J(1)=
Bp,

avo

Bp„

~pv

evaluated at the 0 point (the parallel orbit):

(2.12)

m, „(l,s) =intr la, „(E)/2m. ] . (2.10)

2mm &
&

2n(m+1)KI &a,„(E) a,„(E)
(2. 1 1)

This pattern is illustrated in Fig. 5, for the case
= —0.266, a,„/2m=0. 41. For this figure, we choose
units of time such that the parallel orbit has '"period 1."
At 2T~~, only the repetition of the parallel orbit is present.
At I =3 a new sequence of periodic orbits appears having
m =1, and T„/T„=1/l (1~ 3). At l=5 another new se-

quence appears with m =2 and T„/T„=2/l (1~5). For
1=6, this sequence includes the 2/6 orbit which is the re-
petition of the 1/3 orbit. The next sequences start at
I =8, 10, 13, . . . .

Since each orbit that returns to the origin is half of a
PO, the same pattern applies to recurrences in the ab-
sorption spectrum: at each value of c., the recurrences
can be labeled by every unreduced fraction m /I less than
or equal to a,„(c.)/2m. This winding rate can be calcu-
lated from the Jacobian matrix of the map

It is convenient to label these periodic orbits by the
unreduced fraction (m/1). In this scheme the orbit la-
beled (for example) 6/15 is the third repetition of the or-
bit labeled 2/5. Then each primitive orbit closed at the
origin is represented by a fraction expressed in lowest
terms.

Including all repetitions of all these orbits, and includ-
ing in addition all repetitions of the parallel orbit, near
mT~ there is a total of m, „(l,e)+ I periodic orbits.
Conversely, there are exactly m+1 recurrences for each
integer I between

TrJ(1)=2 cosa,„(e),
& &a,„&2m if J,2 & 0,
0&A &7T if JI2 &0

(2.13)

1.0

().0

-1.0

a,„(E) goes from 2n. as E~ —~ to zero as 8~0 . As
a „„(E) decreases, each resonant PO moves to the 0
point and disappears. Conversely, as c. decreases, and

a,„(s) increases, new orbits bifurcate out of the parallel
orbit. When a,„/2m. increases through the rational
number m /I, a PO of period 1T

~

is created, and it has m

cycles of v motion in each period. We show a graph of
a,„/2m vs E in Fig. 6, and we also show some related bi-

furcation values in Table I.
The geometrical structure of the orbits follows easily

from the above considerations. For m /1 in lowest terms,
there are I full cycles of u motion and m full cycles of v

motion in a period of the orbit, or I half cycles of u

motion and m half cycles of v motion before the first clo-
sure. Orbits labeled 1/1 climb the potential-energy bar-
rier in a series of switchbacks, approaching the unstable
PO on the ridge, then fall back again to the nucleus. Or-
bits labeled 2/1 do the same thing, but on falling back

. 6
0

4

E 2

1

a„,„/2~=0.41

-2.0

1 .()

0H.

()
0 1 2 3 4 5 6 7 8 9 10 11 12 13

T/T,

().2

0.0
-1.3 -0.7 -0.5 -0.3 -0.1

FIG. 5. Number of periodic orbits having period close to IT~~

at c= —0.266 where a,„/2~=0.41. There is one orbit with
T= T) (the parallel orbit), one with T=2T~I (the first repetition
of the parallel orbit), two near T= 3T~~ (the second repetition of
the parallel orbit and the 1/3 orbit), two near T=4T~~ {the third
repetition of the parallel orbit and the 1/4 orbit), three near
T= 5 T~~ (the fifth repetition of the parallel orbit and the 1/5 and

2/5 orbit), and so on.

FIG. 6. (a) Trace of the Jacobi matrix of the Poincare map
evaluated at the parallel orbit as a function of scaled energy. (b)

~inding angle a,„/2~. As energy decreases, when a,„/2~ in-

creases through the rational number m /I, the corresponding ra-
tional torus and its embedded closed orbit bifurcates out of the
parallel orbit. Symbols indicate the bifurcation energies of the
orbits 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, and 2/3.
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1/6
1/5
1/4
1/3
2/5
1/2
3/5
2/3

TABLE I. A list of the bifurcation values.

