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Recurrence spectroscopy: Observation and interpretation of large-scale structure
in the absorption spectra of atoms in magnetic fields
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Measurements were made of the absorption spectrum of hydrogen atoms to levels near the ionization

threshold in a strong magnetic field. Taking advantage of a classical scaling law, we varied the photon

energy and the magnetic-field strength simultaneously, and measured absorption versus B ' ' at fixed

scaled energy, c.=E/(B/B, ) '. The absorption rate has sinusoidal fiuctuatpons which are correlated
with closed classical orbits of the electron. Fourier transformation of this signal gives peaks, which we

interpret as "recurrence strength, " as a function of the classical action of the closed orbit. Closed-orbit

theory gives formulas for these recurrence strengths. We find that the formulas are in good agreement
with the measurements. As the scaled energy is increased, observed recurrences proliferate, consistent
with a change from orderly to chaotic motion of the electron. Bifurcation theory provides organizing

principles for understanding this proliferation and for interpreting the data. New "exotic" orbits sud-

denly appear through saddle-node bifurcations. The "main sequence" of orbits is produced from an or-

bit parallel to B through a. sequence of pitchfork and period-doubling bifurcations. Other recurrences
are created by period-tripling and higher-order bifurcations of existing orbits. These bifurcations can
have "generic" structure, or sometimes the structures are modified by symmetries of the system. Focus-
ing effects associated with these bifurcations cause some recurrences to be particularly strong.

PACS number(s): 32.60.+i, 32.80.—t, 05.45.+b, 32.70.Cs

Large-scale structures in absorption spectra—
structures that involve the collective e6ect of many indi-
vidual absorption lines —contain significant physical in-
formation about the system. Such structures can now be
calculated directly, without first calculating all the indivi-
dual lines. The Garton-Tomkins oscillations that are
found in absorption spectra of atoms in magnetic fields

[1] constitute one such large-scale structure, and, as was
pointed out by Edmonds, this structure is correlated with
a periodic orbit of the electron moving under combined
Coulomb and Lorentz forces. Later, improved measure-
ments showed that this structure contains multiple oscil-
lations [2], and this observation stimulated the develop-
ment of the theoretical interpretation. A "closed-orbit
theory" was created to calculate the absorption spectrum
[3], and the earlier "periodic-orbit theory" was used to
calculate the oscillatory part of the density of states [4].

Soon afterwards [5—8], large-scale structures were
identified in absorption spectra of ozone, H3+, acetylene,
and C2H. In every case the structure is correlated with a
recurrence in the system —a classical orbit (or a quantum
wave packet) that propagates away from and then returns
to some initial location. Each recurrence produces a
sinusoidal oscillation A sin(TE/8+6) in the absorption
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rate and the density of states, where T is the recurrence
time (or return time of the orbit). Short orbits produce
large-scale structures (long wavelengths on the energy
axis) and successively longer orbits produce finer struc-
tures. Hypothetically, if recurrences up to infinite time
could be calculated, and if the sum over all these re-
currences were to converge, then the full set of periodic
orbits could be used to calculate the full energy spectrum
to any level of resolution. Whether or not this proves to
be practical, we know that at least the large-scale struc-
tures can be calculated from short-time recurrences.
Moreover, since all recurrences are necessarily contained
in the time propagator K(q, q', t), it follows that the asso-
ciated sinusoidal oscillations are contained in the energy
Green function GE(q, q'), and therefore that such struc-
ture will be manifested in all quantum properties of the
system.

The development of the scaled-variables technique [9]
for measuring the absorption spectrum of an atom in a
magnetic field (varying the proton energy and the mag-
netic field simultaneously to keep the scaled energy fixed)
permits us to observe the structures associated with re-
currences with unprecedented precision and detail.
These observations stimulated theoretical work leading to
a new level of interpretation —classical bifurcation
theory was used to interpret the multiplication and pro-
liferation of periodic orbits and their associated re-
currences [10].

In this paper we present a fu11 report of these measure-
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ments, and we show how bifurcation theory combined
with closed-orbit theory provides organizing principles
for interpreting the observations, as mell as quantitative
methods for computing the effects of recurrences.

I. EXPERIMENTAL METHOD

In the experiment, hydrogen atoms are excited at the
center of the magnetic field in a crossed atom/laser-beam
arrangement. The experimental setup is shown in Fig. 1.
The excitation is performed in two steps by tunable

pulsed radiation (pulse length —16 ns) linearly polarized

parallel to the field axis. %ith the first step at the
Lyman-a wavelength around 1216 A [vacuum ultraviolet

(vuv) laser beam] the
~
1s,mg=0 ) ground state is excited

to the 2p, m'=0) intermediate state. At the magnetic-

field strengths employed (2 T B ~ 6 T} this transition is

fully governed by the Paschen-Back effect. From the in-

termediate state, Balmer spectra with even parity and
magnetic quantum number m ~=0 are excited with
pulsed laser radiation in the ultraviolet (uv laser beam).
The beam intersection point is located between two Hat,
parallel, fine-mesh grid electrodes (8 mm apart) with their
surfaces perpendicular to the magnetic-field axis. These
electrodes shield electric fields from the excitation region.
A third electrode located 30 mm behind the second grid
is kept at a high voltage (+25 kV). Highly excited Ryd-
berg atoms are ionized by the electric field between the
second and third electrode. The accelerated electrons are
monitored by a detector system composed of a scintilla-
tor, plastic fiber, and photomultiplier.

On the basis of the scaling property of the Hamiltonian
derived in the following section, we have developed and
applied the technique of scaled-variable spectroscopy.
According to the relations e =E /(B /B, ) and
w =2m(B, /B)'~, spectra are taken in the (E,B) plane
on lines of 8=const. The magnetic field is varied in fixed
steps of w, adjusting simultaneously E (via the uv laser

= signal

photo multiplier

plastic fiber

wavelength) such that the scaled energy E was kept at a
given value c &. This procedure is repeated successively at
other scaled energies 82, c.3, and so on in steps hz=0. 05
or even Ac. =0.01. The range from c= —0.5 to +0.02
was thus covered, which includes the transition regime
from regular to chaotic classical motion through the ion-

ization limit (c,=O) into the continuum (E)0).
The quality of the experimental scaled-variable spectra

is determined by the bandwidth of the uv laser (5v= 1

GHz) and the absolute accuracy of the varied energy
(5E = 1 cm '} and the magnetic-field strength (5B =0.01
T). From these errors the absolute accuracy of the scaled
variables is estimated to be 5w =0.25 and 5E =0.005.

II. OSCILLATOR-STRENGTH DENSITY
AND ABSORPTION RATE

A. Formulas from closed-orbit theory

The rate of production of atoms in excited states or the
rate of ionization, dN/dt, is related to the average
oscillator-strength density Df(E,B ) by the formula

dN 2nDf (E,B )

dt c ' ' F. —F.;

The average oscillator-strength density can be written

as a combination of a smooth background term and a set
of sinusoidal oscillations,

Df(E,B)=Df,(E)+g g gI, Cp (E,B)sin[5k(E, B)] .
n k

(2)

The smooth background term Df, is the oscillator-

strength density which would exist if there were no mag-

netic field. Over the energy range considered in this ex-

periment it is practically constant. Each oscillatory term

arises from an interference pattern connected with a
closed orbit of the electron. Each orbit is labeled by the
index k, and the repetitions of each orbit are labeled by n.
We call Ck(E, B) and hk(E, B), respectively, the "spec-

tral oscillation amplitude and phase, " or the "recurrence
amplitude and phase. " The recurrence amplitude for the

nth repetition of the kth classical orbit is given in atomic
units by the formula

(X)

~ scintillotor
3

VUV~ laser beam

(3)

ak(E, B ) =sk ——p, ", —
(4)

Ck(E, B ) = (E —E. )2'9 ~ 2(sing"singk, n)'~~

X r. "4A "1'(e")1"(e"")

C"(E,B ) =(E—~, )2 ' A "Y(0,- =0)Y*(OI=0),
while the phase for that orbit is

UV
loser beam

B field

atomic beam

FIG. 1. The experimental arrangement.

b "(E B)=S"——p,
"——

0 0 2 0

The subscript k =0 refers to the orbit which is parallel to
the direction of the applied magnetic field, 0;=0&=0.
The detailed derivation of Eqs. (2}—(4) is given in Refs.
[3] and [11]. We give here only a brief explanation.
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The classical orbits are started on an initial spherical
surface at the point specified by ro and 8,", and the kth or-
bit returns for the nth time to the initial surface at ro
with a final angle 8f'". The amplitude of the returning
semiclassical wave associated with this orbit, Ak, is

dek, " dgo
An f AnAk, Ao (5)

where the derivatives are evaluated on the final circle of
radius r, . The products r, '

Ak and r, ' Ao are in-

dependent of r, as r, approaches zero. We often call Ak
the "classical amplitude;" its square is the classical densi-

ty associated with the family of neighbors of the kth
closed orbit [3].

The coefficient gk is a statistical weight. For every or-
bit which goes out with 0&8; &90', there is another
equivalent orbit that goes out with 90'& 8; ~ 180'. There-
fore all orbits have statistical weight gk =2, except for the
90' orbit, which has a weight gk = 1. Then the sum in Eq.
(2) includes all orbits that begin in the first quadrant.

The phase of the oscillations in the oscillator-strength
density is set by b k(E,B ), Eq. (4), which contains the
classical action of each closed orbit,

Sk (E,B ) =n It}p 1q, So (E ) =n m &2/ E, —(6)

The Hamiltonian in cylindrical coordinates is

2 2 BH= —(p +p)—,+ p(p+z ) 8c

where the integral is the action for the first closure of the
classical orbit. It is integrated all the way around the tra-
jectory, from r =0 to 0. This integral is simple to evalu-
ate for the parallel orbit. The other contribution to the
phase is the Maslov index pk(E, B). It is an integer,
equal to the number of caustics and foci encountered by
the trajectory. The amplitude Ak and the Maslov index

pk for the nth return can be calculated from the proper-
ties of the orbit on its first return [12].

Finally, the shape of the outgoing wave associated with
the kth trajectory is contained in the factors Y(6}),which
contain the dipole operator and the initial-state wave
functions [3].

