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The dynamic dipole polarizabilities at real and imaginary frequencies have been determined for
the helium atom in its lowest singlet and triplet 2P states, using our time-dependent gauge-invariant
method. Contributions of the 2.5 states to static polarizabilities are strong and negative, particularly
in the case of the singlet 2P state, for which the static scalar polarizability ao is negative. The
tensor polarizability az corresponding to the differential Stark shift between the m-Zeeman sublevels
was also calculated and compared to previous theoretical and experimental results for the singlet
2! P state. An evaluation of the Cs dispersion coefficients for the 2'P-2'P and 23P-23P systems
is also given, derived from the dynamic polarizabilities at imaginary pulsations w.

PACS number(s): 31.20.Di, 31.50.+w, 31.90.+s, 35.10.Di

I. INTRODUCTION

Collision processes involving excited atoms play an
important role in such fields as gas lasers and plasma
physics. In relatively high-pressure gases, even optically
allowed excited states become as important as metastable
states in spite of their short lifetimes, since collision times
become shorter than these lifetimes. In this way, de-
excitation of excited rare-gas atoms by various target
molecules is very important in both basic and applied
chemical physics studies [1-3], in particular modeling re-
active plasmas. Because of experimental difficulties using
crossed beam [4,5], heightened interest in the calculation
of Penning ionization cross sections recently appeared for
collisional ionization by a resonant state atom such as
He (2'P) [6-9]. These semiclassical [7-9] and quantum-
mechanical [6] calculations are carried out using long-
range interaction-potential models involving knowledge
of the dipole polarizability for the resonant atom, and an
estimation of the Van der Waals parameter.

Progress has been made in recent years in theoreti-
cal calculations of dynamic polarizabilities of atoms in
their ground and excited states. These studies concern
essentially the metastable or resonant states of a two- or
three-electron system such as 215 and 23S states of He
[10-13) and Lit+ [11,12], 2 *P states of He™ and Li [14],
and the 2 3P doubly excited state of the prototype neg-
ative ion H™ [15]. Generally, when the excited states are
the lowest low-lying states, the values of dynamic polar-
izabilities for real pulsations w are positive and increase
until the first resonance [10-14]. When a resonant (2P
and 3'P states of He) [9,16] or a second bound state (2
3P state of H™) [15] is concerned, the behavior of the
dynamic polarizabilities may be different.

The aim of this paper is to present accurate calcula-
tions of the dynamic (both real and imaginary frequen-
cies) dipole polarizabilities for two states (2P and 23P)
of He. As in the case of the 21S and 239 states [10], our
time-dependent gauge-invariant (TDGI) method [17] is
used. When possible, our scalar ag(w) and tensor az(w)
values for polarizabilities of the 2! P state are compared
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to the experimental results of Bhaskar and Lurio [16],
using an electric-field level-crossing technique, and with
their theoretical static values evaluated from a sum over
about ten discrete states, using the oscillator strengths of
Green et al. [18]. Concerning the 2 3P state our results
are original.

II. THEORETICAL AND COMPUTATIONAL
DETAILS

Scalar ap and tensor a, polarizabilities for the 21 P
and 23P states are calculated using the definitions in
[14]:

ap = (a0 + ay; + agz)/9

and

az = —(a10 — 311 + Ha12)/9

in which a;9, a;1, and a;2 are the contributions of the
S, P and D states, respectively, to the polarizability of
a P state. The basic means for obtaining reliable val-
ues of these components in the calculation of dynamic
polarizabilities is to generate wave functions leading to
accurate energies for the ground 1 1S and excited 218,
238,21P, 23P, 31D, and 33D states, as well as accu-
rate dipole transition moments. In the case of 2P states
(singlet and triplet) for which the corresponding energy
levels are just above that of the 2.5 (1s2s) states and not
much below that of the 35 (1s3s) and 3D (1s3d) states,
it is very important to furnish an accurate description of
these spectral states in order to account for resonances.