TrJ(c, )

1
—(&5+1)/2
0
—1

(&5—1)/2
2

—(&5+1)/2
—1

—0.0397
—0.0595
—0.0893
—0.164
—0.243
—0.397
—0.610
—0.794

they miss the nucleus and climb the ridge on the other
side before returning. Orbits labeled m/I climb the two
ridges alternately a total of m times. Pictures of some or-
bits are shown in Figs. 7 and 8 [7].

III. CLOSED-ORBIT THEORY
OF PHOTOABSORPTION SPECTRA,

AND SCALED-VARIABLE MEASUREMENT

In Ref. [5] we derived formulas relating the absorption
rate to properties of the closed orbits. Each closed orbit,
(i.e., each recurrence} gives an oscillatory contribution to
the absorption spectrum. The absorption spectrum can
be defined quantitatively as a cross section for photon ab-
sorption, or as an oscillator-strength density Df(E,F).
The contribution of recurrences to the oscillator-strength
density is called Df I (E,F ).

The contribution of the parallel orbit to Df, (E,F) is

Df) =(E E;)2 —n ~5'(0)'P(0)~F'

~1/2
X . »(&2lel«}

V~ 7T
X sin n (SOF '/4 n) —+b—,o, (3.I)

2/4

2/5

3/4

4/5

where P(8} is the angular distribution of the outgoing
wave, ho=arg['Y(0)P(0)] is a phase shift caused by the
core, and n is the label for repetitions of the closed orbit.
The factor e'/ /Si(&2~e~nr) is proportional to the ampli-
tude of the semiclassical returning wave, and ~ is the
scaled closure time of the orbit. Si(&2~e~r) means
~sin(&2~a~~)

~
if e (0 and sinh(~2er} if e )0. Finally, S

is the reduced action for the 0' orbit, and v„ is part of the
Maslov index of the parallel orbit,

FIG. 7. Shapes of closed orbits in (u, v ) space.
0, E&0

&2/e[nr2int, c(0 .
(3.2)

For other closed orbits with 8, %0, the formula for the
contribution to the oscillator strength is

f(E E; )211/2g —3/2~ +(8k }Q(8k}~F1/8sin(8k/2)

QJk

2/

Xg —sin n S F ——p — n+—1 . k ) g4 m k 3 3m.

„&n 2 2 4

+5k '. (3.3)

2/

FIG. 8. Some closed orbits drawn in (p, z ) space.

Again S is a reduced action for the kth orbit, " is its
Maslov index, and b,k =arg[P(8f )P(8,")] with 8f =+8,". ,
Jf2 is an element of the Jacobian matrix (2.12) evaluated
at the first return of the kth closed orbit. We called the
entire coefficient of sin[ ] the "recurrence amplitude for
the nth return of the kth closed orbit. " Its square is the
corresponding "recurrence strength. " The next three
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paragraphs give the derivation of Eq. (3.3), and the main
argument begins again above Eq. (3.11).

To prove Eq. (3.3), we start from Eqs. (7.16) and (7.17)
of Ref. [5],

Df, (E)= g Im[C k „exp(ib, m k „)], (3.4a}
rn, , nk

where

2i(8r )

/, „exp(i& /, „)=(E E;—)2' 7r rb
' e " e ' " (sine;

'
sinef

' )'

X Az
' '

exp[i(S
' ' —

—,'m/M
' ' )]'P (ef ™)Y(8;

'
) . (3.4b)

We now restrict ourselves to cases in which spin-orbit
coupling is ignorable, and let m =L, /R be equal to zero.
Then the sum over rr/ in Eq. (3.4a} disappears, and the in-
dex /r/ can be dropped. In Eq. (3.4b} the action S""is
defined to begin and end at a boundary radius rb, the
quantity 2(8rb)' combines with S"'" to give the action
all the way around the orbit, from origin to origin. The
resulting action is written as nS .