B. Scaled-variable spectroscopy

1 p p 1

2+ 2)1/2

At any fixed scaled energy, the size and period of each
closed orbit still depend on B according to Eqs. (9). We
define the scaled action for any orbit to be

1/3

Sk(e) = Sk(E,B )

(the factor of I /n is an arbitrary convention that was
used in Ref. [9]). It follows that at any fixed scaled ener-

gy, the action changes with B according to

Sk(E,B )=Sk(e)w,

where

w =2%/ =2K—1/3

B

' 1/3

(13)

(14)

Let us now examine the consequences of the above
scaling law for the rate of absorption of photons. That
rate is a smooth background, (dN/dt ), related to Df„
plus an oscillatory contribution from each closed orbit.
It is convenient to define a reduced absorption rate

R(w;e)=— y
c 1/6 dr

2m I,X;

dX
dt

(15)

Applying successively Eqs. (1)—(4) to this expression we
find that this reduced absorption rate is given by the for-
mula

R(w'e)=y dN
dt ps& 27T IpN,

Df, (w;e)=r '"
(E E;)—

Since the scaled Hamiltonian contains no parameters, the
shapes of the trajectories depend only on the value of the
scaled energy,

E —2/3

The shapes of the classical orbits do not depend on E and
B separately, but only on the combination EB l (this
combination measures the ratio of the Kepler period to
the cyclotron period). Let us define the parameter

B [B (tesla)]
2.35X 10'

where

=g(2~)' w ' Do(e)sin[ho(w;E)]

+g g Dk(E)sin[5„"(w;e)],
n k

(16)

and defined scaled variables

y2/3
2

P =PI
(9)

Ck(E, B )
Dk ( E ) =y' "gk—

(E E,)—
—

g 2 l4 l2( Pc gc, n)I /2.
i f

(17)
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Co(E,B)
Do(E)—:y '"go

I

=go2 sr[(2r, )
'/ A o(E) ]Y(8;=0)Y'(0~ =0),

b, k(r. ) =Sk(E)w ——1Mk(s)—

bo(E)=So(E)w ——po(s) ——.

The phases b, k ( w;e ) are linear functions of w; the propor-
tionality constant is the scaled action, Sk(e), which de-

pends on c but which is independent of w. Similarly the
reduced amplitudes Dk(e) and Do(e) are independent of
w. To see this, we note that the transformation to scaled
variables, Eq. (9), leaves the angles unchanged; therefore
the initial and final angles 8,", 8&'" as well as the deriva-
tives ~d 8& "/d 8, ~

are independent of w at fixed e. Only
the boundary radius r, must be scaled, and the factors

y
'/ and y

'/ in Eqs. (15) and (17) were put into the
definitions so that this dependence would be canceled.

It follows from Eq. (16) that at any fixed scaled energy
each closed orbit having 8, %0 contributes to the reduced
absorption rate R (w;s) a perfectly sinusoidal function of
w having fixed wavelength and fixed amplitude. The 0'
orbit contributes a sinusoidal oscillation having an ampli-
tude that varies as w

' at fixed e (over the range of the
present experiment w ' can be replaced by its average
value).

The reduced absorption rate R ( w; e ) in Eq. (15) is

measurable at fixed c by varying the photon energy and
the magnetic-field strength simultaneously. In Fig. 2 we
show an experimental absorption spectrum taken at fixed
scaled energy c= —0.23. The dark line is the same ex-
perimental spectrum smoothed by a Gaussian profile.
Figure 3 shows the same smoothed experimental spec-
trum, minus the background, and it shows the theoretical
spectrum calculated by including all classical orbits and

their repetitions with scaled actions less than S=5 (about
70 orbits of which 20 dominate). In theory the sum over
all orbits and repetitions might reproduce the experimen-
tal spectrum to a high level of resolution. The truncated
sum (Sk ~ 5) should reproduce the large-scale structure
of the spectrum.

The theory gives absolute absorption rates, but the
measurement gives relative rates. In Fig. 3 we adjusted
the scale of the experimentally measured oscillations so
they would be comparable in magnitude to the theoreti-
cal ones.

Finally, the arbitrary initial radius r, or r, can be elirn-
inated from the formulas by making use of semiparabolic
coordinates,

Z=Q V

dr 1

dt 49(t )

111 = —,'(p„'+p„')—4E(u'+u')+Su'u2(u2+u2)=2 .

(19)

8, OI=y' 2 cos —cos - J,2(k, n )

and

—yl/6~2 / J (k n)~
1/2

—1/2 g n 1/3(2~ —1/2
) g n"o 0=X I o 0

=y'/ ~2 J,2(0, n)

1/3i2 —1/2J (0 n )i
—1

(20)

(21)

where J,2 is an element of the derivative matrix of the
(p„u) map,

These coordinates allow the trajectories to pass through
the origin as straight lines. One can show [12) that

—1/4g n 1/6(2~ )
—1/4g n

4.0 6,0

C
3.0-

rt)

0$L

t2

O
N

2.0 $

„'IIII jg~II[&j hII' 'III I[ps III j(jI IIII'IIIIjlI'jjIIIIIIIPII II

-1.0 L

213.0 223.0 233.0 243.0 253.0 263.0 273.0 -6.0
213.0

,
j j,f jj

V 1

223.0 233.0 243.0 253.0 263.0 273.0

FIG. 2. The absorption rate measured at a constant scaled

energy as a function of the field-strength parameter iL). The

range of the parameter is equivalent to varying the magnetic

field from about 6.0 to 2.7 T from the left-hand side of the figure

to the right-hand side. The fine line shows the original data

from the experiment, while the thick line shows the same exper-

imental data smoothed by a Gaussian profile to emphasize the

large-scale structures. The width of the profile was chosen to
eliminate structure corresponding to S ~ 5.

FIG. 3. The thick line is the same smoothed experimental ab-

sorption spectrum shown in Fig. 2, and the fine line is the
theoretical absorption spectrum calculated by coherently sum-

rning the contributions of about 70 closed orbits whose scaled

actions are less than or equal to 5. The average background has

been subtracted from the experimental spectrum and the magni-

tude of the oscillations has been scaled to be comparable with

the theoretical oscillations.
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t)vfJt2=
~ (22)

and J is the semiclassical Jacobian in (u, v ) space:QU

B(u, v } r)(u, v )

a(r, e, ) a(r, e, /2)
(23)

~ ~

Either quantity, J12 or J„„is to be evaluated at the ong1n
u=0, U=O on the nth return of the kth closed orbit.
Each is smooth near the origin, and has a finite limit as
R =(u +v )' ~0. Formulas analogous to these were
first developed by Bogomolnyi [13,12].

C The Fourier transform of the scaled-variable spectrum

R(S;e)—=PR(w;s)

Since R(w;s) consists of sinusoidal oscillations, a
Fourier transform of the absorption rate with respect to
the conjugate variables S and w gives peaks at the re-
duced actions of each orbit. The width of the peaks is set
by the range of iv (the range of variation of the magnetic
field strength at fixed scaled energy).

Let us define

In a hypot et1ca i eh 1 d al experiment, measurements
r eran eofwld be carried out over a suSciently large range o wwou e ca

we find both well-that all peaks are isolated. In reahty we n
served eaks in

h F '
transform of the measured absorption spec-the Fourier rans o

trum may ccorrespond to a single close or i, or
or man such or-coherent superposition of two, several, or many suc

bits.
In Fig. 4(a) we show a needle graph represen gentin the

[D"(s)
~

vs S"(e,) for e= —0.23; these are the
h otheticalwei hts of the peaks that would arise in the ypo e ica

Lf the 8=0 orbit the relevantideal experiment or e
coeScient is (2m/b)' Do(s)~ ]. We also show the
t core ica
the absolute square of the Fourier transform, p
s ectrum" . We call Dk(s) and (2'/b)' Do(e) the
"scaled recurrence amphtudes,
squares, or ~R (S;s)~, the "recurrence strength. "

In Fig. 4(b} the experimental power spectrum is com-
pared to the smoothed theoretical power spectrum.
Henceforth we call such graphs "recurrence spectra. "
The two power spectra agree well exc pe t for an underesti-

of the closedmate of the amplitude of the coherent sum o

Etwas
W2

—
W1 w1

(24) 30.0

25.o—
From Eq. (16), evaluating the transform and neglecting
terms of order ( w, —

w2 ) /( w, +wz ), we find 20.0—

2aR(S;s)= —.
i „b

' 1/2

Do(s)

0

''0 15.o—
CC

10.0—

n
/2)& ~/2] SlnLQx 0 jXe 0

naxo

'[&&k —[ /2']pk —3 /4]+y yDk(s)e
n k

sin[axk ]

QXk
(25)

5.0—

0.0
0.0

30.0

0 (b)

1.0 2.0 3.0 4.0 5.0

where we use the definitions 20.0

W2 W1
(26)

'~ 15O-
CC

C)
10.0

W2+W1b=
2

In the Fourier-transformed spectrum, eac..cloh closed orbit
produces a peak of the form sin(axk )/xk centered at the
action of the returning orbit. If there are two or more or-
bits having nearly equal actions, then the peaks combine
coherently —they may add or cancel, depending on the

25)rea ive p al t' hases of the exponential factors in Eq.
k=0expi[bxk (n/2)pk P—k] (with Pk equ—al to rr/2,

or 3m /4, k&0).

5.0—

0.0 1.0 2.0 3.0 4.0 5.0

FIG. 4. (a) Needles represent ~Dk(e)~ or 2n/b~DO(e)~, the.
recurrence strengths of individual orbits. The smooth line is the
theoretical ~R(S;e)~, Eq. (25). The needles are smoothed and
corn me o imib d t imitate the finite range of the measured Fourier
transform. (b) Recurrence strength ~R(S;e)~ at
Fine line: theory [same as (a)]. Heavy line: experiment.
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orbits leading to the large peak near S=3.
In comparing theory with experiment we take into ac-

count the fact that large-action and long-period orbits are
somewhat more difficult to detect experimentally than
small-action, short-period orbits. The theoretical results
are therefore modified by a "cutoff" factor discussed in
Appendixes A and B.

III. THEORY CONFRONTS EXPERIMENT

A. The global picture

Measurements of the absorption spectrum were made
at 24 different fixed values of scaled energy c. with the
magnetic field varied between 6.0 and 2.7 T (correspond-
ing to a range of w from 213 to 277). The resulting
Fourier transforms of the measured absorption spectra at
each scaled energy are shown as a single graph in Fig. 5.
The theoretical recurrence spectra from closed-orbit
theory are presented as Fourier transforms in Fig. 6(a)
and as needle graphs in Fig. 6(b). The most striking
feature of these graphs is the clustering of the peaks of

the transformed spectra into distinct groups at low ener-
gy, and the proliferation of peaks as the scaled energy in-
creases.

