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Hyperspherical functions with arbitrary permutational symmetry
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An algorithm is formulated for the construction of many-particle permutational symmetry
adapted functions in hyperspherical coordinates. A recursive procedure is proposed, introducing
hyperspherical coefficients of fractional parentage (hscfps). These coefficients are the eigenvectors
of the transposition class sum of the symmetric group in an appropriate basis. Only the matrix
element of the transposition of the last two particles has to be calculated in each step. This matrix
element is obtained by using the hscfps calculated in the preceding step as well as the Raynal-Revai
and the T coefBcients. The results are applicable to the study of the atomic, molecular, and nuclear
few-body problem.
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I. INTRODUCTION

The method of hyperspherical coordinates, along with
the associated hyperspherical functions, was introduced
in 1935 by Zernike and Brinkman [1]. Delves [2) and
Smith [3] reintroduced this method in a different form
25 years later, and it was recently reviewed by Nikiforov
et al. [4]. The hyperspherical functions were extensively
used in recent years to study few-body problems in nu-
clear, atomic, and molecular physics [5].

In this method the internal degrees of freedom of an N-
body system are reduced to a single hyperradial coordi-
nate and a set of 3N —4 angular coordinates. The hyper-
radius is invariant under particle permutations, making
the hyperspherical coordinates very useful for rearrange-
ment processes. A further convenient feature is that each
hyperspherical basis function is separable into a product
of a function of the hyperradius and a function of the
hyperangular coordinates.

Since the total (space-spin) wave functions of a many-
body system should be antisymmetric, the construction
of permutational symmetry adapted hyperspherical func-
tions has been considered extensively. Nevertheless, no
generally valid efficient procedure, which is applicable for
systems consisting of more than three particles, has been
developed so far [6].

Four years ago, we introduced a recursive procedure
for the construction of nonspurious harmonic oscilla-
tor functions with arbitrary permutational symmetry,
in Jacobi coordinates [7]. According to this procedure,
each symmetry-adapted N-particle harmonic oscillator
function is written as a linear combination of angular-
momentum coupled products of permutational symme-
try adapted (N —1)-particle wave functions and an Nth-
particle wave function, all members of the linear com-
bination having the same N-particle harmonic oscillator
energy. The coefficients of this linear combination are the
harmonic oscillator coefficients of &actional parentage.

These coefficients are the eigenvectors of the transposi-
tion class sum of the symmetric group, in the appropriate
basis.

In the present article we use a variant of this recursive
method to evaluate hyperspherical functions belonging
to well defined irreducible representations (irreps) of the
symmetric group. We diagonalize the transposition class
sum of the symmetric group within invariant subspaces
with respect to S~, spanned by appropriate hyperspher-
ical functions. Each of these functions is an angular mo-
mentum as well as hyperspherical angular momentum
coupled product of an (N —1)-particle permutational
symmetry adapted hyperspherical function with a sin-
gle particle function. The eigenvalues that are obtained
after the diagonalization uniquely identify the irreps of
the symmetric group. The eigenvectors are the hyper-
spherical coefficients of &actional parentage (hscfps). In
the actual computation only the matrix element of the
transposition of the last two particles has to be evaluated.

The presentation is organized as follows: In Secs. II
and III we introduce the hyperspherical coordinates and
the hyperspherical Laplacian, respectively. The hyper-
spherical functions are presented in Sec. IV. In Sec. V
we brie6y review the Raynal-Revai and the T coefficients
that are used in the subsequent sections. In Sec. VI we
summarize the relevant part of the representation theory
of the symmetric group. The permutational symmetry
adapted hyperspherical basis is presented in Sec. VII for
three particles and in Sec. VIII for N particles. The
computational algorithm is given in Sec. IX. Some con-
cluding remarks are made in Sec. X.

II. THE HYPERSPHERICAL COORDINATES

Several variants of hyperspherical coordinates have
been used by different authors. They differ by both
the choice of the underlying set of "single-particle, " co-
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ordinates, the number (one or three) of spatial compo-
nents specifying a "single-particle, " and certain details
concerning the definition of the angular and/or hyper-
angular coordinates [4,5].

We shall be using a version of the hyperspherical co-
ordinates in which the center of mass motion of the sys-
tem is removed, thereby obtaining a set of nonspurious
basis functions. To introduce these hyperspherical co-
ordinates we start from the center-of-mass coordinate
R = ~ P, i r, and the normalized Jacobi coordinates

j —1 ~ 1
r, — . (ri + r2 + + r, i)

2 ( 2 —1
~

q = 2, 3, . . . , N, (1)

in which the jth particle is specified relative to the center
of mass of particles 1 to j —1. p consists of a radial
coordinate pj and a pair of angular coordinates Oj
(~~ &~).

A two-particle system is specified by the Jacobi coor-
dinate p2 that consists of the radial coordinate r(2) = p2
and of the angular coordinates 02 —— (Hz, P2). For a
three-particle system we transform the two radial coor-
dinates p2 and p3 into a hyperradial coordinate r(3) and
a hyperangular coordinate a3 defined via

P2 = T(2) = T(3) COS A3)

p3 = r(3) sin 0!3.

PN —1 —TN —1,N cos QN —1,N ~

PN —TN —1,N sin &N —1,N (6)

and a second hyperangular coordinate o,N which is ob-
tained &om the coordinates r(N 2) and rN 1 N by the
relation

(A3 ci4 ~ . . (x~), and the 2(N —1) angular coordinates
Ol~l = (02, Os, . . . , A~). These coordinates depend
on the set of Jacobi coordinates specified in Eq. (1). For
a different ordering of particle indices a different set of
hyperangular coordinates as well as a permuted set of
angular coordinates is obtained. On the other hand, the
hyperradial coordinate is independent of the order of the
particle indices; cf. Eq. (5).

As was pointed out in the Introduction, in order to
obtain the permutational symmetry-adapted linear com-
bination of hyperspherical functions we have to evaluate
the matrix elements of the transposition of the last two
particles, i.e. (N —1, N). This is conveniently done by
constructing the N-particle hyperspherical coordinates
in terms of the set of N —3 Jacobi coordinates corre-
sponding to the first N —2 particles and the set consist-
ing of the two Jacobi coordinates pN 1 and pN. This
construction only involves the radial parts of the various
Jacobi coordinates; the angular coordinates O(N} are not
affected. The hyperangular coordinates that are related
to the Jacobi coordinates of the first N —2 particles,
o.(N 2), also remain unchanged. However, instead of the
two hyperangular coordinates o;N 1 and aN we have one
hyperangular coordinate aN 1 N which is obtained from
the transformation

The complete set of six coordinates consists of r(3) o.3,
02, and 03.

Adding the fourth particle we define the hyperradial
coordinate r(4) and the hyperangular coordinate o,4 via

T(3) = r(4) cos 0,'4,

p4 = T(4) sin 0!4.

The internal coordinates for four particles are the two
hyperangular coordinates a3 and a4, the six coordinates
02, 03, and 04, and the hyperradial coordinate r(4}.

