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Coplanar structures in I. =0 even-parity intrashell states of four-valence-electron atoms
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A model with all radial degrees of freedom frozen is used to simulate the ' '5' intrashell states of
four-valence-electron atoms. By inspecting the two-body densities, the latitudinal distribution functions,
and by inspecting directly the eigenfunctions in appropriate subspaces, the features of geometric struc-
ture and of internal motion have been obtained. The effect of the spatial permutation symmetry and the

parity have been emphasized. All even-parity states under consideration prefer the coplanar axial-

symmetric structure. Two modes of motion are found, namely, the triple two-body collision mode and

the rectangle-square-rectangle mode (or planar double two-body collision mode). It is found that the
basic modes in quantum states are associated with periodic solutions of classical mechanics.

PACS number(s): 31.50.+w, 03.65.Ge, 31.20.Tz, 31.20.Di

I. INTRODUCTION AND THE PROCEDURE

In a previous work [1] the odd-parity L =0 intrashell
states of an atomic system with four (valence) electrons
have been investigated within an r-frozen model (all r, are
given at an optimal value). This paper is a continuation
to investigate the even-parity states. The background
and the motivation are referred to in [1] and for related
references the reader is referred to [2—5]. The same mod-
el and a similar procedure of analysis are used. In brief,
the Hamiltonian

correlations are strongly spin dependent [6]; this is a

striking feature of fermion systems. Hence, if we insist
on carrying out a spin-independent analysis, our results
would be unclear. Since we are interested in the fine

features of e-e correlation, a spin-dependent analysis is

absolutely necessary. There may be different choices. In
the first choice the eigenfunction

(3)

is expanded as

g2 40= gl, +g += g F, , (1234)y, , s(1234) . (4)

is diagonalized in a model space spanned by antisym-
metrized basis functions

4;=A(t[Yt (1)Yt (2)]t [Yt (3)Yt (4)]t

Then each F, , (1234) component is subjected to

analysis; accordingly the information extracted is s, and

sz dependent. In the second choice + is expanded as

fp p p p (1234)gu (I)g& (2g' (3)( (4)
)"

1 ~2 l"3

Xy, , s(1234)) . (2)

The labels are the same as in [1]. r, = ror, orig—inates from
the nucleus at the origin and ro is fixed for all four elec-
trons; r, is written in short as i in Eq. (2). In order to
have the results comparable with those of [1], the same
value of ro =0.62 A is assumed. The spins of electrons e

&

and e2 are coupled to s, , those of e3 and e4 are coupled
to s2, s, and sz are coupled to S, and the Z component of
S is Mz. The number of basis functions are restricted by
the constraint 0» I, ( I „,where i =1, 2, 3, or 4. Since
we are interested only in the qualitative aspect, and since
we are mostly interested in the head states (the lowest
state of a given +'L" symmetry), l,„ is given as 2.
This choice is found to be sufficient for our purpose.

Though the interactions are spin independent, the e-e

Then each f „„„(1234)component is subjected to
P I P2P qP4

analysis; accordingly the information extracted is

p J JLL2 p3 and M& dependent. From the antisymmetriza-

tion of + we have

f (1234)=(—1)tf (p,p,p3p4), (6)~1~2I'31"4 Pl P2 P3 P4

where p,p zp 3p 4 is any permutation of 1234. T»»ym-
metry would facilitate the analysis (among all

f„„„„components with difFerent p, p2p3p4, the
P2 P3 P4

analysis of only one component is sufficient). In what fol-

lows, the second choice is adopted; it implies that the po-
larity of each electron is specified during the analysis (ac-

1050-2947/94/49(2)/818(7)/$06. 00 818 1994 The AInerican Physical Society



COPLANAR STRUCTURES IN L=0 EVEN-PARITY. . . 819

cordingly, it implies that the polarity is assumed to be ex-
perimentally measurable).

There are three cases, i.e., S =0, 1, or 2. In order to
have the same polarity for these three cases such that
their results can be compared with each other, M+=0 is
assumed. This implies that we have two spin-up (in
short, up) electrons and two down electrons. Once Ms is
given, the last subscript in f„„„„maybe neglected.

PIP2P3P4

Thus it is often simply denoted as f„„„.With thisP (P2P3

prescription, we have the spin-parallel two-body density

8n
pt t(%8)p)= g 5„„f dr, dr4~ f„„„~',

Pl~P2~P3

(7a)

E,. (eV)

120-

80

3se

5Se

where A labels the orientation of a body frame fixed at
the plane of r, and r2 (states of L =0 are R irrelevant),

OI2 is the angle between r, and r2, and the spin-
antiparallel two-body density

8m
pt~(%8&2)= g (1—5„„)J d&3dr4~f„„„~' +'p, .p, .p,

(7b)

They can be weighted as

p&&=p&&sin0, 2, p&&=p»sin0, 2 .