The behavior at low energy is easy to understand. At
very low energies (E ~ —1), almost all of the trajectories
are regular (multiply periodic). Pictures of such orbits
were shown in Figs. 3(a) and 3(b) of Ref. [14]. Each regu-
lar orbit can be regarded as a Kepler ellipse with periodi-
cally varying orbital parameters, so each such orbit has
two fundamental frequencies. One is near to the Kepler
frequency, Q)-—1/2n, and represents the frequency of
the motion of the electron around the ellipse. The other
frequency 02 is much lower, and represents the frequency
of periodic variation of the orbital parameters. These
two frequencies are continuous functions of their conju-
gate action variables, which are conserved on each trajec-
tory.

The regular orbits form themselves into three families
[14]. One family is centered on the p axis (rotators),
while the other two are centered on the +z axes (vibra-
tors). Within each family of multiply periodic orbits,
periodic orbits are embedded: whenever the ratio of fre-
quencies Q2/fl, is a rational number, i /j, then the orbit

r nce stren ths) at each scaled energy are drawn in a single grap .a h. The follow-FIG. 5. Experimental ~(Fourier transforms)
~

(recurrence s reng s
lowest-action eak results from an orbit that lies perpendicular to t e magne ic eing structures will be explained. (1) The lowest-action pea resu

uent returns of this orbit. (2) The curved linere resent the action vs energy for the first return and subsequent returns o t is or i .nearly vertical lines represen e a
field. (3) A new peak appearing "out of nowhere" istion vs ener of the orbit that lies parallel to the magnetic e . new

n that " " (F' 7—9) (4) A fo using effect gives a strong recurrence at thepn that roduces an "exotic" orbit Figs.
1 r orbit and a ain, (5) at the fourth return (Figs. 11 andsecond return of the perpendicular orbi an ag

p
'

( ) d 20]. (7) The second mountain rangethat bifurcate from the parallel orbit [Figs. 19~a anduced by the "main sequence' of orbits that bi urea p
1 from the orbit shown in Fig.and 23. (8) In particular, this large peak arises main y rom e or i

19(c1) (see also Fig. . e s. 22). (9) The shoulder on this peak arises from the orbit shown in Fig. 19 e see a so ig.
n in Fi . 25. Of these peaks, the midd e one is pro uce yp, h ddl oduced by a generic period tripling of the bal-p ' g- . p

loon orbit 8& [Fig. 19(a)]. (10) This prominent peak is also shown in Fig. 25. It is produce y a c us er o

period tripling of the first snake orbit S, [Fig. 19(a)].
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is periodic and has frequency iO&=j02. Most such
periods are very long: they are a usually large multiple of
2n. /02, which itself goes to infinity as e becomes large
and negative.

However, there remain four short-period orbits even at
large negative c: one that moves on the p axis, two that
move on the +z axes, and one that approaches a circle in
the p-z plane. Of all the orbits that exist at any given
scaled energy, the present experiment gives a signal [a
peak in R(S;s)] for the relatively short orbits that begin
and end at the nucleus. Accordingly, we expect a peak at

actions corresponding to the orbits on the p axis and on
the +z axis.

At e = —0.3, the orbit on the p axis (the perpendicular
orbit) has scaled action S=0.975. A small peak is plain-
ly visible there (actually it is a large peak, but it is small
compared to some of the others). Peaks at actions corre-
sponding to subsequent returns of this orbit to the nu-
cleus are also visible in Fig. 5 at S=1.95, 2.91 (barely
visible at this scale), and at 3.9 (combined with other or-
bits).

At this value of s, the orbits on the +z axes (the paral-
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FIG. 6. (a) Theoretical
t(Fourier transforms)

~

(re-
currence strengths) at each
scaled energy are drawn in a sin-

gle graph. The transforms are
scaled by a linear function of
scaled energy so that the peaks
at low energies do not obscure
the peaks at higher energies.
Excessively large peaks from
nearly resonant recurrences
where the semiclassical ampli-
tude is singular have been arbi-
trarily cut off. (b) Theoretical
recurrence strengths for each
scaled energy as a three-
dimensional needle graph. For
each scaled energy c. a needle is
placed at the scaled action of a
particular orbit of the electron.
The height of each needle is the
recurrence strength ~D„"(s)~'.

The connection between these
classical orbits and the peaks
measured and shown in Fig. 5 is
clearly visible. All needles are
multiplied by the same linear
function of scaled energy.
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lel orbits) have scaled actions equal to 1.291, and we can

that the amplitude Dk(E) associated with this orbit is

quite small, and detectable only at significantly lower

values of c. As we will explain below, the observed peaks
result from orbits that bifurcate out of the 0' orbit an
have nearly the same action.

As the scaled energy c. is increased, we see that the in-
dividual peaks split into mountain ranges. In the under-
1 ing classical dynamics order changes to chaos as c. in-y
creases. Whereas regular systems have simple, orderly
families of closed orbits, chaotic systems possess many
closed orbits. General arguments give a rule for the num-

ber of periodic orbits of a given length that may appear:
in a typical regular system the number of periodic orbits
having action less than S,„ increases as a power of S,„,
as S,„ in our case; however, in a typical chaotic system
the number increases exponentially with S „.'

h S . There-
fore, as c. increases and order changes to chaos, periodic
orbits must proliferate.

Where do new periodic orbits come from? Some bifur-
cate out of the parallel and perpendicular orbits; others
bifurcate out of these new orbits; still others appear "out
of nowhere, " in stable-unstable pairs.

A general theory has been developed that describes the
types of bifurcations that typically occur in a Hamiltoni-
an system [15]. This theory asserts that typical bifurca-
tions can be classified into five basic families —we call
them saddle-node, period-doubling, touch-and-go (two

types), and island-chain bifurcations. In our system, as a
result of symmetries, the structures of some of the bifur-
cations are modified, and another type —a pitchfork
bifurcation —also appears.

This classification scheme and its application to our
system have been described in Ref. [10]. In this paper we

show how those various bifurcations manifest themselves
in the experimental measurements.

We examine first the saddle-node bifurcations, then bi-

furcations from the perpendicular orbit, then those from
the parallel orbit.

X,

L

FIG. 7. The clearest example of an "exotic" orbit is the pair
of orbits designated as X&. The heavier line highlights the un-

stable member of the pair, which lies slightly closer to the z axis
than the originally stable member, which is shown in a finer
line. Both orbits have nearly the same action and both contrib-
ute to the peak seen in the measurements at scaled energy
c= —0.11. Another exotic orbit of interest is the pair of orbits
designated X,. They are symmetric with respect to the z=0
plane unlike the exotic L& {this leads to different bifurcation
behavior). As before, the originally unstable orbit is the heavy
line, the originally stable orbit is the lighter line.

F' 8 hows the theoretical behavior of the semi-
chclassically calculated amplitudes Ai", (e) for each branc

as a function of scaled energy. In our semiclassical for-
1 the amplitude Ak(E) at the bifurcation energy ismu as, e amp

infinite, and then it decreases as c —cb'f U

quantum theory of this bifurcation is being developed.

B. Saddle-node bifurcations and exotic orbits

Isolated orbits which do not bifurcate from the parallel
or perpendicular orbits (or from their progeny) have been
designated "exotics," and have been denoted by
X X X . . . . Because they may be born with actionsl~ 2~ 3~

lying in the gaps between the major sequences, the exotics
often have clear signatures which can be seen in relative
isolation in the experiment.

Each exotic, such as X& shown in Fig. 7, is actually a
pair of orbits, one stable and one unstable, which appears
by saddle-node bifurcation [16]. This one occurs at a
scaled energy o c=—1 d f = —0. 1154423. A surface of section
shows the creation of both a stable and an unstable closed
orbit at this energy [10]. In general, the Maslov indices
of the two orbits must differ by 1; in this case, the Maslov
index for the first closure of the initially stable branch is

6, while the Maslov index of the unstable branch is 7.
Both branches of X, continue to higher energies, and at a
scaled energy of c= —0. 1154265, the stable orbit also
goes unstable.

0.7
I
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0.5

0.4

0.3

0.2

-0.090
I00

-0.3 20 -0.1 1 0 -0.1 00 -0.080
F

FIG. 8. The amplitudes for both the originally stable and un-

stable XI orbits are shown together as a function of the scaled
energy. As before, the thick line is the originally unstable orbit
while the thin line is the originally stable orbit.
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The quantum theory must give a finite result at all values
of c and we expect that it will also give a small but
nonzero amplitude slightly below the bifurcation energy
[17].

The appearance of a new peak "out of nowhere" is evi-
dent in Fig. 5 at c.= —0. 12, S=2.6. This is shown in
more detail in Fig. 9.

One more interesting aspect of this bifurcation is visi-
ble in Fig. 9. In the experimental measurements, a peak
seemingly associated with the exotic X, is already visible
at c= —0. 12, just below the bifurcation. We would be
delighted to attribute this to a kind of quantum tunneling
effect: the new pair of orbits makes itself visible in the
quantum system before it manifests itself in the classical
system. However, experimental uncertainties in the pho-
ton energy and the magnetic-field strength would provide

the same effect, so the measurements must be reexamined
before this interpretation can be accepted.

The exotic X5, Fig. 7, is also clearly seen in both theory
and experiment as a new isolated peak. X5 is also born as
a stable-unstable pair at a scaled energy c= —0. 18057
with scaled action near S=3.85, Fig. 5.

Many more exotic orbits are found in calculations and
indeed many of them can be sorted into orderly se-
quences. They are all born by saddle-node bifurcations,
as stable-unstable pairs. At the bifurcation energy, both
the stable and unstable orbits have identical periods and
actions, and the periods and actions move apart as the
scaled energy increases above the bifurcation point. The
classical amplitude for each orbit is infinite at the bifurca-
tion energy, drops rapidly with increasing energy just
above the bifurcation, then levels off. The amplitude for
either the stable or unstable branch may increase again
for some values of the scaled energy far from the original
bifurcation (we will show an example later). The ampli-
tudes for the two orbits of a pair are comparable but not
equal, as was seen in Fig. 8. In the experimental mea-
surements, a few of these other exotics are visible, but in
some cases the peaks are barely above the "noise" level of
the experimental transform, and in others the exotics are
masked by other peaks nearby.