The semiclassical amplitude A 2'" can be simplified fol-
lowing the methods given in Ref. [8].

2 z'" =[+2/ro cos(8;/2) cos(ef /2)J", 2(n )] '/, (3.5)

where J",2(n ) =Bv„/Bp, evaluated at the nth closure (not

the period} of the kth closed orbit. Further
simplifications follow because the system is separable.
From Eq. (9.10) of Ref. [5] and letting L, =0, we get

I

It follows that

p„=np, +v„+2(n —1)

= ntu, +3(n —1) . (3.10)

DDf'= FE —E. (3.11)

From Eqs. (3.1) and (3.3), the theoretical formula for this
rate is

Df'= g g Dk„sin(nS "F ' —4 "), (3.12a)

Combining all these results, we obtain Eq. (3.3).
Now suppose that the absorption spectrum is measured

at fixed scaled energy, varying the electric field F. The
quantity that should be measured in the experiment is a
reduced absorption rate,

p„=++2cose;+2Eu —u +2,
p„=++—2cose;+2sv +v +2 .

At the origin, u; =uf =0, U,
=vf =0, so

k n

(3.6) where

1/2

D „=O2 ~IS(0}'Y(0}IF' '
si(&2I In')

(3.12b)
lp. . l=lp. I=2cos(8;/2),

lp, I

= lp„ I
=2 sin(8, /2) .

(3.7)

and

C"=nm+v„——a, , e, =0,

Hence the closed orbits have the symmetry called "type
1" in Ref. [8]. The element of the Jacobian matrix on the
nth repetition is related to the element at the first closure
by the formula

211/2~3/2
I Y(ek) qf ( ek) IF

—I/16 sin( ek/2)
n

(3.12c)

IJ»(n)l=nlJ»(1}l . (3.8) 4 "=n —
/u + ~ — ——b, , 8 %0.7T k 3 37K

2 2 4

v„=n —1 . I'3.9)

This follows from the fact that in this separable system,
all periodic orbits (other than the stable parallel orbit and
the unstable saddle-point orbit) have neutral stability

(Appendix A).
Finally, the Maslov index for the nth repetition of a

closed orbit is the sum of three terms: The first term is n

times the Maslov index for the first return. The second
term is 2(n —1); every time the electron returns to the
Coulomb center, there is a focusing effect that increases
the Maslov index by 2. The third term, v„, counts any
additional caustics that are not included in np, . Formu-
las for v„were given for stable and unstable orbits in Ref.
[8]. Those formulas have a consistent limit for neutrally
stable orbits; in our case we show in Appendix A that
J,2 TrJ &0, so

The "reduced recurrence amplitudes" Dk„depend on the
scaled energy and only weakly depend on the field
strength. Over the range of field strength that might be
used, F' ' and F ' ' do not change much, so an aver-
age field strength Fo can be used instead, and therefore

Dk„ is practically independent of F. At fixed scaled ener-

gy, the absorption spectrum would be regarded as a func-
tion of m=F ', and one would take its Fourier trans-
form with respect to u.

[Let us note that the factor F /' in Eq. (3.11) is a
compromise between F ' and F ' . The recurrence
amplitude of the 0 orbit is proportional to F', while
that for all other orbits is proportional to F' . In our
case, all recurrence amplitudes are comparable in magni-
tude, so we compromise. If one group or the other were
to dominate, it would be better to use F ' or F ' in
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Sm~(I ~]) S~~( Sg~/2

Tml(I+i) m/I TU~/2 &

(3.13a}

(3.13b}

~m /( I + 1) un
=exp

A 1 4m
(3.13c)

/

where S„„,T„„,and A,„„=2&+a~T„„are the action, and
Liapunov factor of the unstable PO. A test of these ap-
proximations is given in Table II.

