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Dynamic scalar and tensor polarizabilities of the 21P and 23P states of He
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The dynamic dipole polarizabilities at real and imaginary frequencies have been determined for
the helium atom in its lowest singlet and triplet 2P states, using our time-dependent gauge-invariant
method. Contributions of the 2S states to static polarizabilities are strong and negative, particularly
in the case of the singlet 2 P state, for which the static scalar polarizability ao is negative. The
tensor polarizability o.z corresponding to the differential Stark shift between the m-Zeeman sublevels
was also calculated and compared to previous theoretical and experimental results for the singlet
2 P state. An evaluation of the t 6 dispersion coefBcients for the 2'P—2 P and 2 P—2 P systems
is also given, derived from the dynamic polarizabilities at imaginary pulsations cu.

PACS number(s): 31.20.Di, 31.50.+w, 31.90.+s, 35.10.Di

I. INTRODUCTION

Collision processes involving excited atoms play an
important role in such Gelds as gas lasers and plasma
physics. In relatively high-pressure gases, even optically
allowed excited states become as important as metastable
states in spite of their short lifetimes, since collision times
become shorter than these lifetimes. In this way, de-
excitation of excited rare-gas atoms by various target
molecules is very important in both basic and applied
chemical physics studies [1—3], in particular modeling re-
active plasmas. Because of experimental diKculties using
crossed beam [4,5], heightened interest in the calculation
of Penning ionization cross sections recently appeared for
collisional ionization by a resonant state atom such as
He (2 P) [6—9]. These semiclassical [7—9] and quantum-
mechanical [6] calculations are carried out using long-
range interaction-potential models involving knowledge
of the dipole polarizability for the resonant atom, and an
estimation of the Van der %aals parameter.

Progress has been made in recent years in theoreti-
cal calculations of dynamic polarizabilities of atoms in
their ground and excited states. These studies concern
essentially the metastable or resonant states of a two- or
three-electron system such as 2 S and 2 S states of He
[10—13] and Li+ [11,12], 2 4P states of He and Li [14),
and the 2 P doubly excited state of the prototype neg-
ative ion H [15). Generally, when the excited states are
the lowest low-lying states, the values of dynamic polar-
izabilities for real pulsations u are positive and increase
until the first resonance [10—14]. When a resonant (2 P
and 3 P states of He) [9,16] or a second bound state (2
sP state of H ) [15] is concerned, the behavior of the
dynamic polarizabilities may be difFerent.

The aim of this paper is to present accurate calcula-
tions of the dynamic (both real and imaginary frequen-
cies) dipole polarizabilities for two states (2 P and 2 P)
of He. As in the case of the 2 S and 2 S states [10], our
time-dependent gauge-invariant (TDGI) method [17] is
used. When possible, our scalar ao(u) and tensor o.2(u)
values for polarizabilities of the 2 P state are compared

to the experimental results of Bhaskar and Lurio [16],
using an electric-Geld level-crossing technique, and with
their theoretical static values evaluated &om a sum over
about ten discrete states, using the oscillator strengths of
Green et al. [18]. Concerning the 2sP state our results
are original.

II. THEORETICAL AND COMPUTATIONAL
DETAILS

Scalar eo and tensor o;2 polarizabilities for the 2 P
and 2 P states are calculated using the de6nitions in
[14]:

o0 —(o'10 + o'll + o'l2)/9

~2 — (o10 2oll + ypo12)/9

in which aqo, o;qq, and o.q2 are the contributions of the
S, P and D states, respectively, to the polarizability of
a P state. The basic means for obtaining reliable val-
ues of these components in the calculation of dynamic
polarizabilities is to generate wave functions leading to
accurate energies for the ground 1 S and excited 2 S,
2 S, 2 P, 2 P, 3 D, and 3 D states, as well as accu-
rate dipole transition moments. In the case of 2P states
(singlet and triplet) for which the corresponding energy
levels are just above that of the 2S (ls2s) states and not
much below that of the 3S (ls3s) and 3D (ls3d) states,
it is very important to furnish an accurate description of
these spectral states in order to account for resonances.

In our calculations, symmetry considerations as ex-
plained by Bauschlicher and Taylor [19] enable the prob-
lem to be reduced to one of the representing degenerate
2P states (1s2p, for example), whose polarizability com-
ponents are related to o.o and a2 by ~~~ 3o.p(}+ ygo. $2
and a„= snqq + ~zoq2 leading to no ——s (n + 2n„)
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In the same way, only the 183d, representation is con-
sidered when describing the 3D state, with the result that
oscillator strengths between the P and D states are ex-
pressed by

fp ri = 2(Pl plD) b,E

3
&E-((p*l*ld")'+ (p-I*id* v)-'

+(p*l~ld*, )' + (» *lzld*.)')