I iiL
2.0 2.5 3.0 2.0 2.5 3.0

3.0 8= -0.12

0.0
2.0 2.5 3.0 2.0 2.5 3.0

8= -0.13

2.0 2.5
S

3.0 2.0 2.5 3.0

FIG. 9. The saddle-node bifurcation of X& in more detail.
The four pictures on the right compare the experimental re-
currence strengths ~R(S;e)~ with theoretical needle graphs,
while those on the left compare the experiment (heavy) with
smoothed theoretical curves (light). In the theory the two newly
created exotic orbits X& produce a new pair of needles or a new

peak at e = —0. 11,1=2.6. In the experiment at the lowest en-

ergy c,= —0. 13, there is a small bump, but this is comparable to
the "background" hills that appear in all of the measured
Fourier transforms. At the higher energies, e= —0.10 and
—0.11, the new large peak is visible. At c=—0. 12, the new

peak is present in the experiment before it appears in the theory
(see discussion in text).

C. The perpendicular orbit

The first closure of the perpendicular orbit is called R &,

and its subsequent closures are called R„. R
&

is the dom-
inant feature of the Fourier spectrum at scaled energy
equal to zero. It is the orbit with the shortest period and
action, both of which vary only slowly over the total
range of scaled energy examined. It is one of the two fun-
damental closed orbits which remain in the low-energy
limit, and the oscillations associated with this orbit were
the first ones that were seen in the original experiments of
Garton and Tomkins ("quasi-Landau oscillations").

Figure 5 seems to show the rapid disappearance of this
peak as the energy is lowered. This apparent disappear-
ance of R

&
in the experiment is an artifact of the relative

normalizations used to draw Fig. 5. The amplitude of R
&

actually increases slowly with decreasing scaled energy,
but there are other much larger peaks in the spectrum at
lower scaled energy. Since the experimental Fourier
transforms were normalized so that the highest peaks at
each scaled energy were of comparable height, the ampli-
tude associated with R j was pushed into the background.

This orbit is stable below c= —0. 12727 and unstable
above this point. This change of stability produces an in-
teresting effect that is visible in the measurements.

For unstable orbits, the amplitude associated with the
nth repetition of the orbit decreases approximately ex-
ponentially with increasing n. Precise formulas are given
in Ref. [12]. For unstable orbits [18],one can show that

sinh[P, (E)]
Ak(E), (27)Ak(e)=

where p, is the stability exponent and Ak is the semiclas-
sical amplitude given by Eq. (5) evaluated on the first clo-
sure of the unstable orbit. The formula predicts that the
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sin[a, (e) ]
Ak(e)=

sin[n a, (e ) ]
Ak(s) . (28)

Here o,
&

is the winding angle of a neighboring trajectory
about the central closed orbit [12]. This formula gives
what amounts to a quasiperiodic function: it is a periodic

0.75

(a) s = 0.0

0.50

0.25

amplitude decreases exponentially with n at a rate pro-
portional to the stability exponent (similar formulas are
well known in the Gutzwiller trace theory for the density
of states). The amplitudes A„ for R„at E =0.0 are shown
as a function of action in Fig. 10(a). This is difficult to
observe in the present experiment because the peaks are
masked by larger peaks associated with other orbits.
However, in an earher experiment, we can see peaks as-
sociated with the first three repetitions of the perpendicu-
lar orbit plotted against time. The comparison in Ref. [3]
showed theory in good agreement with that experiment.
The relative amplitudes measured experimentally give an
empirical estimate of the stability exponent for R„at
c=0.0. The estimate from the experiment is
Pi=1.4—1.9, which is in reasonable agreement with the
theoretical value of 1.4.

The amplitudes of repetitions of stable orbits behave in
a completely different way. In the present case, one can
show that for stable orbits [18] the amplitude associated
with the nth return is related to that on the first return by

1/2

function of a continuous variable n having period
bn =2m/a~(E), but the function is evaluated at discrete
points (integer n) having no relationship to the period.
To illustrate this quasiperiodicity Fig. 10(b) shows the
amplitude of the first 20 repetitions of R„at c.= —0.2455.

As long as the winding rate a, (E) is an irrational nurn-

ber, the amplitudes Ak(c. ) are nonsingular. However, let
us now consider what happens as we vary c. The winding
rate varies continuously through rational and irrational
numbers. Therefore, if we now fix n and consider Ak as a
function of energy c, then for each n there exist critical
values of the energy such that

na, (E)=ma, m=1, 2, . . . , n) 1 . (29)

The classical amplitude on the nth return Ak is infinite at
such points. Physically, this resonance condition implies
that the period of stable oscillations transverse to the or-
bit is commensurable with the period of the orbit itself.
As a consequence, the neighbors of the orbit, which begin
at the nucleus and move away from the central orbit, all
return to the central orbit at the moment that the orbit
returns to the nucleus. Therefore a focus exists at the ori-

gin on the nth closure of the central trajectory. The
derivative ~d8f /d8, ~

entering the denominator of Eq. (5)
for Ak is zero at a focus, so Ak diverges. Experiments
show that the recurrence amplitude gets large, but
remains finite near these resonances. For scaled energies
close to such a resonance, the divergent semiclassical am-

plitude Ak is not a valid approximation to the actual ob-

served amplitude for R„, but it is a good approximation
to the observed amplitude at energies sufficiently far
away from the resonance.

We can see the effect of such near resonances in the ex-

perimental recurrence spectra.
Figure 11 shows the experimental and calculated

power spectrum for the scaled energy c.= —0.30. The
theoretical calculation showing the R„orbit alone is
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FIG. 10. (a) The amplitude behavior vs repetition number n

at fixed scaled energy, a=0.0, for the perpendicular orbit when

it is unstable. (b) The amplitude behavior vs n at fixed scaled
energy, c.= —0.2455, for the perpendicular orbit when it is

stable and near a 5:2 resonance. The exact energy for the reso-

nance is near c„;t=—0.246206.

FIG. 11. Upper part: heavy line is the experimental re-

currence strength ~A{S;ei~ for e= —0.30; fine line is the

smoothed theoretical result. Lower part: Contribution of the

perpendicular orbit and its repetitions. Note the alternation of
small and large amplitudes that is also visible in the measure-

ments.
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shown in the lower part of the figure. The amplitudes of
the n =2 and 4 repetitions of R„are much larger than

the n =1 and 3 repetitions. These large values for even
repetitions are caused by a near-resonance: the perpen-
dicular orbit has a 4:1 resonance at e = —0.316 19 [19].

To show the consequences of this resonance in a more
intuitive way, we show in Fig. 12 a family of neighbors of
the perpendicular orbit at this energy.

On the first closure, shown in Fig. 12(a), the neighbor-
ing trajectories are widely spaced and the configuration
space density is low. The returning wave [Fig. 12(b}] has
a broad wave front, having only a small overlap with the
initial quantum state localized at the origin. In Fig. 12(c)
the attractive Coulomb field turns the orbits around, and
they go back out below the p axis. On the second return
[Fig. 12(d)], the neighboring trajectories, and the return-
ing wave, converge almost to a focus in the region near
the nucleus. This focusing effect gives a large overlap
with the initial state [20] (i.e., a strong recurrence), which
produces a strong interference effect and large-amplitude
oscillations in the spectrum.

If the neighbors converge exactly on the nucleus
(which happens at e = —0.316 19), then the Coulomb field

sends them back exactly the way they came. The outgo-
ing wave then looks like the original outgoing wave, and
the orbits turn around and produce a weak signal on the
third return (exactly the same as the first return}. They
turn around again and produce a strong signal on the
fourth return. This is precisely what we see in the experi-
ment at c, = —0.30.

(a)

In Fig. 13 we show the recurrence strength, R(S;e),
for the perpendicular orbit as a function of E for n

=1,2,3. R~ has a resonance at c.= —0.209 29 which is in

the range of the experiment. Figure 14 shows theoretical
and experimental results over a range of scaled energy
bracketing this resonance. The agreement is good except
at c= —0.21. There, the 6:1 resonance in the perpendic-
ular orbit gives an excessively large peak on the third re-
turn (S=3.08).

Such failures of semiclassical approximations near a
focus are familiar in optics. In a future publication we

plan to repair the formulas to cover such cases.
In optics we also know that a focus produces an addi-

tional phase loss of n /2 In.semiclassical approximations
this additional phase information is contained in the
Maslov index. We find that for the perpendicular orbit,
the Maslov index for the nth repetition decreases by one
as the scaled energy increases past the critical energies
for that repetition.

These resonances are also tied to bifurcations. The res-
onance visible in the experiment at c= —0.30 is tied to
the creation of a closed orbit of a particular shape (the
one we named "PacMan" or Rz in Ref. [10]). The 6:1
resonance at c= —0.21 also produces new closed orbits
(P» —=R~). The complicated sequence of these bifurca-
tions is discussed in Ref. [10].

D. The parallel orbit

The orbit parallel to the direction of the magnetic field

has special importance. Although it is only barely visible
itself in the experiments, the largest "mountain ranges"
in Fig. 5 come from the orbits that bifurcate from it, and
the large-action edge of the mountain range represents
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FIG. 12. (a) The outgoing pencil of rays (family of neighbors)
of the perpendicular orbit at c= —0.30. The orbits turn around
and carry wave fronts back to the nucleus. The rays are spread
over a broad front, and the amplitude of the returning wave is
relatively small. The size of the large figure is -2000ao, and
the expanded inset (b) is -20ao. (c) The orbits are turned
around by the Coulomb field. (d) On their next return they are
well focused at the nucleus. Waves return on a narrow front
with a large amplitude. At this energy even-numbered returns
have a much larger effect than odd-numbered returns.

FIG. 13. We show Dk(c, ) as a function of c for each return of
the perpendicular orbit. The heavy line, (1), is the amplitude as-
sociated with the first return, which shows a slow monotonic de-
crease in amplitude with increasing scaled energy. The light
solid line, (2), is the classical amplitude for the second return. It
diverges at s= —0.31619,at the 4:1 resonance discussed in the
text. At this point the amplitudes on the first and third returns
are equal (to understand why, study Fig. 12). The dashed line
shows the amplitude on the third return; it has two resonances,
a 6:1 and a 3:1. The 6:1 resonance occurs within the experimen-
tal range and causes a failure of the semiclassical approximation
at c= —0.21 (Fig. 14).
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the action versus energy of the parallel orbit. In Ref. [9],
the parallel orbit was called V, , and its repetitions were
labeled V„.

l. Organizing principles from bifurcation theory

To make easier the discussion of the parallel orbit and
the orbits which bifurcate from it, we need some informa-
tion from bifurcation theory. A more complete develop-
ment of this is given in Ref. [10].