In the next two sections, we will use Eq. (3.12}to calcu-
late the hydrogen absorption spectrum and its Fourier
transform. The initial state of hydrogen is chosen to be
(2s —2p ). The P's are given in Eq. (5.12) of Ref. [5], and
the 5's are equal to zero.

IV. RECURRENCE SPECTRA

Df in Eq. (3.12) is a sum of sinusoidal oscillations,
each associated with a closed orbit or its repetitions.
Hence its Fourier transform is a set of 5 functions shown
as the needles in Fig. 9. A needle is located at an action
equal to the classical action of the associated closed orbit
or its repetitions. The height of a needle is equal to the
absolute square of the recurrence amplitude Dk„.

In experiments, the absorption rate would be measured
and the Fourier transform would be calculated over a
finite range. In our calculation, we use field-strength
ranges that could be obtained in the laboratory (i.e.,

0.1

-0.1 (')-
(h)

h

-0.3

h ic h

'J:

(d)

-0.5
0.0

I

10.0
I

20.0 30.0

lI 1 ~I

I

40.0 50.0

FIG. 9. Recurrence spectra (a) c= —0.0992, near 1/4 bifur-
cation; (b) c= —0. 198, near 1/3 bifurcation; (c) ~= —0.248,
near 2/5 bifurcation; (d) c= —0.455, near 1/2 bifurcation.
Each fixed s is a horizontal axis, and lDf it) l' is plotted on that
axis.

Eq. (3.11).]
In the preceding section, we explained that the orbits

closed at the nucleus fall into orderly patterns such that
each can be labeled by an unreduced fraction m /I. Let
S /1 T /1 and A /1 be the action, return time, and
semiclassical amplitude of the m /1 orbit. Since for large
I the orbits are approaching the unstable "ridge" orbit, it
is not hard to show that in a sequence with m fixed and l
increasing, the following relations hold at large I:

F= 1000—3000 V/cm and F= 8 —10 V/cm), as the limits

of the integral in the Fourier transformation. Let
w =F ' and combine the labels (k, n ) into a single la-

bel j for each recurrence. The Fourier transform

Df'(4)= J Df'e ' dw
w2 w)

(4.1)

leads to a formula similar to that derived in Ref. [5],

sin (ax, )
IDf (Z)l'= yD,'

+2+ ADDI
j 1(j

sin(ax )sin(ax& )

(ax )(axI}

where

Xcos{b(x,—xr )
—(4' —4')],

W2 Wi W2+ Wib=, x~=S —4,

(4.2)

S is given as nS for the nth repetition of the kth orbit.
The DJ's are given by (3.12), with F replaced by the aver-

age field for the assumed range of measurements. As a
result of the finite range of measurements, each re-
currence needle is spread out into a (sinx/x) peak, and
overlapping peaks combine coherently. The power spec-
tra are plotted for selected values of the scaled energy.
We put several figures together in an overlay form as
shown in Fig. 9.

Bifurcations are visible in the following way. Normal-
ly the recurrence amplitude of the parallel orbit is small,
but near the m/I bifurcation, the amplitude for the 1th
return of the parallel orbit has a dramatic increase. For
example, at c= —0.0992, we see a large peak on the
fourth return of the parallel orbit. This energy is close to
that of the 1/4 bifurcation in Table I. It is not surprising
that a large peak also appears on the eighth return of the
parallel orbit, for the parallel orbit is stable, and the new-

ly created orbit (1/4) is neutrally stable, so their repeti-
tions should also have an effect on the spectrum. At
c= —0. 198, there are large peaks at the third and fifth re-
turns, and an especially large peak at the eighth return.
Table I tells us that the 1/3 bifurcation has just hap-
pened, and the 2/5 bifurcation is about to happen. The
large peak corresponds to the 3/8 bifurcation, which hap-
pens at an energy higher than the 2/5 bifurcation and
very close to present energy. When c.= —0.248, we see a
huge peak on the fifth return and its repetition, the tenth
return. This energy is very close to the 2/5 bifurcation,
and the present semiclassical theory fails right on the bi-
furcation. The peaks on the fifth and tenth returns
should be very large, but not infinite. We will discuss this
in more detail in the next section.