In our calculations, symmetry considerations as ex-
plained by Bauschlicher and Taylor [19] enable the prob-
lem to be reduced to one of the representing degenerate
2P states (1s2p,, for example), whose polarizability com-
ponents are related to ap and a; by a,, = %alo + %alz
and a,, = éau + 1—10a12 leading to ap = %(ar,,;c + 2a;;)
and az = %(azz — Olpz)-
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In the same way, only the 1s3d,, representation is con-
sidered when describing the 3D state, with the result that
oscillator strengths between the P and D states are ex-
pressed by

fpop = 2(P|u|D)’AE
2
gAE((pz|a:|dzz>2

+(pelzldsz—y2 )
+<pzlyldxy>2 + (pzl2ldaz)?)
—AE (lezldzz) ;

where AFE = E3D — Ezp.

The a,, and «,, values are obtained from our
variation-perturbation TDGI method developed else-
where, which uses a first-order wave function combining
a polynomial function and both true spectral and quasi-
spectral series [17,20]. For a,;, the spectroscopic states
2S5, 35 and 2P are calculated in addition to the pseudo-
states to obtain the first resonances fuw = —(E;s — E,p)
and fw = E3s — Eyp. For a,,, in addition to the P
contributions (o;; terms), taken only into account in the
pseudostates (the first active 2p,2p, configuration be-
ing very high in energy), the D contributions are both
described by a quasispectral series and the spectral 3D
state leading to the first resonance iw = E3p — E3p.

With the basis set described elsewhere [10], full con-
figuration interaction (CI) calculations were carried out
to obtain the ground and excited states of He using the
multireference second-order many-body perturbation via
the CIPSI algorithm [21,22]. The quality of our wave
functions is illustrated by a comparison of our energies
[10] with the exact nonrelativistic values. As an addi-
tional test of the accuracy and completeness of our wave
functions, we calculated transition energies and oscillator
strengths. As can be seen in Table I, there is excellent
agreement between our theoretical values and the exper-
imental data [23], enabling accurate static and dynamic
polarizabilities for the 2P and 23P states of He to be
expected.

Since there is a sign change of AF,;p_,; transition
energies, it is no longer possible to use the Casimir-
Polder integral formula [24,9] linking the van der Waals
Cs coefficient between two atoms in the same state to
the dynamic polarizabilities for imaginary frequencies
[Ce = 2 [, ao(iw)?dw]. We can, however, use the ag(iw)
continuous function [rather than the ag(w) discontinuous
function] in order to fit a limited sum over states func-
tion [Y°, fap—i/(AE2p_,; + w?)] where the fop_,; oscil-
lator strengths and AFE,p_,; transition energies are the
fitting parameters. Taking the values of the first oscil-
lator strengths and transition energies given in Table I
(feP—ns = —fns—2p/3) as the starting point of our op-
timization, the Cg coefficient can now be written as the
limited sum

_° Z .fZP—-)if2P—<>j
24 r AE;piAE;p j(AEzp,; + AE2p, ;)

To test this procedure, we can check the following
equality obtained when the basis set is complete (n. is
the number of electrons):

TABLE I. Comparison between calculated and experimen-
tal transition energies AFE and oscillator strengths f;; involv-
ing1'S5,2!5,23%5,2'P,23P,3'5,33%5,3'D, and 3
3D states of He. Experimental values are in parentheses (see
text).

Transition AEFE (a.u.) fir
1's » 2'p 0.77888 0.272
1s® 1s2p (0.77975) (0.276)
25 5 2'p 0.02225 0.380
1s2s 1s2p (0.02213) (0.376)
235 - 23p 0.04214 0.541
1s2s 1s2p (0.04206) (0.539)
2'p » 3's 0.06393 0.056
182p 1s3s (0.06256) (0.048)
23p — 338 0.06491 0.074
1s2p 1s3s (0.06447) (0.069)
2'p - 31D 0.06880 0.693
1s2p 1s3d (0.06821) (0.711)
23p - 33D 0.07821 0.590
1s2p 1s3d (0.07753) (0.609)

f2P—)1. e
1s2 TITm + 2212|182
Z AEZP—H. < pzllgl IL&m 1 ml pz> )
where the mean values of the bielectronic operators
(ZiTm + 2212;m) over the 2P states are relatively easy
to calculate.