In general, having defined the hyperradial coordinate
T (j I) we define r (j ) and n j so as to satisfy

/

T(N 2) = r(N) COSON
~ /rN 1 N

——r(N) sino. N. (7)

III. THE LAPLACE OPERATOR IN
HYPERSPHERICAL COORDINATES

Note that rN 1 N —— pN 1+ pN is not the distance be-

tween the particles N —1 and ¹ Note also that the
hyperangular coordinate aIv, defined in Eq. (7), is dif-
ferent from the hyperangular coordinate o.N defined in
Eq. (4).

T(j 1) = r(j) COS O.'j,

Pj = T (j) Sln 0!j, (4)

where

2 2

"(l="( )+ =). = . ) (' ') ()
t—2 i )ii=2

Therefore, the hyperradial coordinate is symmetric with
respect to permutations of the underlying single-particle
coordinates.

The 3(N — 1) internal coordinates for the N
particle system consist of the hyperradial coordinate
T(N), the % —2 hyperangular coordinates o.(N)

The internal kinetic energy operator for a two-particle
system is given by the three-dimensional Laplace oper-
ator, expressed in terms of the relative motion Jacobi
coordinate p2 and the corresponding angular coordinates
02,

] A2

(2) +P +Pg 2 ~2
P2

where the radial part is

2 0
P2 P2 P2

and Sz is the angular momentum operator of the relative
motion.
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The internal kinetic energy of a three-particle system is
described by the six-dimensional Laplace operator which
is a sum over the three-dimensional Laplace operators
that act on the coordinates p2 and p3 separately,

~(,)
= ~, + ~, = z„+z„——,e,'——,e~. (io)

Using Eq. (2) we can transform the two radial coordinates

p2 and ps into the hyperradial coordinate r(3) and the
hyperangular coordinate n3, in terms of which

1
~(3) = ~-(.)

(3)

(~) (~—1) + S ~ = ~(w-1)

1 -2K,—,e .1+ PN
~(m —1)

"24(~) —4~(~) 2 K~ ~

(N)

where the radial part is

{i6)

We can apply Eq. (4) and transform the coordinates
r(~ z) and p~ into the hyperradial coordinate r(~) and
the hyperangular coordinate aN. In this case the 3(N —1)
dimensional Laplace operator, Eq. (14), can be written
in the form

The radial part in Eq. (11) depends only on the hyper-
radial coordinate r(3), i.e.,

02 5 0~.(.) —
2 +

Br(3) r(3} Br(3}
(i2)

The hyperspherical angular-momentum operator K3 is
expressed in terms of the hyperangular coordinate o.3 and
the two angular momentum operators 4& and 8& as fol-
lows:

The internal angular-momentum operator of the three-
particle system is Ls ——E2 + E3 Note t.hat Is and Ls,
commute with A(3), 82, L3 and K3.

The 3(N —1)-dimensional Laplace operator, describing
the internal kinetic energy of the N-particle system, is a
sum over the three-dimensional Laplace operators that
act on the coordinates p2, p3, . . . , p~,

. (
&( ) =).&,, =):I&,, ——,~!

i

2E &* )
(14)

This N-particle Laplace operator can be expressed by
means of the recurrence relation

8 1 -2 1 -2
K3 = —

2
—4 cot(2as) + I2 + 2 E3.

190.'3 as cos a3 s111 a3

(13)

(17)
02 3N —4 8

~(~) ~(N) 7(1V)

K~, the N-particle hyperspherical angular-momentum

operator, can be expressed in terms of K& 1 and E~ as
follows [8]:

c)2 3N —9 —(3N —5) cos(2aN) c)
K~ ———

2 +
slI1(2aN ) Bo,'~

1 1 A2+ 2 N 1+ ~ 2 — N&cos QN sin Q~

where we de6ne K22 = Ez. The internal N-particle
A A

angular-momentum operator is L~ ——L~ 1 + Z~. The
operators K& 1, 8&, K&, I» and L~, commute with
each other.

In the Enal paragraph of the preceding section we con-
structed the set of N-particle hyperspherical coordinates
in terms of the hyperspherical coordinates correspond-
ing to the 6rst N —2 particles, and the hyperspherical
representation of the Jacobi coordinates of the last two
particles, p& 1 and p~. In this scheme the N-particle
Laplace operator has to be expressed in terms of the
Laplace operators corresponding to the two subsets of
particles speci6ed.

Applying Eq. (15) twice and using Eqs. (6) and (7) we
obtain the following expression for the N-particle Laplace
operator:

(H) f f~ Q)
F(

+(N —2)

K + (6,— I f+(4
N —2) k ~N 1) ( ~N—

1 -2 1
K~ 2 + D~~, ~ —

2 KPf 1' +"(&) 2 K~ .
N —2) N —1,N "(N)

(19)

The structure of the operator b,„~,~ is analogous to that of 4„„, [Eq. (12)], substituting rN I N for r(3). The
expression for the hyperspherical angular-momentum operator KN2 1 N is similar to the expression for K2 [Eq. (13)],
where the hyperangular coordinate is a~ 1 ~ and the two angular-momentum operators are referred to the Jacobi
coordinates p~ 1 and p&, i.e.,

N —1,N-
N —1,&

|9 1 1—4 cot(2aN 1 N) +
c)aN I,N cos (aN —1—,N) sin (aN I N)

(20)

The expression 6nally obtained for the N-particle hyperspherical angular-momentum operator is



836 AKIVA NOVOSELSKY AND JACOB KATRIEL 49

c) 3N —9 —(3N —5) cos(2n~) c) 1 - s 1
KN ———

OO!N sin(2n~) Bo.'N cos 0!N sjn
+ 2 I N 2+ ~ 2 I KN —1N~ (21)

where ceIv was defined in Eq. (7). Note that this expression is similar to Eq. (18) where n~, K~ i, and I~ are
replaced by a'N , K~ s, and Kev i ~, respectively. Actually, comparing Eq. (16) and Eq. (19) we note that K)v and

KN are expressions for the same operator in terms of different sets of coordinates.

IV. THE HYPERSPHERICAL FUNCTIONS

The angular part of the internal state for two particles
is described by the spherical harmonic Ye, , (02). While
permutational symmetry adaptation will only concern us
in Sec. VII, we point out in passing that the two-particle
state belongs to the irrep [2] of the symmetric group S2 if
E2 is even and to [ll] if E2 is odd. Adding one more parti-
cle belonging to the state Ye, , (Os) we form the three-
particle state OI.,M, .e,e, (A(s)), which is an eigenstate of

the operators Sz, E3, L3, and L3, . This three-particle
state is obtained by conventional angular-momentum
coupling of the states Ye, , (02) and Yea, (As),

4 Q M e e (B(s)) = ) (e2 m2Esms 1LsMs)
mQ 7m3

x Ye, , (02)Ye, , (As), (22)

@K;e,e, (as) = Ns(Ks, Esses) (sin cis) '(cos ns) '

xP„', '' ' ' (cos(2ns)), (23)

where P„,' '' ' ' is the Jacobi polynomial, p3 is a non-
negative integer and

K3 —2P3 + E2 + E3 (24)

The normalization constant is [8]

1

(2K, +4)ps!I'(ps+/s+E, +2)
. 1'(S s + &. + —,') f'(Vs + &. + —'.)

(25)

The eigenvalues of K3 corresponding to the eigenfunc-
tions (23) are Ks(Ks + 4), where Ks & E2 + Is & 0 and
has the same parity as E2 + Is [cf. Eq. (24)].