The usual two-body density is the sum of Eqs. (8)

P2=Pt &+P» P2 Pr&+P»

The above quantities together with a latitudinal distribu-
tion function (defined later) and with the f„„„itself willP IP2P3

be presented.
Incidentally, the integration involved in all the above

correlation (distribution) functions can be carried out
analytically (refer to the Appendix of [1]) to facilitate nu-
merical calculation.

II. ENERGY SPECTRUM

In what follows in general only the results of l,„=2
are reported. The energy spectrum is given in Fig. 1. It
shows that the energy of the 'S' head state is only slight-
ly higher than the S' head state (this situation is similar
to three-electron intrashell states, where the energies of
the S' and S' head states are very close). It is recalled
that the S' head state has the most favorable equilateral
tetrahedron (ETH) structure [1]. In this configuration a
space inversion, together with an interchange of the posi-
tions of any pair of particles, is equivalent to an appropri-
ate spatial rotation. In I. =0 even states, this implies
that the ETH is only available if the spatial part of the
wave functions is all symmetric. Evidently this is not
possible for all +'S' states, simply because the spin part
cannot be all antisymrnetrized. Hence the low energy of
the 'S' head state sure1y implies that another favorable
geometric structure exists.

Figure 1 shows that there are a number of low-lying
angularly excited 'S' states. On the contrary, in the S'
states, there is a large gap lying between the head state

40

5s' 1se

FIG. 1. Energy spectrum (in eV) of the 'S' states with

Tp =0.62 A and I „=2. The energy of the S head state is
scaled as zero.

and the first excited state. Hence the 'S' head state is
much more easily excited than the S' head state with
respect to symmetry-conserving angular excitation (L,S,
parity, and the principle quantum numbers are con-
served).

Among the six +'S head states (S =0, 1, or 2 and m.

is even or odd), the S' head state has a particular high
energy while the S' head state is the lowest. This fact
alone implies a decisive effect of parity on structures.
The physics underlying the spectrum will be discussed
later.

III. COPLANAR STRUCTURES

A striking feature found in all the +'S' states (head
or excited) is the preference of coplanar structure, i.e., all
four electrons together with the core prefer to stay in a
plane. Let us first consider this point from symmetry.
Hereafter, let the spins of el and e2 be up and, according-
ly, e3 and e4 down (the choice of any pair of electrons to
be up is irrelevant). Let the plane formed by e&, ez and
the core be denoted as X. If the five particles do not stay
in a plane, e3 and e4 may "look" for a three-dimensional
configuration having a better geometric structure to have
a stronger binding (weaker repulsion). A good candidate
will have e3 and e4 separated by the two sides of X and
symmetric to this plane (the ETH is a special case of this
candidate). However, in this candidate a space inversion,
together with a 180 spatial rotation in X, is equivalent to
an interchange of e3 and e4, the former operation has no
effect while the latter operation causes a reversal of sign
in the wave function. Hence this candidate is prohibited
by the quantum-mechanical (QM) symmetry. It implies
that if the +'S' states looked for a three-dimensional
structure, they could not find one having a better
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geometric symmetry. This may be the background of the
preference of the coplanar structures.

Now let us confirm this preference by inspecting the
eigenfunctions. Let the above X plane be denoted as the
X-Y plane (where the nucleus is at the origin) and let us
ignore the position of e4 and ignore the longitudinal dis-
tributions of e, , e2, and e3, but observe only the latitudi-
nal distribution of e3. For this purpose we define the lati-
tudinal distribution function

P„„„(8|8283)=sin8&sin82sin83
PlPPP)

X Jdp, dp2dp3&r4 f„,„,„,I' . (10)

1Se

When 0& =Hz=90', P, , —, as functions of 03 are plotted
2 2 2

in Fig. 2(a) for the 'S' state and in Fig. 2(b) for the 'S'
state for comparison. The preference of being coplanar is
explicitly shown in Fig. 2(a), where the distribution is
around 03=90'. If we ignore e3 but observe e4, we ob-
tain exactly the same result simply because of the an-
tisymmetrization. On the other hand, the distribution in
Fig. 2(b) is explicitly lying away from 8, =90'. It was
found that the P, , —, of the S' and the S' states are

2 2 2

very similar to the 'S' state, while those of the 'S' and
the S' states are very similar to the 'S' state. Thus the
structures of the even and odd states should be greatly
different.