We work in scaled serniparabolic coordinates (u, u)
and we define a modified Poincare map such that p, and U

are recorded every time u passes through zero for either
sign ofp„. We have the mapping

z, =f(zo, s),

J,(z;e)=

Bq, (p, q;e)
Bq

~pi(p q;e)
Bq

Bq, (p, q;e)
Bp

~pi(p q'e)

Bp

J21 J22

and the trace of this matrix is

(31)

Every periodic orbit of this map corresponds to a period-
ic orbit of the Hamiltonian, Eq. (19). The period of the
orbit in uu space either corresponds to exactly the map
period (if the map period is even), or it corresponds to
twice the map period (if the map period is odd). The
Jacobian matrix associated with this mapping [21] is

p, =p, U=—q, (30)
Tr, =—Tr, (z;E)—=Tr[J&(z;e)] . (32)

z=—(p, q) .

40.0
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FIG. 14. The effect of a resonance on the agreement between
theory and experiment. This figure shows a range of scaled en-
ergy bracketing the 6:1 resonance at c= —0.2092. The scaled-
energy measurements were taken in steps of 0.01 in c in this en-
ergy range. At all energies and actions we have good to excel-
lent agreement with the experimental measurements except at
c.= —0.22 and —0.21 at the scaled action corresponding to the
third return of the perpendicular orbit. The semiclassical am-
plitude approximation fails here because of the proximity to the
resonance. It is clear from the experiment that the true re-
currence strengths remain bounded and finite.

a, =cos '[Tr, (z;e)/2], ~Tr, ~
~2, 0 a~

P, =cosh 'f [Tr, (z;e)/2] I, /Tr, I
& 2,

n1, J]2 &0

(33)

(34)

The structure of the bifurcations on the Poincare map is
determined by the value of this trace evaluated at the
periodic orbit at a map period of the orbit.

If the absolute value of this trace is greater than 2, then
the orbit is unstable, and it does not bifurcate. If it is less
than 2, the orbit is stable, and it can bifurcate.

Bifurcations occur when there is a resonance between
the period of the orbit and the period of oscillations
transverse to the orbit. Hence the focusing effects previ-
ously mentioned are intrinsically tied to the bifurcations
of an orbit.

As mentioned earlier, mathematical analysis [15] has
established the beautiful theorem that there are only five
"generic" types of bifurcations. When a resonance pro-
duces a new orbit of map period m times that of the origi-
nal orbit, the structure of the bifurcation is determined
by the value of m, as given in Table I.

Symmetries of the system modify the structures of the
bifurcations. A complete theory, listing all consequences
of any possible symmetry, does not yet exist. However,
for the parallel and perpendicular orbits, the conse-
quences of the symmetry of the potential energy about
p=0 and z =0 have been analyzed [10], and the bifurca-
tions are modified according to the table.

Usually the closure time of a new orbit produced in an
m bifurcation is m times that of its parent. However, in
one case (if m is even and the map period of the parent is

odd), the closure time of the new orbit is m/2 times the
closure time of the parent. For example, the map period
of the balloon orbit is 1 (odd), and its 4:1 bifurcation pro-
duces an orbit that closes at twice the closure time of the
ba11oon.

In the following discussions the trace as a function of c
will be used to classify and show the order of the bifurca-
tions. Additionally, the winding rates a&, cz', , and the sta-
bility exponent are simply related to the trace by
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1

2
3
4

2
—2
—1

0

TABLE I. Bifurcation type as a function of m.

Bifurcation type

saddle node
period doubling
touch and go
touch and go or four-island chain
five-island or m-island chain

1

2
3
4

)5

2
—2
—1

0

Bifurcations modified by symmetry
pitchfork or antipitchfork
standard period doubling
doubled three-island chain (symmetric period tripling)
touch and go or four-island chain
m-island chain (m even)

or double m-island chain (m odd)

where we restrict a, to the principal value of the
arccosine and 0 a& &~. These winding angles are ex-
plained in Appendix D.

2. Stability, instability,
and bifurcation sequences of the parallel orbit

The parallel orbit is initially stable at low energies and
the trace of its Jacobian matrix is just above —2. The
behavior of this trace as a function of c. is shown in Fig.
15: it has growing oscillations as c increases towards
zero.

This determines the sequence of events. At a low ener-

gy (off the diagram) is a symmetric period tripling as the
trace increases through —1. Just above c= —0.5 is a
four-island-chain bifurcation, then a six island chain,
then a pitchfork where it goes unstable; the orbit returns
to stability, then as the trace decreases there is a six is-
land chain, four island chain, doubled three-island chain,
and then a period doubling where it goes unstable again.
Then when it returns to stability the whole sequence is re-
peated.

The stability of the orbit is not visible directly in the
experiment, but the associated pitchforks, period dou-
blings, and other bifurcations produce the peaks that are
the most prominent in the experiment.

4.0

2.0

0.0

-2.0

-4.0
-0.5

1.5

I

-0.4 -0.3 -0.2

typically the recurrence amplitude of the parallel orbit is
smaller than that of other short orbits by a factor of
y'~ =(8/c)'~6]. However, if we look at the experimen-
tal power spectrum at s = —0.45 (Fig. 16), we can clearly
see the V& orbit as an isolated peak at S=1.05. Also its
third repetition shows up rather strongly S=3.1. Else-
where in the experiments V, is hidden at the edge of the
"main sequence" of orbits that bifurcate from it. In Fig.
17 we show the unsmoothed recurrence strengths as nee-

dle graphs at three different scaled energies, illustrating
how V„ is usually hidden beside larger peaks. Even so, it
is not completely invisible, since it combines coherently
with nearby peaks. We will discuss the consequences of
this later.

Figure 18 shows the recurrence amplitude versus

3. Recurrence amplitudes for the parallel orbit

The recurrence amplitudes of the parallel orbit, CG, are
described by a different formula than other trajectories.
The formula in our Eq. (17), Eq. (3.7a) of Ref. [3], which
applies to other trajectories, gives a zero amplitude to the
parallel orbit. This is incorrect since the stationary phase
approximation used in Eq. (4.23a) of Ref. [3] is not appli-
cable. The parallel orbit can be clearly seen in experi-
ments on parallel electric and magnetic fields as well as
the electric field alone case, so a better formula was need-
ed. A proper treatment of the returning wave in the vi-
cinity of the z axis gives a nonzero amplitude, as shown in
Refs. [11,13]. The results are given in our Eqs. (3), (5),
and (18).

Generally the recurrence amplitude for this orbit,
(2'/b)'~ Do(e), is small [Eqs. (20) and (21) show that

0.0
-0.5 -0.4 -0.3 -0.2

FIG. 15. The trace of the Jacobian matrix becomes increas-
ingly oscillatory as the scaled energy approaches zero. As dis-
cussed in the text, the bifurcation behavior depends on the value
of this trace. The locations of some of the bifurcations are
marked. The period-doubling, 3:1,4:1, and 6:1 bifurcations are
marked with squares, triangles, diamonds, and stars, respective-
ly. The pitchfork bifurcations creating the balloonlike orbits in
the main sequence are marked by circles. The residual winding
rate a, and the stability exponent P, for the parallel orbit as a
function of scaled energy are also shown.
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scaled energy for the first three repetitions of the parallel
orbit. The picture is similar to Fig. 13, showing singular-
ities in the recurrence amplitude at resonance points
where bifurcations occur. However, in this case, the bi-
furcations are much richer.
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I s . It

4.0 5.0

200 I

FIG. 16. The smoothed theoretical power spectrum and ex-

perimental power spectrum at c= —0.45 are shown (light line

and heavy line, respectively). The parallel orbit is seen in isola-
tion as the peak at S=1.05. It also contributes coherently to
the peaks at S=2. 1, 3.15, and 4.2. If its Maslov index is not in-

corporated correctly, then serious discrepancy between theory
and experiment arises (dashed line).

FIG. 18. The semiclassical recurrence amplitude for the
parallel orbit as a function of scaled energy for n ~ 3 is shown.
This behavior should be compared to that of the perpendicular
orbit shown in Fig. 13. Each singularity occurs at a resonance
where a closed orbit is produced.

4. Maslou indices

The experiments provide checks of the Maslov index.
Like the recurrence amplitude, the Maslov index of the
parallel orbit has its own formula [12]. For all other or-
bits we get the Maslov index by counting: pk = 1 X (the
number of times an orbit is crossed by its neighbor)
+ (the number of end points on the orbit) + ( the number
of times the orbit intersects the z axis)+2(n —1), where n

is the number of returns to the nucleus. However, for V„
(a) each return to the nucleus adds only 1 to the Maslov
index, not 2; (b) each time V„ is crossed by a neighbor the
Maslov index increases by 2 (such a crossing implies a cy-
lindrical focusing of waves). Therefore we have
Iuo=2X(number of times the orbit is crossed by its
neighbors)+(n for the end points at large z)+(n —1) for
the number of returns to the nucleus.

The Maslov index for repetitions of the parallel orbit is
given in terms of a', by the formula

R, V, V,

@0=nP0+2 int

ncaa)

+(n —1) . (35)

o.o !

0.0

40.0
l

1.0

c= -0.45

2.0 3.0
ll

4.0 5.0

pk =npk+int
na&

+2(n —1) .

In contrast, the formula for many other orbits [18] is

(36)

20.0
R) V, V, V,
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1.0 2.0

S
3.0 4.0 5.0

FIG. 17. The parallel orbit usually has small amplitude com-

pared to the orbits which bifurcate from it. We show the
unsrnoothed theoretical recurrence strength at three different

scaled energies. The parallel orbit and its repetitions are indi-

cated by the heavy needles. At c, = —0.45 the first return is iso-

lated and the subsequent returns are relatively large, combining
with only a few other orbits. At the higher energies the parallel
orbit becomes more and more masked by new orbits. At
c= —0.20 only the first return has appreciable amplitude.

Note the different position of the factor of 2.
For the parallel orbit, this winding angle cz', is a piece-

wise smooth function of energy —it is smooth and mono-
tonically increasing with energy when the orbit is stable,
and undefined when the orbit is unstable. At the bound-
ary points where V, changes from stable to unstable, e',
is either zero or m., and da', /dc. is infinite. We show its
behavior and the stability exponent in Fig. 15.