The hyperspherical function for three particles, which
is an eigenfunction of K3 as well as of L3, is obtained by
multiplying the function (23) by the function (22),

X!Je, ) (~1(s)eis) = @K,;e,e, (os)@'I.,M„e,e, (~(s)). (26).
The symbol [Ks] stands for the aggregate of five good
quantum numbers K3, L3, M3, Z2, and 83, which com-

in which only the single-particle angular coordinates 02
and As are involved. Recall that B(s):(Bz Os}.

The eigenfunctions of Ks2, Eq. (13), are functions of
the hyperangular coordinate ns [Eq. (2)] and depend on
the value of the quantum number K3 as well as on the
values of Es and Kz(= Ez), as follows [8]:

@L,.M. ;ec.L,.e. (&(4)cps) = ) (LsMs&4m41L'4M4)
M3, m4

xP!K,) (O(s) o.s)Ye, ~, (04). (27)

This function has seven (internal) coordinates, i.e. , 02 =
(02, Ps), Os —(Os Ps) ~s and 04 ——(04, P4).

As a second step we use the transformation (3) and
construct the eigenfunctions of the hyperangular momen-
tum operator K4s [Eq. (18) for N = 4] [8],

@~,.e, ~, (n4) = P/4(K4 , 84Ks)(sin n4) '(cos .o4)
E +-'- K +2x P„, ' '

( cos(2ce4)), (28)

E, +-', ,K +2 .
where P~4 ' ' is the Jacobi polynomial, p4 is a non-
negative integer, and

pletely label the state since there are five (internal) co-
ordinates, i.e., 02 = (82, P2), As ——(t)s, Ps), and ns.

The construction of basis functions that belong to well-

defined irreps of the symmetric group S3 will require the
formation of linear combinations of the functions (26)
with common values of K3, L3, and M3. For E2 and E3

we will have to allow all values that are consistent with
the values of K3 and L3 specified, and such that E2 is ei-

ther always even or always odd (i.e. , all the two-particle
states belong to the same irrep of Ss). Consequently, Ks,
L3 and M3 remain good quantum numbers after the per-
mutational symmetry adaptation, but instead of 82 and
g3 we have the Yamanouchi symbol Y3 as well as the ad-
ditional multiplicity label, Ps. This step will be discussed
in detail in Sec. VII, but it is convenient to think about
[Ks] as standing for Ks, I.s, Ms', E2, Is before the permu-
tational symmetry adaptation and for Ks Lfs Ms Ys Ps
following it. From the point of view of the present sec-
tion, g!Ic,)

in either sense is suitable as a parent state for
constructing the four-particle hyperspherical functions.

In view of the fact that for two-particle states the
angular momentum Z2 and the hyperspherical angular
momentum Kq coincide, the discussion presented above
does not exhibit the generic characteristics of the recur-
sive construction of hyperspherical functions in general.
We therefore proceed to describe the formation of the
four-particle hyperspherical functions.

Starting from any three-particle function correspond-
ing to a given set of quantum numbers K3 and L3 we

construct a four-particle hyperspherical function by cou-

pling that function to the function Ye, , (04). This is
done in the following three steps. First, by using the

O(3) Clebsch-Gordan coefficients we couple the angular
momenta L3 and f4 and obtain
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K4 ——2p4+ K3+ E4 .

The normalization constant JV4(K4, 84Ks) is [8]

(29)

Af4(K4., /4Ks) =
1

(2K +7)p !r(p, + I +. K + -)
I (&4+ &4+ —,')r(&4+ K. + 3)

(30)

The eigenvalues of K4 corresponding to the eigenfunc-
tions (28) are K4(K4 + 7) where K4 ) Ks + I4 ) 0 and
has the same parity as Ks + /4 [cf. Eq. (29)].

Having obtained the functions 4L, M, .K,L,I, (27) and
111K,.I,K, (28) we can construct the functions /[K, ] as the
products of these two functions,

X[K4](A(4)c1(4)) —@K4,I4Kp (~4)@L4M4 ,KgLgI4 ('A(4) o'3) ~

(31)

where [K4] stands for K4, L4, M4, Ks, Ls, /4, as well as
either /2 and Es or Ys and Ps, depending on the three-
particle function we started &om.

Assuming that permutational symmetry adapted

/[K, ]'s were used, we can now symmetry-adapt to S4.

This is achieved by forming appropriate linear combi-
nations of +[K,]'s with common values of K4, L4, M4,
and Y3 but summing over the remaining quantum num-
bers. When this is completed [K4] should be interpreted
to stand for K4, L4, M4, Y4, and P4, where Y4 is the
S4 Yamanouchi symbol and P4 is the further multiplicity
label.

To formulate the general recursive procedure for the
construction of the N-particle hyperspherical function let
us assume that the (N 1)-p—article functions /[K, ]

are
already available. These functions possess well defined
hyperspherical angular momentum KN 1, total angular
momentum LN i, and z-component MN i. Assuming
that they have been symmetry adapted to SN i, they
have as additional quantum numbers the Yamanouchi
symbol YN 1 and the multiplicity label PN 1, but these
are for the time being irrelevant. The functions /[K
depend on the set of single-particle angular coordinates

O(N i) as well as on the set of hyperangular coordinates

~(N —1)
The N-particle hyperspherical function /[K ]

is now
obtained in the following three steps. First, we couple
the function /[K, ]

and the function YI (AN) to
obtain the function 41,~M~.~~ 1L,~ 1/~)

Lx MN;Kp( g Lx grw (A(N) &(N —1)) ) (LN 1MN 1INmN ILNMN) 3 [K ] (A(N 1)Q(N 1))YI, (AN ) ~ (32)
M~ 1,m~

Second, using the transformation (4) in the subspace of the coordinates (r(N 1), pN):—(r(N), nN), we construct
A

the orthonormalized eigenfunctions of the hyperspherical angular-momentum operator KN2 (18),

(QN) = JUN (KN', INKN 1)(S111(XN) (cos AN) 'P " ' ' (cos(2nN)), (33)

where p,N is a non-negative integer,

KN = 2PN+KN g+&N, (34)

and the normalization coefficient is [8]

&N(KN, &NKN ) = (2KN + 3N 5)PN r(PN + KN 1+~N + 2 )—
r(PN + EN + —,)r(PN + KN, +, )

The appropriate eigenvalues of the operator KN2 (18) for the eigenfunctions (33) are

KN(KN + 3N —5), (36)

where KN & KN (+EN ) 0 and has the same parity as KN z+XN.
Finally, we construct the functions +[K ]. These are the N-particle hyperspherical functions which are coupled to a

total angular momentum LN. They are products of the two functions 4L~M~, K~,L,I, Eq. (32), and 111K~,&~K~
Eq. (33),

X[K~](A(N) +(N) ) = @K~.,I~K~ g (+N) OL Mg;K~ L~ pl~ (A(N) &(N —1)) ~ (37)

where [KN] stands for KN, LN, MN, KN 1, LN 1, IN and YN 1, PN 1. The hyperspherical functions +[K ] defined
in Eq. (37) form a complete and orthonormal set of functions that satisfy [9]

9 [K ] I+[K' ]) [K&],[K' ] ~K,K& 4&,L' ~M&,Mz ~K+,KQ ~L&,I' 't1I&,I.' ~Y,Y' ~P,P' (38)
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The construction of many-particle hyperspherical func-
tions can be represented by using the "tree" diagrams
introduced in Ref. [10]. The sequential coupling scheme
formulated above is presented in Fig. l. Each segment in
this "tree" connects two nodes, except the top segments
which connect single-particle nodes with Cartesian com-
ponents of the corresponding Jacobi coordinate. Each
segment is called a propagator, and with each node we
associate an angle. A propagator that extends to the
right (left) upward from a node corresponds to the cosine
(sine) of the angle. The components of the Jacobi coor-
dinates in the "tree" are obtained by taking the product
of r~Nl, Eq. (5), with all the appropriate cosine and sine
functions, starting &om the vertex at the bottom of the
diagram. Further, the quantum number associated with
each node is presented. The rules for obtaining the hyper-
spherical functions &om the "tree" are given in Ref. [10].