III. SCALAR AND TENSOR POLARIZABILITIES

The dynamic o and oy values of the singlet 21 P and
triplet 23P states of He are listed in Table II. The un-
usual negative static ag value obtained for 2! P shows
that, on average, this state is even more unstable in an
electric field. The static ay value calculated for this sin-
glet state, 224.4 a.u. or 3.326 x 10723 cm?, compares very
well with the experimental value of (3.32£0.10) x 1023

TABLE II. Dynamic dipole polarizability of the 2'P ()
and 2P (T) states of He. All results are in a.u.

w a,gs) a(zs) af,T) agT)

0 —59.84 224.4 49.50 67.09
0.005 —72.50 237.8 48.71 68.30
0.010 —120.8 288.5 45.99 72.28
0.015 —264.2 436.2 40.37 80.08
0.0175 —462.7 637.6 36.06 85.85
0.020 —-1120 1299 30.13 93.51
0.025 1199 —1012 10.95 117.1
0.0275 715.7 -522.9 —-5.065 135.8
0.030 551.3 —352.0 —29.16 163.0
0.035 432.3 —216.1 —138.9 280.5
0.0375 410.8 -183.9 —291.4 437.7
0.040 402.1 -162.3 —814.9 966.6
0.045 412.5 —-138.1 948.9 —783.4
0.0475 430.8 —-132.7 613.5 —439.5
0.050 459.5 —-131.2 504.6 —-320.3
0.055 566.0 —143.1 451.5 —240.1
0.060 839.9 —210.5 515.1 —-261.5
0.0625 1277 —-414.4 663.2 —-378.5




49 DYNAMIC SCALAR AND TENSOR POLARIZABILITIES OF . . . 831

1250.0
1

FIG. 1. Dynamic scalar polarizabilities of
the singlet (squares) and triplet (triangles)
2P states of He versus real pulsations.
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cm® [16]. It also agrees with the theoretical result

obtained from a sum over about ten discrete states:
(3.34 £ 0.06) x 10722 cm?® [16].

Using the several oscillator strengths also given in [16]
and in [23] for the singlet case, the static ap value can
be found. These values, —69.5 and —67.7 a.u., are very
different from ours (—59.84 a.u.). For the triplet case,
our static ap value (+49.50 a.u.) also differs from those
calculated using the oscillator strengths given in [23]
(+37.6 a.u.). This discrepancy is therefore due to the
positive contributions of the other discrete states and to
the continuum taken into account in our calculation of
ag = %(au + 2a,,). It should be stressed that the sim-
ilarity of the values obtained for a; (2 1P) between our
result and those using the first discrete states [16] may be
fortuitous and result from a balance of the positive con-
tributions in the difference of terms ay = %(an — Qzg).

Figure 1 illustrates the behavior of scalar ag polariz-
ability versus electric field pulsations w up to the second
resonance for 2P and 23P. Before the first resonance
corresponding to the 2P — 2S transition, ag decreases
in both cases. Above this resonance, the minimum ob-
served corresponds to the compensation of the decreasing
2. contribution and all the other increasing contributions

0.0 40.0 80.0 120.0
T T T
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(for the 21 P state, the 1 1S contribution is also negative
but becomes important only near the 2!P—11S reso-
nance at high frequencies). The second resonance in fact
appears at the singlet and triplet 2P — 3§ transitions
expected for w =0.06393 and 0.06491 a.u., respectively,
and before the 2P — 3D resonances (see Table I).

Figure 2 represents the variations of ag versus imag-
inary pulsations. Using the procedure described in Sec.
II, the numerical calculation of ), fop—i/6AEzp_,; fur-
nishes 10.2 and 8.54 a.u. for the singlet and triplet
states, respectively, even when a direct calculation of
(1s2p,| Zi’j z;xj + 22;2;|1s2p,) /3 gives 10.56 and 8.780
a.u., showing that our basis set is nearly complete. Sim-
ilarly when the dipole moment factor is neglected in our
TDGI method, the static oy values obtained are about
3-4% lower, showing that the polynomial contribution
obviously becomes weak: it would be null if the basis set
were complete [25,26].

The van der Waals Cg coefficients for the 2 1P-2 1P,
23P-23P and 2!'P-23P interactions are all positive,
even if the static polarizability of the 2P state of He
is negative. For the 2'P-21P, 23P-2 3P, and 21P-2
3P interactions, our values are 5.9x10%, 4.9x103, and
5.9x10% a.u..

FIG. 2. Dynamic scalar polarizabilities of
the singlet (squares) and triplet (triangles)
2P states of He versus imaginary pulsations.
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