If the absorption spectrum could be measured over a
sufficiently large range of W=F ', bifurcations would
also be visible in a second way. As c. decreases, new re-
currences are created, and, with sufficient resolution in 4,
they appear as distinct peaks. In the present calculation
the width of the peaks is too large for this to be visible.
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V. RESONANCE SPECTRA

A. Complex EBKM theory

In most spectroscopic experiments on atoms in electric
fields, the field F is fixed, and the photoabsorption rate is
measured as a function of photon energy. In theoretical
calculations, we would likewise fix F and seek energy ei-
genvalues. However, in an electric field, atomic states are
only quasibound, and they can be described by complex
eigenvalues E„=E„—iI „/2. These values can be deter-
mined by seeking solutions to the Schrodinger equation
subject to pure outgoing-wave boundary conditions [9].

Let us think for a moment about a complementary ex-
periment. Suppose we hold the photon energy fixed and
sweep the electric field. We would then want to know at
what values F„does the photoabsorption spectrum have
peaks, and what is the width of these peaks, AF„. For
this purpose we might seek complex values of F at which
the Schrodinger equation (for fixed real E) has solutions
which are purely outgoing [10].

In this paper, we are considering scaled-variable mea-
surements: the scaled energy c =E /F ' is to be held
fixed, and the parameter w =F ' is to be varied. The

fp„du =(n„+—,
' )2M,

fp, dv =(n, + —,')2M .
(5.1)

These formulas apply to bound states.
In Appendix B, we derive appropriate quantization

conditions for quasibound states in scaled variables. We
show that the outgoing-wave condition is satisfied for
values of w„obeying the two equations

associated theory therefore involves a fixed real scaled en-
ergy and complex w eigenvalues. We seek solutions to
the Schrodinger equation in (u, v) coordinates having
fixed c, and complex parameter w, and we locate eigenval-
ues w„=w„i—y„/2 at those complex values of w such
that the v factor in the wave function is purely outgoing.
By analogy with usual quantum resonance theory, we
claim that for real c and real w, the photoabsorption
spectrum will show peaks in bands of width y„around
each wn

We implement this idea using a semiclassical approxi-
mation. The usual EBKM theory tells us that discrete
quantum states correspond to "eigentrajectories, " or tori
on which the two action variables are quantized

w I +2e„+2eu —u du =(n„+ 2)vr, n„—=0, 1,2, . . . ,
0

' 1/2

a+ iP+ ——[P—P—ln( —P)]+ i ln —— I —+iP cosh(mP) = n„+—rr, n, =0, 1,2, . . . .
1. 1 1. 2 1 1

4 2 2 m 2 U

(5.2)

(5.3)

and

a(w, e„)=w J Q —2e„+4+2ev2+v4dv (5.4)

a and p are associated with the action integrals of the
well and barrier of v motion,

TABLE II. c.= —0. 179, near 1/3 bifurcation.

f= 4m 1n(—A ~(—l+, )/3 ~&}. S„„and k„„are the action and
Liapunov factor for the unstable orbit.

Sm/

m=1

nP(w, e„)=—w f +2e„—4 —2ev —v dv .
C

(5.5)

Using the method described in Appendix B, we used
these quantization conditions to calculate the positions
w„and widths y„of quasibound resonances at two values
of c, . The results are shown in Figs. 10(a) and 10(b) at
c = —0.447 and —0. 179. These scaled energies are close
to the 1/2 and 1/3 bifurcations.

13.968

18.606

23.235

27.863

32.490

4.638

4.629

4.628

4.627

188.072

72.255

31.623

14.408

6.648

3.826

3.305

3.144

3.094

B. The closed-orbit sum

At the same scaled energies, we have calculated the ab-
sorption spectra using the closed-orbit formula (Sec. IV).
We included all orbits with actions less than 16 times the
action of the parallel orbit.