The sequential scheme described above is one of many
available routes for constructing the eigenfunctions of
K&. In Sec. III we described the alternative route, in
which the last two Jacobi coordinates are grouped to-
gether, separately &om the first N —3 Jacobi coordi-
nates. The eigenfunctions of the hyperspherical angular-
momentum operator KN i N [defined in Eq. (20)] are

@K~,~,r„z~, (&N —i,N)

,N(KN, N, 44 )—
X(»»N —i, N) (cos oN —1,N)

xPp~ q ~ (cos(2(1N i N)),

where KN qN ——2pN q ~+ Z~ + LN q and p~ q ~ is
a non-negative integer. These functions are similar to
the functions (23) where o.s, Ks, ps, Is, and E2, are re-
placed by n~ g N, K~ g ~) pN g ~) 8~) and E~ g) re-
spectively. Using these substitutions we obtain the nor-
malization constant JUN i N(KN i N, ENON i) from the
expression for Al s(Ks', EsE2) [Eq. (25)].

The hyperspherical functions for N particles, that
are the eigenfunctions of the hyperspherical angular-
momentum operator KN (=KN) [cf. Eq. (21)], are
constructed from the hyperspherical functions of the

PN

y Z y

PN-i

y

pg

y r

first N —3 Jacobi coordinates, @KN „g~ 2K„,(nN 2),
and the functions of the last two coordinates
@K ~;S„l~,(AN i N) [Eq. (39)] as follows:

KNiKN —1,NKN —2 ( N)

—+N (KN i KN 1,NKN 2)— —

x sin 0!N ' cos 0'~

)(P + ++ ' + 2+ 2 (cos(2ol ))~1V
(40)

where KN ——2p'& + KN 2+ KN q ~ and p~ is a non-
negative integer. This expression is similar to Eq. (33),
replacing o'z, pN, SN, and KN z by o'» p'z, KN l,p/)

and K~ 2, respectively. Using these substitutions we ob-
tain the normalization constant A/N(KN' , KN i,NKN 2)
from the expression for Al'N(KN, ENKN i) [Eq. (35)].
In addition to these substitutions, the correct form of
the Jacobi polynomial and of the normalization constant
in Eq. (40) require the addition of the constant 2 to
KN i N and its subtraction from KN 2 [8]. The "tree"
structure corresponding to this hyperspherical coupling
scheme is presented in Fig. 2.

FIG. 2. The "tree" structure that represents the scheme
for constructing the eigenfunctions of the hyperspherical an-
gular-momentum operator K~. The last two particles are
coupled to one another before they are coupled to the rest of
the system.

PN

y z Z, y y

p v

y y .r
V. THE RAYNAL-REVAI AND THE T

COEFFICIENTS

FIG. 1. The "tree" structure that represents the scheme
for constructing the eigenfunctions of the hyperspherical an-
gular-momentum operator K~. The particles are added se-
quentially.

The hyperspherical functions, as constructed in the
preceding section, depend on the choice of the Jacobi
coordinates, Eq. (1), as well as on the order chosen for
coupling the various single-particle functions. In subsec-
tion A of the present section we consider the transforma-
tion of the set of hyperspherical functions which results
kom transforming between different sets of Jacobi co-
ordinates. This transformation is effected by means of
the Raynal-Revai coefficients [11—13). In subsection B
we discuss the transformation between the two sets of
hyperspherical functions corresponding to two different
coupling schemes, that is effecte by means of the T co-
efficients [14,15].
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A. The Raynal-Revai coe8icients
To enable the transformation between the sets of hy-

perspherical functions obtained for the same physical
system using different choices of Jacobi coordinates we

use the Raynal-Revai coefBcients. These coefBcients are
needed in the present context in order to apply parti-
cle permutations to the hyperspherical functions. Such
permutations give rise to transformations of the Jacobi
coordinates that can equivalently be described in terms
of appropriate rotations.

As was pointed out at the bottom of Sec. III the N-
particle hyperspherical angular-momentum. operator K&
is independent of the set of the angular coordinates O~N ~

and of the choice of single-particle ordering or of group-
ings of subsets of particles assumed in the construction
of the Jacobi coordinates.

Let us consider the two Jacobi coordinates p~ ~ and

pN . The hyperspherical functions constructed from
these two Jacobi coordinates are uniquely speci6ed by
the quantum numbers EN z, ZN, KN z ~, L~ q ~, and
M~ ~ ~ (as was explained in the preceding section).
These hyperspherical functions can be expressed in terms
of the hyperspherical functions depending on two differ-
ent Jacobi coordinates p~ ~ and p~, that are related to
the 6rst two by means of a rotation by an angle p, by
using the Raynal-Revai coefficients [11—13], as follows:

&K-,~1~ ,NM -, ) =—).(&~ &I&l-&'x &' )~-, I, . I&' &4K — , I ——,M — .N)
e'„,e'„

(41)

where the sum is restricted by the relation ~lIv z
—E~] &

L~ y, ~ & EN + 8~ & K~ y, N such that S~ + S~
has the same parity as KN q N. Note that the quantum
~umber~ KN ~,~ and I~ ~,~ (» well » M~ ~,N)»e
common to both sets of hyperspherical functions, as was
explained above.

The Raynal-Revai coeKcients defined by Eq. (41) can
be expressed in terms of the harmonic-oscillator Talmi-
Moshinsky brackets [12]. Using this relation, an ana-
lytic expression for the transformation brackets for hy-
perspherical functions was obtained by Raynal and Re-
vai for three particles [11,12]. A generalization to four
particles was studied in Ref. [13]. This generalization is
not required in our present context.

B. The T coefBcients

The T coeScients are the recoupling coefficients that
enable the expression of a hyperspherical function ob-
tained by coupling of three subsystems in a particular
order in terms of the set of hyperspherical functions de-
scribing the same composite system, obtained using a
different coupling order [14,15].