The above formula for the Maslov index of the parallel
orbit was tested against experiments at c.= —0.45. As we

see from Fig. 17, the returns of the parallel orbit are rela-
tively large and combine with the few orbits which have
already bifurcated from V„at this low energy. We have
excellent agreement with experiment in Fig. 16. In con-



49 RECURRENCE SPECTROSCOPY: OBSERVATION AND. . . 861

trast, before we discovered Eq. (35) we used an incorrect
formula which gave poor agreement with experiment,
Fig. 16 (dotted line). For example, the peak at S=2. 1

consists of the second repetition of the parallel orbit to-
gether with the orbit shown in Fig. 19(b)1. The latter has
a Maslov index of 7, while the parallel orbit has a Maslov
index of 9. The incorrect formula gave a Maslov index of
6 for the parallel orbit, and this gave a combined peak
that is clearly incompatible with the measurements. In
this case the experiments do not measure Maslov indices
directly, but they tell us if we got them wrong.

A consequence of the relationship between bifurcations
and focusing points is that the Maslov index changes at
each bifurcation. In every case we find that the Maslov
index of the daughter orbit in an m bifurcation is equal to
the Maslov index of the mth repetition of the parent orbit
just before the bifurcation.

K. Bifurcations from the parallel orbit

The most prominent features in the experimental spec-
trum are the fundamental, secondary, and tertiary se-
quences which bifurcate from V„V2, and V3. Let us
look at these sequences separately.

B, S, B, S,

The action of S, is very close to that of B
&

and it is not
until c= —0.25 in the experiment that it is clearly visible
as a separate peak near scaled action S= 1.4.

At each scaled energy at which a 1:1 or 2:1 resonance
for V„occurs, another "balloon" or "snake" orbit is born
in alternating order: B&,S, ,B2,S2,B3, . . . (these were
denoted I„I2,I3,I4, . . . , respectively, in Ref. [22]). The
Maslov index of the V& orbit increases by two upon pas-
sage through each resonance. At the limit of c~—Oo

and below c.= —0.3913 the Maslov index for V, is 3, so
the Maslov index goes as 3,5, 7,9, . . . as the scaled ener-

gy increases towards zero. The Maslov index of each
newly created orbit equals the Maslov index of the paral-
lel orbit as it was just below the bifurcation point.

As c increases towards zero, there is an infinite number
of balloon and snake orbits. We show the first five of
these in Fig. 19. Each succeeding member of this se-
quence has longer period than the previous member by
approximately one cyclotron period. The main sequence
then has simple regularities which have been discussed in

1. The fundamental, or main sequence

The fundamental sequence is created at the series of 1:1
and 2:1 resonances where the V„orbit undergoes transi-
tions from stability to instability [10,22]. (This is in con-
trast to the behavior of the perpendicular orbit, which
undergoes a 1:1 resonance only once and the orbits creat-
ed there do not close at the origin [10].)

The first of these bifurcations occurs at c= —0.3913
and it creates the B

&
orbit (here the subscript 1 is part of

the name of the orbit, not the label of a repetition), which
we call the "balloon. " This is a "pitchfork" bifurcation,
in which the parallel orbit goes from stable to unstable
and two new stable orbits are produced (the balloon and
its re6ection through the z axis, both with map period
equaling one). At this point the Maslov index of V, in-

creases from 3 to 5, and the Maslov index of the balloon
is 3 (consistent with the general observation mentioned
above).

At c= —0.30 the experimental measurements show an
isolated peak at S=1.3, which is the position of the 8

&

orbit (Fig. 5).
As discussed earlier, the parallel orbit goes stable again

near c.= —0.32. At this point two new unstable orbits
are produced, but they do not touch the nucleus, so they
are not visible in this experiment.

The next orbit in the fundamental sequence is created
at the 2:1 resonance, which is the second transition from
stability to instability, at c, = —0.27099. We classify it as
a period doubling, where again the parallel orbit goes
from stable to unstable but now a single orbit of twice the
map period is created. It is a "snake" orbit, denoted S&,
which retraces its original path to close at the same initial
angle as it started. It also is initially stable, and its initial
Maslov index is 5. At this bifurcation point the Maslov
index of V& changes from 5 to 7.

(b)

(c)

6:1 6:1 6:1

3:1 3:1 3:1

FIG. 19. (a) The first five members of the main sequence are
shown in (p, z) coordinates. (b) In the second mountain range of
peaks, the 4:I bifurcations of the parallel orbit create a series of
balloonlike orbits symmetric with respect to the z axis. (c) The
second repetitions of the main sequence orbits also bifurcate to
create new orbits in the second mountain range of peaks. These
are 4:1 bifurcations of the balloon orbits and period doublings
of the snake orbits. (d) The parallel orbit undergoes 6:1 bifurca-
tions which are visible on the third return of that orbit for each
scaled-energy range for which that orbit is stable. These bifur-
cations create snakelike orbits, which are self-retracing. (e) The
parallel orbit also undergoes 3:1 bifurcations which are visible
on the third return and these bifurcations create balloonlike or-
bits. The 6:1 and 3:1 bifurcations occur in alternating order as
the trace alternately increases then decreases in the stability re-
gions. The orbits created in the first four stability regions are
shown in (d) and (e).
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2. The secondary sequence

The second mountain range is produced by three sets
o orbits.

4.0 t

2.0

c = —0. 10

0.0 .—
0.5

12.0

1.0 1.5

Ref [231 I can be treated as an almost-separable parti-
tion of motion into z oscillations and modified cyclotron
oscillations (which are, however, coupled in the vicinity
of the nucleus).

Figure 20 shows the main sequence as seen in the
theory and experiment. As soon as each orbit in the

f
main sequence is created, it begins its own sequence of b-
urcations, with the balloons following one pattern and

ceo

the snakes following another. These patterns are deter-
mined by the behavior of the trace of the Jacobian evalu-
ated at a map period. The traces versus c are shown for
B, and S& in Fig. 21. The orbits created from these bi-
furcations contribute to the second and third mountain
ranges seen in the experiment and will be discussed later.

(a) Orbits which bifurcate from the second return of the
parallel orbit .Figure 19(b) shows a family of orbits
which oscillate up the z axis, come back down but miss
the nucleus, and propagate up and down again before re-
turning to the atom. Referring again to Fig. 15, one of
the orbits of Fig. 19(b) is created each time the trace of
the Jacobian matrix of the parallel orbit passes through
zero. In the Hamiltonian bifurcation theory discussed in
Ref. [10],we classify these as 4:1 bifurcations of the Poin-
care half map. We see that each of the orbits is sym-
metric on reAection through the z axis, each is stable
when created, and none of them have end points (points
where the speed is zero).

The first of these bifurcations occurs at c= —0.4864
and creates the orbit shown in Fig. 19(b)1. It is visible in

the experimental measurement, though not in isolation,
at c= —0.45. We have previously seen in the discussion
of Maslov indices of V that it combines coherently with

V& to give the peak at S=2.2.
The next bifurcation in this sequence, at c.= —0.2946,

creates the orbit shown in Fig. 19(b)2. Each 4:1 reso-
nance gives one new stable orbit of this type.

(b) Repetitions of main sequence orbits and their pro
geny. The second return of orbits in the main sequence
has twice the action of the first return and these re-

currences contribute to the second mountain range. Fur-
thermore, when the main sequence orbits are stable, they
also bifurcate, producing still more orbits that contribute
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0 0
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FIG.G. 20. The coherent sum of the oscillations due to the
main sequence orbits combines to form the peaks seen in the ex-

perimental power spectrum as the first mountain range in Fig. 5.
The smoothed theoretical spectrum and measured power spec-
trum are shown as light and heavy lines, respectively. The nee-

dles show the contributions of the individual orbits. At the
lowest energy, c.= —0.30, only the first balloon exists, at
c= —0.25 the first snake is also present, at c.= —0. 19 the
second balloon, and finally at ~= —0. 10 ten members of the
main sequence exist. The agreement is quite good at each of
these energies.

FIG. 21. The traces of the B, orbit and the S& orbit. The B&

orbit is the first balloonlike orbit in the main sequence to be

created. The trace on the first closure is also the trace on a map

period. It is an almost linear function of scaled energy. The B I

orbit undergoes 6:1,4:1, and 3:1 bifurcations sequentially at the

points indicated. This trace behavior is typical of all balloonlike

orbits in the main sequence. Likewise, the S& orbit is the first of
the snakelike orbits in the main sequence to be created. In this

case, the trace on the second closure is the trace at a map

period. The trace as a function of scaled energy is almost para-

bolic. The locations of the 6:1,4:1,3:1,and period-doubling bi-

furcation points are indicated by the stars, diamonds, triangles,

and square, respectively. This trace behavior is typical for all

snakelike orbits in the main sequence.
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to this mountain range. The balloon orbits bifurcate on
this return when their trace passes through zero. The
snake orbits bifurcate as their trace touches —2.

Some orbits that bifurcate from 8„S&,Bz, and Sz are
shown in Fig. 19(c). They are visible in the experiments
in the following sense: if they are not included, the calcu-
lated peaks do not agree with experiments. We illustrate
this in Fig. 22.

(c) Exotics embedded in the secondary sequence A.s
mentioned earlier, some of the saddle-node bifurcations
produce "exotic" orbits which themselves fall into order-

ly sequences. We show two such sequences in Fig. 23. It
is apparent that these orbits have such an intimate con-
nection to orbits of the main sequence that their actions
must lie within the second mountain range, and their
creation points must have an orderly relationship with
the locations of other bifurcations.

3. The tertiary sequence

Similarly, at least three families of orbits contribute to
the third mountain range.

(a) Orbits which bifurcate from the third return of the
parallel orbit. First we consider the bifurcations directly
from V3. Two of these orbits are created for each range
of energy that the parallel orbit is stable, when the trace
of the parallel orbit passes through 1 and —1, and

aI =n /3, 2m/3 re.spectively. These two cases are
classified as six-island-chain bifurcations and symmetric-
period-tripling bifurcations [10]. We show these orbits
for the first four stability regions of the parallel orbit in

40.0—
8 = —0.30

&(0
CC

20.0

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
S

FIG. 22. The 4:1 bifurcation from the balloon [orbit (cl) in
Fig. 19] produces the largest needle. It is visible in the follow-

ing sense: removal of the new orbit from the closed-orbit sum
ruins the agreement with the experimental measurements. The
thin line and the heavy line show the theoretical and experimen-
tal recurrence spectrum, respectively, at c= —0.30. The agree-
ment is quite good. The result calculated if we remove the new
orbit from the sum is shown by the dotted line. The other two
needles are the second return of the 8& orbit and of the parallel
orbit, respectively, left and right of the large needle.