IV. AXIAL SYMMETRY

Making use of the findings of Sec. III, we shall confine
our observation in the subspace 8, =90 (i = 1 —4) to sim-

plify the analysis further. Let us define the X-F plane as
before and choose the X axis such that P, = —((z. Then
let us fix (t, at a number of values, in every case f, , —, of

2 2 2

the S' head state, as functions of P3 and P~ are plotted in
contour diagrams. Three of them are representatives as
shown in Figs. 3(a)—3(c). From Fig. 3(b) one may suggest
two kinds of internal motion: one is associated with the
distribution along PQ, the other one associated with
P'Q'. There are nodes in the former, thus it implies an
energetic motion when the system evolves along PQ.
There is no node in the latter, thus it implies a weak
motion when the system evolves along P'Q'. Evidently,
the former is more important. In fact, the latter can be
considered as only a small oscillation coupled to the main
mode.

In the main mode, every pair of spin-parallel electrons
(e, and e~, and e, and e4) keep the symmetry with
respect to the X axis (thus it is a common axis of symme-
try). When (t, changes, the patterns of corresponding
figures also changes. This implies that the motion of the
(e, e~) pair is coupled with the (e3e4) pair. This correlat-
ed motion is called an axial-symmetric mode. According-
ly, the small oscillation along P'Q' is called an asym-
metric motion. It turns out that the axial-symmetric
motion as an important mode is generally established in
all ' 'S' states. In what follows we shall neglect the
less important asymmetric motion to simplify the
analysis. Only the results of the head states of specified
symmetry will be reported.

V. 'S'HEAD STATE

0.02

0.01 .

0.02-

0.01

(b)

30 60

FIG. 2. The latitudinal distribution functions P» —, as a
2 2 7

function of 03, 01=02=90' is assumed. The solid curve is for
the head state and the dashed curve is for the first excited state.

We remind the reader that there are two up electrons
and two down electrons. The two-body densities are
shown in Figs. 4(a) and 4(a'). It shows that the feature of
p&& is very different from p&&, hence the correlation is

strongly spin-polarity dependent. In particular, the
spin-antiparallel pair has a much larger probability to
have the two electrons closer. These figures are similar to
Fig. 9 of [7] obtained from a two-shell model, where the
radial degrees of freedom are not frozen but are still con-
strained by the model space. Incidentally, the limitation
on 1 „adopted in our model reduces the effects of e-e
repulsion; it is no longer infinite at zero separation. If
this limitation is removed, the overlap of two electrons is
not possible and all the two-body densities should be zero
at 0)q=0 .

In order to observe the axial-symmetric motion, let
8, =8,=8~=84=90', P, = —

Pz, and tt3= —P4; then

f ] ~ ~
as a function of P, and P3 is given in Fig. 5(a).

2 2 2

There are two peaks A and B, both associated with a rec-
tangle intuitively shown in Fig. 6. In this rectangle each
longer side has a spin-parallel pair at its two ends with an
angular separation 104, this is associated with the peak
of p&& in Fig. 4(a'). Each shorter side has a spin-

antiparallel pair at its two ends and each diagonal has
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tangle) in the T2BC mode. We shall show the origin of
this line.

From Eq. (6), we have

f„„„„(1234)=f„„„(3412).

From the definition, we have

f„„„„(1234)=g F, , (1234)C, „',„
51,$2

FIG. 6. The most probable shape of the 'S' head state, which
is a rectangle lying in a plane containing the nucleus. The spin-
up electron is marked by 0, spin-down by . =( —

) f (1234) .
I" I ~2I"3I'4

C'2J"34
l 1 1 l

2Pl 292 2P3 284

(12)

sociated with point A is plotted in Fig. 7(a) and that asso-
ciated with C is in Fig. 7(b). Two types of motion can be
suggested.

First, the system may evolve from A to C (crossing a
nodal surface) as intuitively shown by the arrows in Fig.
7(a). When the system arrives at C, among six interelect-
ronic distances three of them are small (9; ~ 65'). Hence
three two-body collisions occur simultaneously, i.e., those
between e, and e2, e& and e3, and e2 and e4,'we call this a
triple two-body collision (T2BC). Afterwards, the
Coulomb repulsion pushes the electrons back to A to un-

dergo the next T2BC at the other side of the nucleus.
These successive collisions happen repeatedly, and it is
called a planar T2BC mode. In this mode, mostly, e, and

e3 (correspondingly, e2 and e4) move along the same
direction. The collective correlation is also shown in Fig.
3, where when P, ( = —$2) increases from 20' to 80', the
location of the maximum becomes closer to

4'4=180 .
Second, the system may evolve from A to D by cross-

ing another nodal surface; at the midpoint of AD ei over-

laps with e3 and e2 overlaps with e4. However, this pos-
sibility is not realistic due to the infinite e-e repulsion at
zero separation. Hence we shall ignore this possibility of
motion. In fact, it was found that the larger the I,„
adopted, the smoother the gradient of the wave function
at 0' [marked in Fig. 5(b)], thus the weaker the motion.