According to the sequential scheme speci6ed in the
preceding section the functions of the Nth particle are

I

I

coupled to appropriate (N —1)-particle hyperspherical
functions, Eq. (33). The alternative scheme, in which
we couple the hyperspherical functions of the last two
particles to suitable (N —2)-particle sequentially cou-
pled hyperspherical functions, results in a different set of
N-particle hyperspherical functions, Eqs. (39) and (40).
The transformation between these two coupling schemes
is the case which is relevant to our present problem. In
other words, we are interested in the transformation from
the "tree" structure in Fig. 1 to the "tree" structure in
Fig. 2. This transformation is effected by means of the
T coefficients (of type F) introduced in Ref. [14]. The
transformation is presented in Fig. 3 which is the 6gure
of case F in Ref. [14]; Only the relevant parts of the two
"trees" are plotted.

Let us assume that the hyperspherical functions pre-
sented by Figs. 1 and 2 have been constructed &om the
same (N —2)-particle hyperspherical function, which had
been symmetry adapted to S~ 2. Therefore, both hy-
perspherical functions have the same quantum numbers
K'N —2 ) LN 2 ) the Yamanouchi symbol YN 2, and the
multiplicity label PN 2. All the relevant angular mo-
menta, i.e. , EN ~, LN, and L~ are also the same for both
hyperspherical functions. In this case we can express the
hyperspherical function of Fig. 1 in terms of those of Fig.
2 by using the appropriate T coefBcients, as follows:

]KN ~N +& p&, ~&——K& —+N, ~&KN +N—MN )

) (KN 1,N ~KN, ~¹~pT 1—KN 2~KN 1)~K—N 2+N—2—+N 2pN , (~N —~Q—)K—Q —1,N—KNIINMN).
+N —1,N

(42)

The summation over K~ q ~ is subject to the restriction
(E~ + E~ q) ( K~ z ~ ( (K~ —K~ 2), where the
parities of K~ q ~, (K~ K~ 2) and (E~+E~—q) should
be the same.

I

The two intermediate quantum numbers, which di8'er
in the two parts of Fig. 3, appear in the "bra" and the
"ket" of the T coefficient in Eq. (42). Between the "bra"
and the "ket" we write the quantum number that appears



AKIVA NOVOSELSKY AND JACOB KATRIEL 49

FIG. 3. A schematic representation of the T coefficient be-
tween the "tree" of Fig. 1 and the "tree" of Fig. 2. Only the
relevant parts of the two "trees" are plotted. The two-headed
arrow points to the two difFerent intermediate quantum nuxn-
bers.

in the vertex of both "trees", K~, followed by the three
quantum numbers of the three subsystems, 8~, E~
and K~ 2. The analytic expression for this particular T
coefficient is given in Ref. [15].

decrease upon addition of a particle.
As long as particles with spin 2 are considered we could

confine our attention to irreps of the symmetric group
with at most two columns, as these can be coupled with
corresponding spin functions belonging to the adjoint ir-
rep (in which columns are turned into rows) to obtain
total wave functions which are properly antisymmetric.
Since we gain very little by making this restriction we

shall consider the most general case.
The central idea is that we obtain the N-particle sym-

metry adapted wave function starting from an (N —1)-
particle wave-function that is characterized by means of
a Yamanouchi symbol Y~ q, or, in other words, that be-
longs to a sequence of irreps I'2, I'3, . . . , I'~ ~ of S2 C
S3 C . C S~ q. Such a function is fully characterized
by being a common eigenfunction of the transposition
class sums [(2)]2, [(2)]s, . . . , [(2)]~ q where

VI. PERMUTATIONAL SYMMETRY
ADAP TATION

In the present section we consider the construction of
spatial wave functions with arbitrary permutational sym-
metry. Symmetry adaptation with respect to the sym-
metric group S~ is achieved by diagonalization of the
transposition class sum, [(2)]~, which is defined below,
within an appropriate invariant subspace with respect to
S~ [16]. In all variants of this procedure one applies the
fact that [(2)]~ commutes with the N-particle angular-

momentum operator L~~~ and with its z-component

L~~~, , as well as with the center of the symmetric sub-

group S~ q. This allows the construction of invariant
subspaces with respect to S~, each of which is speci-
fied by a given Yamanouchi symbol Y~ ~ with respect
to the group-subgroup chain S~ q ~ S~
These labels are not suKcient to specify a finite invariant
subspace. This is a consequence of the fact that angular-
momentum coupling allows a given N-particle angular
momentum to be obtained starting from arbitrarily high
values of the (N —1)-particle angular momentum, pro-
vided that the Nth particle coupled to it has a sufFiciently

high angular momentum.
In the conventional shell-model approach the N-

particle invariant subspace is kept finite by allowing
the single-particle angular momentum to obtain a given
unique value, or at most a small set of values correspond-
ing to the shells which are allowed to be occupied [16].

In the harmonic oscillator basis one uses the fact that
the Hamiltonian commutes with the N-particle total an-
gular momentum as well as with the elements of S~.
Consequently, any subspace specified by a specific eigen-
value of the harmonic oscillator Hamiltonian is invariant
with respect to S~. These subspaces are finite dirnen-
sional [7].

In the hyperspherical basis it is the specification of
the quantum number K~, corresponding to the N-
particle hyperspherical angular momentum, which pro-
vides finite-dimensional N-particle invariant subspaces
with respect to S~. This is due to the fact that the
hyperspherical angular momentum, like the total energy
and unlike the total spatial angular momentum, cannot

[(2)], = ). (~ i)
i )i
i=2

This is a consequence of the following two facts:

a. The irreps of the symmetric group S~ are simply sub-
ducible with respect to the sequence S~ ~ S~
~ ~ 0 Q S2

b. The eigenvalue of [(2)]~ is sufficient to characterize
the irrep to which a function belongs, given that it
belongs to some definite irrep of S~

The eigenvalue of [(2)]~ corresponding to a given irrep
of S~, which is represented by the Young diagram I'~,
can be written in the following two equivalent ways:

—) A, (A, —2i +1)

(44)or

) 0-'),
'E)gpss ~

where i and j are the row and column indices of the N
boxes of the irrep I'~ and A; is the number of boxes in
the ith row.

Starting from a given irrep of S~ z, represented by
the Young diagram I'~ q, and adding one box we obtain
Young diagrams I'~ corresponding to distinct eigenvalues
of the transposition class sum; cf. Eq. (44). In fact, the
eigenvalues corresponding to the Young diagrams I'~
and I'~ differ by the "content" of the box which was
added to I'~ q in order to form I'~', the "content" being
the difference j —i between the column index j and the
row index i of that box.

The actual symmetry adaptation will take place by di-

agonalizing [(2)]~ within a finite invariant subspace with
respect to S~, which consists of functions that belong to
a given Yamanouchi symbol Y~ q and that are coupled
into some total angular momentum L~ and some total
hyperspherical angular momentum K~.