X,

FIG. 23. Also contributing to the second mountain range, we

find sequences of exotic orbits which are created in an orderly

fashion. Two such sequences are shown. The first of these be-

gins with the orbit denoted X2 and continues with new orbits

created by tangent bifurcation which are simply related to X&.

The second of these begins with an unnamed exotic and follows

the same pattern. Further sets of these exotic sequences are also

seen in the calculations as the energy is increased and they ap-

pear in a predictable way.

Fig. 19(d). They are symmetric with respect to the z axis
and stable at their point of creation.

The first pair of these bifurcations occurs in the
lowest-energy range of stability. At c.= —0.5671, where
Tr&= —1, we have the 3:1 bifurcation creating a new
stable orbit. This is the symmetric period tripling since
Tr& = —1 [Fig. 19(el)]. We see this orbit in combination
with the third return of the parallel orbit in the measure-
ments at e= —0.45 (Figs. 16 and 17). The two combine
coherently to produce the large peak at S=3. 126.

The second bifurcation in this set occurs at
c.= —0.436158 and produces the orbit shown in Fig.
19(dl); it is a six-island-chain bifurcation since Tr&=1.
As c. continues to increase, the trace for the parallel orbit
passes through its first maximum and starts decreasing,
so a second 6:1 bifurcation occurs at s = —0.307 82 [Fig.
19(d2)]. Recurrences associated with these orbits are
masked by other large peaks.

However, the subsequent 3:1 bifurcation at
s= —0.28308 creates a stable orbit [Fig. 19(e2)] which
can be seen in the experimental measurements, as a
shoulder on the peak at S=4.0. Figure 24 shows the
theoretical spectrum calculated with and without the
peak contributed by this orbit and compares both with
the experiment. The agreement is quite good with the
peak included.

(b) Repetitions of main sequence orbits and their pro
geny. Also contributing to the third mountain range are
the third returns of the main sequence orbits, and orbits
which are created as period-3 or period-6 bifurcations
from the main sequence orbits. Let us again look at the
balloon.

We showed the trace versus c for the ba11oon in Fig.
21. This figure shows that the balloon undergoes a 6:1 bi-
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FIG. 24. As an example of the bifurcations of V, visible in
the experiment, we show the theoretical and measured re-
currence spectrum for c= —0.28 as light and heavy lines, re-
spectively. The largest needle in this figure comes from the or-
bit (e2) in Fig. 19 which arises from a 3:1 bifurcation of the
parallel orbit. Removal of this orbit gives the theoretical result
shown by the dotted line.

furcation at c= —0.3663, where its trace passes through
+1, and a 3:1 bifurcation at e, = —0.3161, where the
trace passes —1. The first is a generic six-island-chain bi-
furcation which creates two new unstable orbits, not par-
ticularly visible in the experiment. The second is a gener-
ic three-touch-and-go bifurcation with interesting proper-
ties that were discussed in Ref. [10]. Just below the 3:1
resonance point, a saddle-node bifurcation in the three-
rnap creates a stable and unstable pair of closed orbits.
As c increases, the three unstable X points pass through
the 0 point of the balloon, and then move away. The
new orbits contribute to the peak at S=3.78, c.= —0.30
(Fi . 11). Also, the new unstable closed orbit is later visi-
ble as the dominant contributor to the peak at S==3.98
E= —0.26 (Fig. 25).

Our calculations indicate that similar bifurcations
occur on the third repetition of each balloon orbit in the
main sequence.

Bifurcations of the snake orbits of the main sequence
follow a different pattern. We saw in Fig. 21 that the
trace for the first snake does not pass throug —,uh —2 but
just touches that value and turns around again. This is
one symptom of a nongeneric behavior that is induced by
the symmetries.

The S, orbit has two bifurcations on the third return,
both of them being 3:1 bifurcations, where the trace
passes through —1 ~ The first of these occurs at
c= —0.2642, and is a new type of symmetric three-
island-chain bifurcation, modified by time-reversal sym-
metry (Appendix C). There are actually two interleaved
three-island chains, giving the appearance of a single six-
island chain. The second bifurcation occurs at
c.= —0.250 56 and it is a generic three-bifurcation having
the touch-and-go structure. Figure 25 shows the theoret-

0.0
3.6 3.8 4.0 4.2

S
4.4 4.6

FIG. 2S. The third mountain range is shown at two scaled
energies. In the upper figure the main peak nearr =4.38 is

comprised of the third return of the S& orbit and the coherent
sum of the orbits created in its generic three-bifurcation at
c, = —0.250 56. One orbit created in this bifurcation is shown as

an inset. The subsidiary peak near I=4.2 is at the location o
rbit born in the third sequence. In the lower figure,an exotic or i o

both the third return of B, and S, are seen at = . an
respectively. tA S=3.98 the largest needle is the recurrence
strength due to the unstable closed orbit, shown as an inset,
which was created at the generic three-bifurcation of the bal-

loon at c= —0.3161. The smaller needles near this scaled ac-
tion are the B& orbit and other orbits born in its 3:1 and 6:1 bi-

furcations. e pea a. Th k t S=4.16 is due to the S& orbit and the

orbits from its nongeneric three-bifurcation, which occurred at
E = —0.2642.

IV. CONCLUSIONS

We have shown that this scaled-variable measurement
of the absorption spectrum of hydrogen in a magnetic

ical and measured recurrence strengths resu ting from
these bifurcations.

Our calculations indicate that all snake orbits in the
main sequence also display these two bifurcations on
their third repetition.

(c) Exotic orbits in the tertiary sequence As in the.
second mountain range, exotic orbits contribute to some
of the observed peaks in the third mountain range (Fig.
25). Again some of these exotic orbits fall into orderly

atterns, comparable to the patterns suggested by Fig.pa em,
23. Others do not fit these patterns. As rnentioneioned ear-
lier, at present we have no global theory describing order-
1 sequences of saddle-node bifurcations and their associ-y sequenc
ated exotic orbits.
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field gives a rich structure of recurrences. These re-
currences proliferate with increasing scaled energy, con-
sistent with the transition from orderly to chaotic classi-
cal motion of the electron.

Bifurcation theory of Harniltonian systems gives a
complete "local" description. It tells us that typical bi-
furcations fall into five types and that symmetries modify
these structures. A certain parameter associated with a
periodic orbit of a map (the trace of the Jacobian matrix
as a function of energy) tells what bifurcations will occur,
and in what order.

Closed-orbit theory predicts the strength of re-
currences. We have good qualitative and quantitative
agreement with experimental measurements, except near
focal points where the semiclassical approximation to the
amplitudes diverges. These points will be examined fur-
ther in future studies.

where 4w is the range of w over which the spectrum is

measured. When peaks overlap they combine coherently,
with relative phase related to b(Sk —S ). Adjacent peaks

may interfere constructively or destructively; this de-

pends on the values of pk and Pk for the orbits, and also

upon the values of w
&

and wz in the experiment.
Coherent sums of many peaks can be complicated, and

they are very sensitive to the experimental parameters.

2. Step size of measured values and detection
of large-action orbits

In an ideal scaled-variable experiment, the scaled ener-

gy c. would be precisely determined. Then if rneasure-
ments were made in precise steps of size 5w, Fourier
transformation could give peaks up to a maximum such
that
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APPENDIX A:
THEORETICAL LIMITS OF THE EXPERIMENT

It is useful to examine the theoretical limits of re-
currence spectroscopy. Our ability to observe and to
resolve peaks associated with individual orbits in such ex-
periments is limited by the usual resolution problems as-
sociated with Fourier transforms. The parameter a, the
half range of w over which the spectrum is measured,
determines the widths of the peaks in the Fourier trans-
form. In principle, the step size in w determines the
largest-action orbits that can be seen (in this experiment
the step size in w was smaller than the uncertainty in w,
thus, in practice, the uncertainty in w determined the
visibility of long action orbits). The present experiment
has an additional limitation: the laser resolution deter-
mines the longest-period orbits that can be seen.

1. Range of measurement and separation
of nearby peaks in the power spectrum

277S —S.=
hw

(A1)

The range of w along the fixed scaled-energy line in the
(E,B) plane limits the ability to experimentally resolve
orbits having nearly equal actions. Using the Rayleigh
criterion for resolution of nearby trajectories (call them j
and k), peaks in the power spectrum are just resolvable
when the first minimum of the peak sin(axj )/x for the
jth orbit falls at the position of the maximum of the peak
sin(axk ) /xk for the kth orbit. This condition is

a(Sk —S,. ) =n,or.

3. Energy resolution and detection of orbits of long period

In any real experiment, the scaled energy is determined
only to the resolution allowed by the laser. In the present
experiment the laser resolution also limits our ability to
observe long orbits. The longest-period orbits that can be
seen have T,„=2M/5E, where 5E is the energy resolu-
tion of the laser.

To show this, let us express the experimental uncer-
tainties in the photon energy of the laser, E, and the step
size in the magnetic-field strength, 8, as uncertainties in
w and E. These lead to an uncertainty in the phase of the
sine functions in Eq. (16): writing that phase as

4:—Sk(E)w , (A3)

we find that small uncertainties in w and c. lead to uncer-
tainties in 4 according to

5@=w5Sk(E)+ Sk 5w

BSk
5E, +Sk5W

BE,

=W7 g58+Sk5W (A4)

where ~k is the period of the orbit in units of the cyclo-

For example, in our case it was convenient to take steps
5w=0. 03, so hypothetically the largest-action orbits
could have actions S= 100.

In reality the uncertainty in w was substantially larger
than the convenient step size; it was governed by the pre-
cision with which we could adjust the magnet (about
—

—,'%%uo). Then 5w in Eq. (A2) is not the step size, but the

uncertainty. Therefore

5B/B =3X10

5w/w=1 X10

5w =0.25,

S,„=12 .
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tron time. An orbit produces visible oscillations if the
combined uncertainty in 4 is less than vr (Appendix B).
If there were no uncertainty in w we would have

1.5

1.0 t-

7T
7 ) 5w=0max (A5)

0.5
(a)

no cutoff

The laser's resolution 5E = -0.05 cm ' gives
5c=y 5E=3.4X10 and ~,„=35 cyclotron times.
Including the uncertainty in w, we have

oo
0.0

1.5

1.0 2.0 3.0
I I I I'll I III I IIIIJLI& ~ i.