Several things are clear from these calculations.
(1) The closed-orbit sum gives peaks at the same values

of w that are found by the complex EBKM method.
(2) The closed-orbit sum gives predictions about the

relative heights of peaks. The EBKM method can also
give such information (as can other methods), but addi-

10

32.578

37.212

41.842

46.470

51.098

m =2

4.634

4.630

4.628

4.628

S„„/2=4.627

80.189

51.092

33.524

22.361

15.054

3.606

3.371

3.240

3.165

k„„=3.077
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tional effort is required.
(3) As implemented here, the closed-orbit theory con-

tains no information about tunneling. Therefore it
should not give any reliable prediction of the widths of
the peaks. The widths 5w of the structures shown in
Figs. 10(a) and 10(b) are related to the largest-action or-
bits that are included in the sum, S „6w-2~. This
raises the question, how can we incorporate tunneling
into closed-orbit (or periodic-orbit) theory? Berry and
Mount [11] suggested that each time a PO approaches
the potential-energy barrier, there is a tunneling probabil-
ity and a reflection probability. Their argument suggest-
ed that incorporating this reflection probability into the
recurrence amplitude might give correct widths for the
levels.

(4) Sharp truncation of the closed-orbit sum at

S,„=16S~~ leaves spurious oscillations in the calculated
absorption spectrum. We can get rid of these oscillations

by using a gentle cutoff function for long orbits, but then
the important peaks would be wider. Another interesting
unsolved problem is can we approximately incorporate
the effects of long orbits to eliminate spurious oscillations
without loss of resolution? (One method was proposed in
Ref. [12], but that method applies only to certain model
systems having only unstable orbits. )

(5) This problem of long orbits is particularly challeng-
ing in the present implementation of the theory. The
semiclassical denominator in Eq. (3.12b) has zeros or
near-zeros at many values of n, leading to large high-
order terms in the expansion, dubious convergence, and
spurious short-wavelength oscillations.

We mentioned already that small denominators are
produced by the same classical frequency resonances that
produce bifurcations, and that at a bifurcation there is a
focusing effect. This is illustrated in Fig. 11 at
s= —0.397, which corresponds to the 1/2 bifurcation,
where we show that family of trajectories close to the
second return of the parallel orbit. The parallel orbit and
its neighbors were integrated in (u, u) space starting at
t =0 and ending shortly after the second return of the
parallel orbit. The family of returning orbits forms a
shape associated with a cusp catastrophe, with the point
of the cusp at the atom. At this value of c, the semiclassi-
cal approximation predicts an infinite recurrence ampli-
tude. There is a standard diffraction integral called a
Pearcey function [13,14] which gives the quantum wave
function in the vicinity of a cusp. This integral must be
modified so that it also incorporates the cylindrical sym-
metry of the present system. A full treatment will be
given in a future paper.

(6) In view of the above remarks, the closed-orbit cal-
culations describe one phenomenon with unexpected suc-
cess. As w decreases (and F=w increases), the reso-
nances calculated by the EBKM method get wider, espe-
cially for n„=2, 3. Eventually their widths became com-

(a) outgoing orbits (b) returning orbits

151.0
I

152.0 153.0
I

154.0
I

155.0

FICy. 10. Quantum resonance spectra —absorption vs
w=F ' at fixed scaled energy c=E/F' . (a) c= —0.447
near 1/2 bifurcation. (b) c.= —0.179, near 1/3 bifurcation. w is
dimensionless and is numerically equal to (electric field)
when the latter is measured in atomic units. In EBKM results,
narrow resonances are indicated by lines labeled by quantum
number (n„,n, ). Broad resonances are indicated by double
lines.