The calculation of the matrix elements of the operator
[(2)]~ within this set of states reduces to the calculation
of the matrix elements of the transposition (N —1, N).
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This results &om the recurrence relation

N —1

[(2)]& [(2)]&—& + ) (L~ N)~ (45)

since the basis functions are eigenfunctions of [(2)]~
and the matrix element of the sum P,. & (i, N) can be
expressed in terms of the matrix elements of (N —1,N)
using the relation obtained in Ref. [16],

N —z N —1
(I'N —~l ).(' N)ll'Iv — ) = ~r „r„, ) (Yiv 2I'N g)(N —1, N)(Y~ 21'~,).

i=1 ~N —1
&)V —2 6~~

(46)

The sum on the right-hand side of Eq. (46) ranges over
all the Yamanouchi symbols YN 2 which can give rise to
I'N q by adding a single box. np, is the dimension of
the irrep I'N

VII. PERMUTATIONAL SYMMETRY ADAPTED
HYPERSPHERICAL BASIS FOR THREE

PARTICLES

In Sec. IV we mentioned that the spherical harmonic
functions Yg, , (02) describe the angular part of the in-
ternal state for two particles. The angles 02 ——(tI)2, P2)
correspond to the coordinate p2 ——~ (r2 —rq), that2

changes sign when the transposition (1,2) is applied.
Therefore, when we apply the transposition (1,2) to the
function Yg, , (02) it is multiplied by the phase (—1) '.
(Note that for two particles E2 ——L2 ——K2.) Conse-
quently, all the functions with even (odd) values of I2
belong to the symmetric (antisymmetric) irrep [2] ([11]).
The two-particle states will be written as

~~, ,1',) —= IL M, Y,), (47)

where I'2 is either [2] or [ll] and the distinction between
I'2 and Y2 is formal.

The construction of three-particle hyperspherical func-
tions that possess a well-defined permutational symme-
try was alluded to in Sec. IV. Starting &om two-particle
functions that belong to a given Yamanouchi symbol Y2
we couple the third particle, described by the function
Y), , (Qs), and obtain states with total angular momen-
tum Ls as in Eq. (22). We then use the Jacobi polynomial
and obtain three-particle states with good quantum num-
bers Ks [see Eq. (23)]. In this way we construct three-
particle states with the good quantum numbers K3 L3,
M3, and Y2,

~(L, ;e,)K,L,M, Y.) . (48)

While these states do not belong to an irrep of the
symmetric group S3, it follows from the fact that K3,
L3 l/3~ and the class sums of the symmetric group al-
gebra all commute, that the complete set of states with
given eigenvalues K3, L3, M3, and Y2 form an invariant
subspace with respect to Ss. It follows from Eq. (24) that
this subspace is finite dimensional.

In order to construct three-particle states with well
defined permutational symmetry we have to diagonal-
ize the matrix of the transposition class sum [(2)]s

= (—1) 'br„ I, hg, g . (49)

According to Eq. (46) only the matrix element of the
transposition (2, 3) between the states (48) has to be cal-
culated. This transposition acts on the Jacobi coordi-
nates p2 and ps [Eq. (1)] in the following manner [15]:

(2 3)
I

( p

E~s 1 ~E»r
2 2

(50)

This operation is actually a rotation by the angle 3 in
addition to a re8ection of the coordinate p3. The rotation
of the coordinates for hyperspherical functions is achieved
by using the Raynal-Revai coefficients (41) whereas the
reHection of the coordinate ps yields the phase (—1) &.

Therefore, the matrix element of the transposition (2, 3)
in the basis states (48) is

The eigenvalues of the matrix that represents the class
sum [(2)]s within the invariant subspace defined above
assume the values 3, 0, and —3, corresponding to the
Ss irreps [3], [21], and [ill), respectively [see Eq. (44)].
Actually, if we start from the S2 irrep [2], adding one box
will only provide the irreps [3] and [21]; starting from
[ll] we can only get the irreps [21] and [ill]. Since the
eigenvalues corresponding to different irreps are distinct,
they identify the Ss irreps uniquely. The eigenvectors
are the hscfps, which are the coefBcients in the linear
combination of the states (48) that yield three-particle
states belonging to an irrep of S3,

~KLMYI'P)= ) [(L;k)KLY~)KLYP]
L2,E3

X
~ (L2 j ~3) K3L3M3Y2) ~ (52)

(1,2) + (1,3) + (2, 3) [see Eq. (43)] within that invari-
ant subspace. All the states of interest are eigenstates of
[(2)]2 ——(1,2) with a common eigenvalue, 1 or -1 for the
irreps [2] or [11],respectively [Eq. (44)]. Therefore, the
matrix element of the transposition (1,2) is diagonal in
our basis states and its expression is

( (L2 j ls) KsLsMs Y2
~ (1, 2)

~ (L2; Es) KsLsMs Y2)
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The range of the summation indices is restricted by the
requirements that L2 has a well defined parity and that
L2 + ls & Ks. In fact, from Eq. (24) it follows that the
parity of 83 is also well defined by the requirement that
L2 + 83 and K3 should have the same parity. Another
restriction results from the coupling of the angular mo-
menta E2 and Is to Ls, i.e., [E2 —Es( & Ls & E2+ ls. The
label Ps in Eq. (52) is needed for unique identification
of the symmetrized three-particle hyperspherical states
since the quantum numbers K3, L3, M3, and Y3 do not
completely label these states.

VIII. PERMUTATIONAL SYMMETRY
ADAPTED HYPERSPHERICAL BASIS FOR N

PARTICLES

We now present the general recursive procedure for
constructing N-particle hyperspherical functions, that
possess a well-defined permutational symmetry. Suppose
that a complete set of (N —1)-particle states have been
obtained, each of which is characterized by a Yamanouchi
symbol YN» specifying its permutational symmetry, as
well as by the quantum numbers KN» LN» MN
(We also need an additional label PN q in order to distin-
guish between states with common values of the quantum
numbers mentioned above. )

Let us consider all the (N —1)-particle states with
the same Yamanouchi symbol YN j, i.e. , (N —1)-
particle states which are labeled by the sequence of
Young diagrams I'2, I'3, . . . , I'N q that correspond to the
groups S2, S3, . . . , SN» respectively. As above, we add
the ¹hparticle, which is described by the function
Yg~ ~ (ON), in two steps. First, using the O(3) Clebsch-
Gordan coefficients we obtain states with total angular
momentum LN as in Eq. (32). In the second step we use
the Jacobi polynomial and obtain N-particle states with
good quantum numbers KN [see Eq. (33)].

In this way we construct N-particle states with the
good quantum numbers KN, LN, MN, and YN

~ (KN —1LN —1YN 1PN —1I ~N)—KNLNMN) ~

These states do not belong to an irrep of the symmetric
group SN, but they form an invariant subspace with re-
spect to this group. By Eq. (34), this invariant subspace
is finite dimensional. In order to obtain the linear com-
bination of these states, that belongs to a well defined
irrep I'N of SN, we have to diagonalize the N-particle
transposition class sum, [(2)]N, Eq. (45).

Actually, according to Eq. (45), [(2)]N can be written
as a sum of two terms. The first term, [(2)]N q, is diag-
onal in the basis states (53) because they belong to the
same Young diagram I'N» The matrix element of this
operator in the basis states (53) is

((KN LN YN —PN —~N) —KNLNMN([(2)]N ((K„',L'N— ,YN PN, ; &'N)KNLNMN)

(N —1,N) iEPN)

( N —1

QN~ —2N
N —1

QN2 2N—
(55)

PN )
N —1

This transformation is equivalent to a rotation by an an-

gle arccos N z, preceded by a re8ection of the coordi-

nate pN, which yields the phase factor (—1)~~.
In order to calculate the matrix element of the trans-

This equation is the generalization of Eq. (49) to N
particles.