AE — (p —lzld, )',2 10

E3~
The a and o,„values are obtained from our

variation-perturbation TDGI method developed else-
where, which uses a first-order wave function combining
a polynomial function and both true spectral and quasi-
spectral series [17,20]. For n, the spectroscopic states
2S, 3S and 2P are calculated in addition to the pseudo-
states to obtain the first resonances Ru = —(E2~ —E2J )
and Ru = E3s —E2I . For o.„, in addition to the P
contributions (aii terms), taken only into account in the
pseudostates (the first active 2p 2»i, configuration be-
ing very high in energy), the D contributions are both
described by a quasispectral series and the spectral 3D
state leading to the first resonance Ru = E3~ —E2p.

With the basis set described elsewhere [10], full con-
figuration interaction (CI) calculations were carried out
to obtain the ground and excited states of He using the
multireference second-order many-body perturbation via
the CIPSI algorithm [21,22]. The quality of our wave
functions is illustrated by a comparison of our energies
[10] with the exact nonrelativistic values. As an addi-
tional test of the accuracy and completeness of our wave
functions, we calculated transition energies and oscillator
strengths. As can be seen in Table I, there is excellent
agreement between our theoretical values and the exper-
imental data [23], enabling accurate static and dynamic
polarizabilities for the 2 P and 2 P states of He to be
expected.

Since there is a sign change of AE2I ~, transition
energies, it is no longer possible to use the Casimir-
Polder integral formula [24,9] linking the van der Waals
t 6 coefBcient between two atoms in the same state to
the dynamic polarizabilities for imaginary frequencies
[Ls ———

fz no (iu) dm]. We can, however, use the no (iu)
continuous function [rather than the no(~) discontinuous
function] in order to fit a limited sum over states func-
tion [g, f2I ~,/(AE&&, + ur )] where the f2I ~, oscil-
lator strengths and DE~I ~; transition energies are the
fitting parameters. Taking the values of the erst oscil-
lator strengths and transition energies given in Table I
(fzI ~„s = f„s~zJ /3) —as the starting point of our op-
timization, the C6 coeKcient can now be written as the
limited sum

3 ) fzI 'fzJ
+EzP +i+E2PMj (+E2PM-~ + +E2P~j )

)2

To test this procedure, we can check the following
equality obtained when the basis set is complete (n, is
the number of electrons):

TABLE I. Comparison between calculated and experimen-
tal transition energies AE and oscillator strengths f,q involv-

ing1 Sy2 S) 2 S)2 P)2 Py3 S)3 S&3 D)and3
D states of He. Experimental values are in parentheses (see

text).

Transition
1'S m 2'P

1s 1s2p
2 Sm2 P

1s2s 1s2p
2 S —+2 P

1s2s 1s2p

1s2p 1s3s
2 P-+3 S

1s2p 1s3s
2'P m3 D

1s2p 1s3d
2 Pm3D

1s2p 1s3d

AE (a.u. )
0.77888

(0.77975)
0.02225

(0.02213)
0.04214

(0.04206)
0.06393

(0.06256)
0.06491

(0.06447)
0.06880

(0.06821)
0.07821

(0.07753)

f*~

0.272
(0.276)
0.380

(0.376)
0.541

(0.539)
0.056

(0.048)
0.074

(0.069)
0.693

(0.711)
0.590

(0.609)

A Q

—) ' = (ls2»i~l ) ziz~ + 2ziz lls2p*)
2 - AE2I ~,.

where the mean values of the bielectronic operators
(xix + 2ziz ) over the 2P states are relatively easy
to calculate.

III. SCALAR AND TENSOR POLARIZABILITIES

The dynamic o,o and o.2 values of the singlet 2 P and
triplet 2 P states of He are listed in Table II. The un-
usual negative static o,o value obtained for 2 P shows
that, on average, this state is even more unstable in an
electric Beld. The static o;2 value calculated for this sin-
glet state, 224.4 a.u. or 3.326 x 10 cm, compares very
well with the experimental value of (3.32 + 0.10) x 10

0
0.005
0.010
0.015
0.01?5
0.020
0.025

0.0275
0.030
0.035
0.0375
0.040
0.045
0.0475
0.050
0.055
0.060
0.0625

0
-59.84
-72.50
-120.8
-264.2
—462.7
—1120
1199
715.7
551.3
432.3
410.8
402.1
412.5
430.8
459.5
566.0
839.9
127?

(s)
2

224.4
237.8
288.5
436.2
637.6
1299

—1012
—522.9
—352.0
—216.1
—183.9
—162.3
—138.1
—132.7
—131.2
—143.1
—210.5
—414.4

(&)
0

49.50
48.71
45.99
40.37
36.06
30.13
10.95

—5.065
—29.16
—138.9
—291.4
—814.9
948.9
613.5
504.6
451.5
515.1
663.2

2

67.09
68.30
72.28
80.08
85.85
93.51
117.1
135.8
163.0
280.5
437.7
966.6

—783.4
—439.5
—320.3
-240.1
—261.5
—378.5

TABLE II. Dynamic dipole polarizability of the 2 P (S)
and 2 P (T) states of He. All results are in a.u.
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