FIG. 11. Family of returning orbits near the second return of
the parallel orbit at the 1/2 bifurcation point, c= —0.447. (a)
Electrons go radially outward from the atom in every direction
around the positive u axis, which is directed upward. Later
they return past the atom moving downward, and go out the
negative u axis. (b) On the second return, they are moving up-
ward, and they form this cusp structure. Exactly at the bifurca-
tion energy, the point of the cusp is at the nucleus, and the semi-
classical formula for the recurrence strength diverges. For c
above the bifurcation energy, the point of the cusp is above the
atom, and only the parallel orbit touches the nucleus. For c.

below the bifurcation, the point of cusp is below the atom, and
three lines pass through the nucleus. A new periodic orbit has
been born.
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parable to the spacing between levels. At that point, one
can stop thinking about them as quasidiscrete levels, and
start thinking about them as part of the smooth back-
ground absorption. The corresponding peaks calculated
by the present version of closed-orbit theory cannot get
wider; however, their heights get smaller, and they do
fade into the background.

Finally let us bring out the complementarity between
resonance spectra and recurrence spectra. We explained
that large peaks in recurrence spectra arise from classical
frequency resonances between u and U motion. How do
these same classical frequency resonances manifest them-
selves in the quantum resonance spectrum? We know
that frequencies in classical mechanics correspond to en-

ergy gaps in quantum mechanics. The 1/2 and 1/3 clas-
sical resonances are visible in Fig. 10 in the sense that
spacing between successive n, levels is approximately 1/2
[Fig. 10(a)] or 1/3 [Fig. 10(b)] of the spacing between suc-
cessive n„ levels. Of course this means that in the re-
currence spectrum, the peak at 2T~~ or 3T~~ must be espe-
cially large. The quantitative description of the heights
of these peaks will come from the correct treatment of
the wave function at the focal point associated with the
bifurcation (Fig. 11).

VI. CONCLUSION

As stated in the Introduction, recurrence spectroscopy
is complementary to resonance spectroscopy in the same
sense that energy and time are complementary variables
in quantum mechanics. In principle, they carry the same
information. In practice, resonance spectroscopy natu-
rally emphasizes individual quantum states and absorp-
tion lines (the small-scale structure of the spectrum),
while recurrence spectroscopy naturally emphasizes early
recurrences, which describe the large-scale structure of
the resonance spectrum. Recurrence spectroscopy also
provides an alternative way of thinking about spectra, in
terms of closed orbits, classical frequency resonances, bi-
furcations, and focusing effects. It has been especially
useful for studying nonseparable systems having a high
density of states.

~pu Bun Bvn
pu ~

2svn
~

2"n
~PU0 PU0 PU0

Be,

Bp„

PUp (A3a)

11 3

2~Up 2UO . (A3b)

For any orbit that closes at the origin, U„=up=0, so
from (A2), (A3a), and (A3b), respectively, we have

PU =PU, (A4a)

and for all such orbits having p„AO (i.e., all but the
0

parallel orbit), from (A3a) and (A3b) we have

BpU

=+1,
Bp

(A4b)

Bp
=0.

BUo
(A4c)

The Jacobi matrix must have detJ(n)=1, so Bu„/Buo
must also be +1.

Moreover, since the winding rate decreases as p, in-
0

creases,

Bvn
sgn

B

Bp= —sgn
BpU

(A4d)

with a &0.
All orbits satisfy the conservation law (2.4), so at the

beginning and at the nth return,

—,'p, —duo —
—,'vo=e„(p„,vo),

(A2)
2 2 1 4

2Pu n Yun =eu(Pu, vO)
n 0

Differentiating the second of these with respect to either

p„ or vo
0
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APPENDIX A: STABILITY MATRIX

Here we consider closed orbits other than the parallel
orbit. First we prove that the Jacobi matrix of the map
at the nth closure of such a closed orbit has the form

BU„BU„
Bvo Bp ,

This establishes (Al). Also it shows that

J„TrJ(0. (A5)

Under this condition, according to (2.4c) of Ref. [8], the
additional contribution to the Maslov index v„ is (n —1).
Equation (2.4b) of that reference gives the same result.

Finally, from formula (Al), it is easy to prove (3.8) by
induction.

APPENDIX B: EBKM RESONANCE LEVELS

As explained in Sec. V, holding the scaled energy c.

fixed, we seek values of m=a„—iy„/2 such that there
exists a solution to the Schrodinger equation in which the
U equation has outgoing waves only.