The second term in Eq. (45) requires the calculation of
all the matrix elements of the transpositions (i, N), where
i = 1, 2, . . . , N —1. However, according to Eq. (46) it is
sufficient to calculate the matrix element of the trans-
position (N —1,N). This operator acts on the Jacobi
coordinates pN ~ and pN as follows [15]:

position (N —1, N) in the basis states (53) it is necessary
to separate the last two particles, i.e., the (N —1)th and
the Nth particle, &om the first N —2 particles. This is
carried out in the following steps (steps 2—4 have already
been discussed in Ref. [15]):

(1) We use the (N —1)-particle hscfps in order to write
the (N —1)-particle permutational symmetry adapted
function as a linear combination of functions, each of
which is an eigenfunction of KN 2, LN 2, and EN z in

addition to being an eigenfunction of KN ~, LN
and being coupled with the Nth particle function into an
%-particle function which is an eigenfunction of KN and

N
(2) Using the 6j symbol we recouple the angular mo-

menta, starting &om the scheme in which LN 2 is cou-
pled with EN q to LN» that is then coupled with SN to
LN, into the scheme in which ZN q and SN are coupled
to LN q N, that is then coupled with LN 2 to LN.

(3) The initial hyperspherical angular-momentum
scheme, in which we have KN 2, KN» and KN as good
quantum numbers is recoupled into the scheme in which
the good quantum numbers are KN 2, KN q N, and KN.
The transformation of the "tree" structure is eKected by
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using the T coefficients (42) as presented schematically
in Fig. 3.

(4) Using the Raynal-Revai coefficients we apply the
rotation (55) on the coordinates pN 1 and pN and mul-

tiply the resulting expression by the phase factor (—1)r~.
Using the orthogonality of the N-particle states (38) we

finally obtain the matrix element of the transposition
(N —1, N) in the form

((KN 1LN 1YN 1PN 1., EN)KNLNMNI(N —1,N)l(KN, LN, YN 1PN i, k'N)KNLNMN)

1

(—1) ~ (2LN 1+ 1)(2LN 1+ 1)) '

x ) ) [(KN 2LN —2YN —2PN 2—~ ~N —1)K—N 1LN —1
I
}—KN 1LN —1YN— 1PN—1]—

KN —,LN —2 13N — ~N — ~N —1

x [(KN 2LN 2 YN 2pN 2,'EN 1)KN, LN il}KN—1N —1N 1—PN 1]—
gl gI

X I2LN ~ N+ 1) LN —2 LN LN —1 LN —2 LN I

~N —1,N

) ( N i,NIKN, 4,4 1, N -2I N 1-)( N -i,NIKN-, &'N, N 1, N-2IKN 1)
KN —1,N

"(&K-~~KIIK««'( II~K I~K)K I—. .,..
N —1&

(56)

~N —1 I
& LN 1,N & ~N—+ ~N 1&—

—I.',
I
&LN, N &E'

LN 2I & LN 1,N & LN——+LN 2. —

(57)

Similarly, the sum over KN q N is subject to the three
restrictions that result &om the properties of the Jacobi
polynomials [see the explanation to Eqs. (39) and (40)],
which can be written as a single condition,

((~ +~ —) (~' +~' )}

KN 1,N (KN KN 2)—~ (58)—

The T coefficients and the Raynal-Revai coefficients
used in this equation were presented in Sec. V. The sum-
mation is carried out over all the hyperspherical functions
which belong to the irrep I'N 2 and which constitute the
symmetrized hyperspherical functions for N —1 particles,
for the "bra" and the "ket" states of Eq. (56). The sum-
mation over the quantum number LN j N is subject to
the following three restrictions:

In addition, the parity of EN ~ N, EN + SN ~, ZN +
E'N 1, and KN —KN 2 should be the same. (This is an
additional condition on the values of /N 1 and E'N 1).

Inspection of the expressions for the matrix elements
in Eqs. (54) and (56) suggests that for N particles the
hscfps depend on the given Young diagrams I'N and
I'N q but not on the complete sequence of diagrams
r„r3 ~ I N 2 Therefore, the Yamanouchi symbols
YN 2 and YN 1 in the hscfps in Eq. (56) can be re-
placed by the Young diagrams I'N 2 and I'N q, respec-
tively. Moreover, the sum over YN 2 in Eq. (46) is dras-
tically simplified by replacing it by a sum over the Young
diagrams I'N 2 obtained &om the given Young diagram
I'N q by deleting a box, and multiplying each term by

n& —the degeneracy of the irrep I'N 2 in SN

By using Eqs. (46), (54), and (56) we obtain the matrix
representing the transposition class sum (45) in the basis
set specified in Eq. (53). Its eigenvalues (44) uniquely
specify the Young diagrams IN that can be obtained
&om the Young diagram I'N 1 by adding one box. The
eigenvectors are the hscfps; they are the coefficients in the
linear combinations of N-particle hyperspherical func-
tions (53) that belong to well-defined irreps of SN,

IKNLNMNYNPN) =
&N —Z,JN X,PN

[(KN LN 1I'N PN 1~N—)KNL—N I
}K—NLN—I'NPN]

x
I (KN 1LN 1YN 1PN 11I—N)K—NLNM— N). — (59)

The summation in Eq. (59) is carried out subject to the condition that all the (N —1)-particle states belong to the
irrep I'N i. Since pN in Eq. (34) is a non-negative integer we obtain that KN 1+IN & KN where KN and KN 1+IN
have the same parity. Furthermore, ILN —EN

I
& LN 1 & IN —EN

Since the hscfps are the orthogonal eigenvectors of a real symmetric matrix they satisfy the orthogonality relation
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,Ix,PN, &pr

[(KN —LN —rN p—N —~Q)KNLN ~}KNLNrNpN]

x [(KN 1L—N lr—N 1p—N 1~—N) KN LN ~}KNLNr+ pN] = ~r, r'„~p, p„' (6O)

as well as the completeness relation

) [(K„,I.„,r„,p „.z )z I ~}K L r p„] x[(K„',L'„,r,p„',;e'„)K I. [}K I. r p„]
~x,PN

=b b b b+N — + ~N — L' PN — P ~N (61)

When states with a given Young diagram I'~ can be obtained from more than one Young diagram I'~ q, our
procedure leaves the relative phases of these states undetermined. However, the derivation of Eq. (46), based on the
group theoretical orthogonality theorem, requires the following relation between states belonging to a particular irrep
r~, that originate &om two difFerent (N —1)-particle Young diagrams r~ q and r& ~ [17],

(K L M Y r~, r'rvP~~(N —1, N) ~K~L M Y I', I' P ) = 0 2 1
b b (62)

where 0 is the difFerence between the "contents" (cf. Sec. VI) of the boxes in which the particles N and N —1 are
placed in the Yamanouchi symbol YN = Y~ 2r~ qrN. We note that the range of values of P~ for the given set
of quantum numbers K~, L~, M~ depends only on I'N, and is common to all the states belonging to the different
values of Y~ q which are consistent with a given I'~.