4.0 5.0

7T Sk 5w
rmax (A6)

1.0 —
~b~

which (for S=5) gives r,„=25 cyclotron times.
We computed the analyzed Fourier transforms for S

up to 5.0. In comparing theory with experiment, we ap-
plied a smooth cutoff factor to the theoretical recurrence
amplitudes of long-period and long-action orbits. The
effect is to reduce the recurrence amplitudes with increas-
ing S, and for fixed S to reduce the recurrence amplitudes
for long-period orbits. The cutoff factor and its conse-
quences are shown in Appendix B.

APPENDIX 8:
DERIVATION OF THE CUTOFF FUNCTION

FOR ORBITS OF LONG PERIOD

0.5

0.0 tt

0.0

2.0

(c)
&(0 1.0

CC

0.5

0.0
0.0

1.0 2.0

)(Ikkl
1.0 2.0 3.0 4.0 5.0

3.0 4.0 5.0

Consider the oscillations arising from the nth return of
the kth orbit, as described by Eqs. (16)—(18),

T

3K
Rk(w;e) =Dk(E)sin 4k(e, w )

——
pl,

—

(Bl)
4k (E) W ) =Sf (E )w

Experimental uncertainties in the photon energy and in

the magnetic field produce uncertainties in E and w,

which propagate into an uncertainty in 4 according to
Eq. (A4). Accordingly, the measured value is an average,

FIG. 26. The effect of the cutoff on the theoretical recurrence
strength at v=0.0 is shown: the heavy line is the theory with

the cutoff and the thin line is the theory without the cutoff.

creases toward zero. However, their actions do not in-

crease so rapidly, so many of them remain well within the
action range discussed in this paper (S & 5). The effect of
the laser bandwidth, however, reduces the peaks associat-
ed with these long-period orbits. Thus there is only a
finite number of orbits in the main sequence which need
to be considered in the closed-orbit sum, even at c.=0.

Dk(E) @=@+s@. a „3n
Rk = Sin 4——Pk—

254 a =c —se 2 4

D„"(E) ~ 3~
254

cos 4 pk2 4

3K—cos 4——p" — +54k 4
(B2)

„sin(6@) . — m. „3~=D" sin 4——p&-
5e 2' 4

(B3)

Thus we have the original amplitude diminished by a
sin(5@)/M& "cutoff" function, with 54(w;E) given by
Eq. (A4). The effect of the cutoff function on the theoret-
ical spectrum at c.=0.0 is shown in Fig. 26.

The relationship between the periods and the scaled ac-
tions for orbits in the main sequence is worth noting in
connection to this cutoff. Successive members of the
main sequence stretch farther and farther out the z axis,
so their periods become very long, especially as c in-

APPENDIX C: TIME-REVERSAL SYMMETRY
AND THREE-BIFURCATIONS

OF SNAKELIKE ORBITS

The trace of the Jacobian matrix for the snakelike or-
bits passes through —l twice. Therefore these orbits
have two bifurcations which are 3:1, yet we observe that
these two bifurcations are quite different in character.
The resolution to this puzzle is found in the time-reversal

symmetry of the system.
To understand it, we must distinguish between orbits

in configuration space and orbits in phase space. In
configuration space, if the Hamiltonian is purely quadra-
tic in the momenta, an orbit and its time reverse always
coincide. On the other hand, in phase space the time re-
verse of an orbit is in most cases a path which is com-
pletely distinct from the original orbit. Only if the orbit
is self-retracing in configuration space does the time re-
verse in phase space lie upon the original orbit.

Suppose we are given a self-retracing orbit (a "snake"),
and suppose that at some point that orbit has a bifurca-
tion. The newly created orbit might or might not be
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self-retracing. If it is not self-retracing, then the time-
reversal symmetry insists that there must be another or-
bit, distinct in phase space, which is the time reverse of
that new orbit. Therefore the bifurcation is forced to
create not one new orbit but two. In this way, the bifur-
cation is nongeneric. We find that some of the bifurca-
tions of the snake orbits have their structures modified as
a result of this symmetry.

How does this behavior manifest itself in the three-
bifurcations of the S& orbit? The higher-energy 3:1bifur-

cation at e= —0.25056 is a generic three-bifurcation. It
turns out that the new orbits bifurcating from S& at this

energy are self-retracing and therefore automatically
satisfy the time-reversal symmetry. This symmetry gives
"nothing new, " and the bifurcation has the same touch-
and-go structure as the three-bifurcation of the balloon.
(A saddle-node bifurcation creates the new period-3 orbit,
which then collides with the balloon and passes through
it; see Fig. 14 of Ref. [10].)

In contrast, the lower-energy 3:1 bifurcation at
c= —0.2642 is nongeneric, and something different does
happen there. The new orbit bifurcating from S, is not
self-retracing, so the symmetry requires the creation of
another closed orbit from S&. The symmetry forces the
creation of two interleaved three-island chains. The sur-
face of section looks like a six-island chain surrounding
Si.

Let us look at this another way, examining the winding
rates on the Poincare half-map and the full map. The
"half-map" is the function z=f(zo;e) as in Eq. (30), but
evaluated at the first closure of the S& orbit, not at the
map-period which occurs on the second closure. We
denote by Tr&&2 the trace of the Jacobian matrix of this

map evaluated at the closed orbit. Tr, is the trace of the

corresponding Jacobian matrix at the map-period of the
orbit. The rotation angles for these two maps are denot-
ed Q)y2 and cK).

On the half map the trace of S& starts at —2 and in-

creases, passing through —1, 0, 1, and 2 almost linearly.
If Tr, zz= —1 then u, zz=+n. /3, but the trace evaluated

at a period TI
&

also equals —1, and therefore
a&=+2m/3. The points on the half map and the points
on the full map both rotate by n. /3 on each iteration but
in opposite directions. The result is shown in Fig. 27 as
the set of open circles surrounding S&. We have three
fixed points in both the upper and the lower (p„,v ) plane

forming triangles with the same orientation. The opera-
tion of time reversal is equivalent to reAection on the sur-

face of section through the p, =0 axis. If we do this, a
new orbit is seen which forms triangles in both the upper
and lower (p„v ) plane with the opposite orientation from
those of the first orbit.

When Tr, hz= 1, then a»z=+n. /6, but now the trace
evaluated at the period Tr, = —1 and a& =+n./3. The
points on the half map rotate by m/6 for each iteration,
while those of the fu11 map rotate m/3 for each iteration,
and both rotate in the same direction this time. The re-
sult is shown in Fig. 28, where we have three fixed points
on both the upper and lower (p„,v ) plane, but now the
refiection through the p„=0 axis simply maps the upper

0.20

0.10

E= 0 2642 0
0

OoO
2 4

0.05

0.00

-0.05

-0.10—

-0.15
o

Q 2Q
-0.15 -0.10 -0.05 0.00 0.05 0.10

V

FIG. 27. The symmetry-modified three-bifurcation of the
snake has two interleaved sets of unstable fixed points on the
Poincare half-map. A more detailed picture would look like

Fig. 8 of Ref. [10]. If we start on the fixed point with p„positive
and greater than p, of the snake (circular symbol), we get the

upright triangles in both the upper and lower half-planes. If we

start on the fixed point with p„positive and less than that of the
snake (square symbol), we get the inverted triangles in the upper
and lower half-planes. The numbers 0—5 show the order in

which the trajectory winds about S& with 6 bringing it back to
the original point, 0.

triangle of points into the lower triangle. No new closed
orbits are needed to satisfy the constraint of time-reversal
symmetry.

We may reemphasize that since the "additional" orbit
that arises in the nongeneric bifurcation is the time re-
verse of its partner, the two coincide in configuration
space. Nevertheless, they are distinct in phase space, and
this produces the unusual structure of the bifurcation.

0.30 .—

0.20
8= -0.25

0

0.10

0.00—

-0.10:—

-0.20

-0 30
-0.15 -0.10 -0.05 0.00 0.05 0.10

V

FIG. 28. The generic three-bifurcation (we only show the un-
stable member for simplicity) gives one set of triangles on the
Poincare half map. A more detailed picture would look like
Fig. 14 of Ref. [10]. If we start on the fixed point with positive

p„, we reach all other fixed points as we follow the trajectory.
The numbers 0—5 show the order in which the trajectory winds
about Sl with 6 bringing it back to the original point, 0. The
trajectory is its own time reversal.
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APPENDIX D:
WINDING ANGLES AND MASLOV INDICES

The winding angles in Eqs. (33) and (34) have the fol-

lowing meaning for the parallel orbit. Suppose we in-

tegrate the equations of motion for the parallel orbit
[u (r),p„(r),U(r) =O,p„(r)=0], and simultaneously in-

tegrate equations of motion for a linearized neighbor of
the parallel orbit, [u(r),p„(r),5U(r), 5p, (r)], having ini-

tial conditions u(0) =0,5U(0) =0,5p„(0)=(small). We
monitor 5U(r) and 5p„(r) up to the first return of the
parallel orbit at time T&. These two variables define a
phase-space point that moves in a curve around the ori-
gin. If the variables [5U(T, ), 5p, (T, )] are appropriately
scaled to a normal form [12], then a(T, ) represents the
total angle swept out by the phase point up to the first re-
turn. The residual winding angle ai given in Eq. (34) is

defined as this full winding angle at the first closure
mode:

p(')= I+2int[a, (T, )/rr] . (D2)

(3) The full winding angle a, ( T, ) can be obtained froin
the residual winding angle a& using the formula

a, =
—,'(po —1)~+a', . (D3)

(4) The full winding angle at the nth return is n times
the winding angle at the first return,

a i( nT, ) =n a, ( T, ) (D4)

and the number of times the neighbor crosses the parallel
orbit is int[na, ( T, )lrr].

(5) Therefore the Maslov index on the nth return is

na, (T, )
po=n+(n —1)+2int

sure is twice this number of crossings plus one for the end
point:

a', =a, ( T, ), mode . (D 1)
=n+(n —1)+2int 'n

—,
'

(Iu, ii
—1 )m +a'i

%e have the following consequences.
(1) The number of times the neighbor crosses the paral-

lel orbit before the first closure is int[ai( T, ) lvr]
(2) The Maslov index of the returning wave at first clo-

=n po+2 int
no.

& +(n —1) . (D5)
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