J(n)=
BPU

BUp Bp

0 +1 (Al) 1. Quantization conditions

In scaled coordinates, the Schrodinger equation for an
atomic electron in the electric Geld is
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1 „1——z %=c%,
2l8 r

(Bl)

1 1 82%

u2 V2

1—24+ —(u —v )%=s(u +v )qj .
2

(B2)

The above differential equation is separable by the as-
sumption

qI=qI„(u)p, (u)e ' /v'uu (B3)

Hence with mr=0, the functions 4„and 4, must satisfy
the differential equations

where w=F ' . On writing the Laplacian operator in
parabolic coordinates u =+r +z, u =&r —z,
y =arctan(y /x ), and multiplying the equation by
(u + v ), Eq. (Cl) assumes the form

—1 1 0 0+ 1 0 0+
u + v

u Bu Bu v t)u Bu

not arise in the classical equation of motion. When we
use a semiclassical approximation to construct the wave
functions, we should not include those terms. The WKB
approximation to the solution to (B4) and (BS) is inaccu-
rate near u=0 or v=O. Following the idea of Laager
[15,16], we should change variables to x =lnu, and then

apply the WKB approximation to the resulting equation.
The effect of this transformation is to "erase" the singu-
lar terms from semiclassical formulas.

When this is done, the action integral associated with u

motion has the form f+2e„+2su —u du. To get the

quantization condition we use the following argument.
The coordinates (u, v) are originally defined to be posi-
tive. A "cycle" of u motion starts at u =0, goes to a
turning point at positive u, and returns to u =0, where
the Inomentum p„ is reflected, so that u remains positive.
The line u =0 is the positive z axis, and on this axis the
wave function has a focus. We have shown elsewhere
that in each return to u =0, the Maslov index increases
by 1. Accordingly, we should treat u =0 as an ordinary
turning point. Then the u-quantization condition is

1

2N

1 1+cu ——u 4„=e„%'„,2 4

Sm u 2
(B4)

gp„du =2f [2e„+2su —u ]du = n„+—

1

2N

2 1 4
2

2+Ev'+ —v' q'. =e.q',
sw2v2 2 U v u (BS)

where e, +e„=2. Here the parameter 1/w is analogous
to A in the normal Schrodinger equation.

The singular terms (
—1/8w u ) and ( —1/8w v ) do

n„=0, 1,2, . . . . (B6)

a is the zero of the integrand
The v motion has a barrier. We apply the same argu-

ments at v =0, but we apply an "outgoing-wave only"
boundary condition at large u. Then the complex semi-
classical quantization condition is [17,18]

' 1/21. 1 1. 2 1 1a+ iPrr ——[P—P—ln( —P)]+ i ln —— I —+iP cosh(mP) = n, +—rr, n, =0, 1,2, . . . ,4 2 2 ~ 2 2
(B7)

a(w, e„)=wI Q4 —2e„+2su +u4du,
0

(B8)

where a(w, e„) is the action integral associated with the
well,

(n„+—,
' )m.

w =w(e„)=
2e„+2cu —u du

0

(B10)

and harp(w, e„) is the one for the barrier,

rrP(w, e„)= —w +2e„—4—2su —v dv . (B9)

In Eqs. (B8) and (B9) c(e„), d(e„) are ( in general com-
plex) zeros of the integrands; when real they are the clas-
sical turning points.

2. Calculations

Our parameter w is related to e„ in a very simple
manner through (B6),

On plugging this formula for w(e„) into (B8) and (B9),
the integrals a(w(e„),e„) and p(w(e„), e„) become func-
tions of the single variable e„. Using these functions, Eq.
(B7) is a quantization condition to determine e„. It can
be written in the form F(e„)=0, and it can be solved
by a complex-plane extension of the Newton-Raphson
method.

Once e„ is determined by this method, we put it back
into (B10) to obtain the complex eigenvalues w„. Results
are shown in Fig. 10.
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