By using the hscfps we can separate the N-particle states in both the bra and the ket of the matrix element (62).
Then, by multiplying with the hscfp

[(K„",L'„',r', p„",;I.'„')K L, ~}K„L„r'„p„']

on both sides of Eq. (62), summing over I'N and PIv and using the completeness relation (61), it follows that we can
express every hscfp originating from I'~

~ ~ I'~ as a sum over all the hscfps originating from I'~ i E I'~ multiplied

by appropriate matrix elements of the transposition (N —1,N):

[(K',L',r'„,p„',;~'„)K L ~}K L r p ]

[(KN LN rN pN— ~N—)KNLpg~}KNLNrNpN]

x ((z„',L,'„,rN, p„', ; I~)K~LN )(N —1, N) ((KN, L~,r~,pN, ; sN) K~L~). (63)

There is only one difference between the matrix ele-
ment of the transposition (N —1,N) in Eq. (56) and
that in Eq. (63). In the latter the two (N —1)-particle
Young diagrams are different whereas in Eq. (56) they
are the same. The expression for the matrix element in
Eq. (63) is obtained by replacing rN. q by rIv ~ in the
appropriate places in Eq. (56).

In conclusion, whenever the Young diagram I ~ origi-
nates from more than one (N —1)-particle Young diagram
we keep after the diagonalization of [(2)]~ only the set
of hscfps that originate &om ane particular I'~ q. I"or
definiteness we choose I'N q to be the diagram obtained
from I' by deleting a box from the top row, i.e. , with
highest possible "content. " The hscfps which originate
from the other (N —1)-particle Young diagrams are con-
structed with consistent phases, using Eq. (63).

IX. THE COMPUTATIONAL ALGORITHM

In the preceding sections we described the method of
diaganalizing the transposition class sum in the basis
states (53) in order to obtain nonspurious symmetry-
adapted %-particle hyperspherical functions. In this
method we calculate the matrix element of the transpo-
sition (N —1, N), Eq. (56), by using the hscfps for N —1
particles, that are assumed to have been calculated be-
fore.

To carry out the recursive algorithm systematically we
choose some maximum value K „ for the hyperspheri-
cal angular momentum. The value of K~~„chosen de-
termines the size and quality of the hyperspherical set
of functions constructed. Starting &om two particles,
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we construct all the states (47) with a hyperspherical
angular momentum not exceeding K . In this case
the allowed values of Z2 are 0, 1, 2, . . . , K . As we ex-
plained in Sec. V, the two-particle states with even E2

belong to the symmetric irrep [2] and the others to the
antisymmetric irrep [11]. Consequently, only values of
E2 (= K2 ——L2) with a parity that is consistent with the
desired Yq have to be considered.

The three-particle states (48) are constructed from
two-particle states that belong to a common permuta-
tional symmetry species. We add the third particle,
which is described by the quantum number Eg, and obtain
three-particle states labeled by the quantum numbers K3
and Ls (see Sec. VII). The set of states with common
K3 and L3 form an invariant subspace with respect to S3,
which is reduced by diagonalizing the transposition class
sum to obtain three-particle states with good permuta-
tional symmetry, along with the corresponding hscfps.

From the relation Ks ——2ys+K2+Es [Eq. (24)] where

p3 —0, &, 2, . . . , ] 2' J we conclude that the parity of Ks
should be the same as that of K2 + E3 ——82 + l3 and that
K2 & K2 + Es & Ks. In addition, we have ~E2

—I3~
L3 ( E2 + E3 and therefore L3 & K3. Since the parities
of K3 and E2 + E3 are the same, the minimum value of
~E2

—Es~, which is also the minimum value of Ls, is zero
for even K3 and 1 for odd K3. Another consequence is
that the possible values of 83 for given values for K3, L3,
and E2 are ]Ls —l2~ & ls & min(Ls+ l2, Ks —E2) where
the parity of 83 is the same as that of K3 —S2, i.e., we
have to consider either even or odd values of E3, but not
both at the same time.

Based on the above discussion we obtain the following
algorithm for constructing the three-particle hyperspher-
ical functions (48), starting from the irrep I'2 (either [2]
or [11] ) of S2.

(1) Consider alt the possible values for Ks within the
range min(K2 ——l2) & Ks & K

(2) For every given value of Ks consider all the possible
values for Ls within the range (0 or 1) & Ls & Ks.

(3) For any given selection of Ks and Ls consider all
the values of E2 with the parity corresponding to I'2.

(4) Construct the states (48) by taking into account
atl the possible values of E3 as explained above.

(5) Having constructed the basis states (48) for given
values of K3 and L3 diagonalize it as explained in Sec.
VII and obtain the appropriate hscfps.

The rules for the possible values of K3, L3, E2, and
83 straightforwardly generalize to an arbitrary number of
particles. From Eq. (34) it turns out that the minimum
value of K~ is the same as the minimum value of K~ q in
the appropriate I'~ q irrep whereas the maximum value
is the arbitrarily chosen K „. The values of I~ start
&om zero and cannot exceed the given value for K~. This
statement can be proved by induction: We have shown
that L3 & K3. Assume that L~ q & K~ q. Then, for
N particles we obtain &om Eq. (34) and from angular-
momentum coupling that I~ & L~ q + SN & KN q+
&x &KN

For every given K~ and L~ we should construct
the complete set of states (53). We have to con-
sider all the states, labeled by the quantum numbers

K~ q, L~ q, and P~ q, that belong to the Yamanouchi
symbol Y~ q. We add the Nth particle, with an-
gular momentum E~, where /L~ —LN
min(L~+ L~ q, K~ —K~ q). In addition, from re-
lation (34) we conclude that for given values of K~ and
K~ ~ E~ should have the same parity as KN —K~
Finally, we diagonalize with respect to [(2)]~.

X. CONCLUSIONS

A systematic method for constructing hyperspherical
functions that belong to well de6ned irreps of the sym-
metric group has been developed. We introduced the hy-
perspherical coefficients of fractional parentage (hscfps)
which are the expansion coefBcients of an N-particle hy-
perspherical function that belongs to the irrep I'~ of
S~ in terms of angular-momentum and hyperspherical
angular-momentum coupled products of (N —1)-particle
hyperspherical functions that belong to the irrep I'~ q of
SN q with the hyperspherical functions for the Nth par-
ticle. This leads to a recursive calculation of the hscfps,
each step involving a diagonalization of the transposition
class sum of the symmetric group of appropriate order.
It was noted that it is suKcient to calculate the matrix
elements of the transposition of the last two particles in
every step. These matrix elements are obtained by using
the hscfps calculated in the preceding step as well as the
Raynal-Revai and the T coefBcients.

The permutational symmetry adapted hyperspherical
functions are required for calculations in the I-8 coupling
scheme. The factorization method introduced by Jahn
[18] facilitates the separation of the calculations for the
orbital space and for the spin space. Since for spin o.

particles the total spin function should belong to an irrep
of the symmetric group labeled by a Young diagram with
at most 2o + 1 rows, the hyperspherical functions should
belong to an irrep of the symmetric group with a Young
diagram that consists of at most 2o.+1 columns. Usually,

1o
The recursive procedure presented in this article is per-

fectly suitable for implementation on a computer. We
expect that the computer code which we plan to develop
for the calculation of the hscfps, based on this algorithm,
will widely broaden the scope of feasible few-body calcu-
lations based on using the hyperspherical functions.
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