There is a nodal line appearing at P, = 180'—P3 (a rec-

3

Combining Eqs. (11) and (12), we have

i TT(1234)=(—)'f
i i TT(341» . (13)

2 2 2 2 2 2 2 2

Equation (13) implies that, in our case, the interchange of
the positions of an up electron with an adjacent down
electron together with an interchange of the other two re-
sults in a reversal of sign in the wave function. On the
other hand, if the particles form a rectangle, these simul-
taneous interchanges are equivalent to a 180' rotation,
and thus should have no efFect in L =0 states. For this
reason, the rectangle is prohibited. Accordingly, the
internal motion of the S =1 states are greatly difFerent
from the S= (even) states; this is a vivid example to show
how the total spin afFects the structure. Since there is a
node involved in the motion of the S' head state but
none in the 'S' head state, this explains why the former is
higher.

VII. S' HEAD STATE

The two-body densities are shown in Fig. 4(c) and
4(c'). There are two peaks in P2=3p&&= —3p&&. In fact,
in the S' states, the e-e spatial correlation is spin-
polarity independent. Let us confine the observation in
the same subspace of Fig. 5(a); then f» —, is plotted in

2 2 2

Fig. 5(c). The evolution along POQ implies a transforma-
tion from a flattened rectangle to a prolonged rectangle
via a square; this is called an R-S-R mode. In this mode
the square is associated with a node (marked by 0), this
node has a similar origin as we have discussed in Sec. V.
(Notice that in the S' states an interchange of the posi-
tions of any pair of particles results definitely in a reversal
of sign. )

When the rectangle is flattened, the two electrons at
the two ends of a shorter side collide, as we11 as the other
two electrons at the two ends of the other shorter side.
This is also true when the rectangle becomes prolonged.
Hence, during the R-S-R mode, double two-body col-
lisions, as intuitively shown in Fig. 8, occur repeatedly
and very rapidly. Since there is a nodal surface involved
in this oscillation, it is no doubt an energetic mode.

(a) (b)
VIII. FINAL REMARKS

FIG. 7. The most probable shape of the S'head state which
is an isosceles trapezoid; the planar T2BC mode is also intuitive-
ly shown by the arrows.

We have used an r-frozen model to investigate the
qualitative details of e-e correlation in L =0 even-parity
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(a)

FIG. 8. Intuitive expression of the energetic R-S-R mode,
where double two-body collisions occur very frequently.

intrashell states of 4-valence-electron atoms. The effect
of the QM symmetry and the dynamical consequence of
e-e correlation have been emphasized. Geometric
features of the structures and modes of internal motion
have been found. We would like to emphasize the follow-

ing points.
(i) In a previous paper [8], even-parity states of three-

valence-electron (nucleon) systems have been found to
prefer strongly the coplanar structure. Now this prefer-
ence is recovered. This arises simply because three-
dimensional configurations with better geometric symme-
try is prohibited by the QM symmetry; thus this feature
originates only from the QM symmetry, but not from dy-
namics. Hence this finding is expected to be quite gen-
eral.

(ii) In the plane of the five particles the preference of
the axial symmetry has been found. Each pair of spin-
parallel electrons remains to be symmetric with respect to
a common axis during their motion. Accordingly, the
system prefers to form a rectangle (in the S =0 and 2
cases) or an isosceles trapezoid (in the S = 1 case). Strict-
ly speaking, the distribution of the wave function is not
well concentrated in the neighborhood of axial-
symmetric configurations. However, the motion related
to asymmetric distribution is not important and can be
neglected.

(iii) Although all the even-parity states prefer the co-
planar structures, the S=(even) states and the S=1
states prefer different modes of motion. In the S=(even)
states the motion is based on the rectangle, i.e., the flat-
tening and prolonging of the rectangle (the R -S-R mode).
In the S =1 states the motion is based on the isosceles
trapezoid, where all electrons rush towards the same end
of the axis of symmetry (the planar T2BC mode), then all
rush back to the opposite end. The physics underlying
these choices is the QM symmetry; this symmetry prohi-
bits the rectangle to appear in the S =1 states. Thus, not
only the parity but also the permutation symmetry of the
spatial part play essential role in determining the struc-
ture of quantum states.

(iv) There are two types of nodal surfaces appearing in
the multidimensional coordinate space. The first type of
nodal surfaces originates from QM symmetry; they are
called inherent nodal surfaces [1] because they have to
appear at the exact locations in all the states belonging to
the same QM symmetry. In fact, they embody the con-
straint exerted by QM symmetry on the quantum states.
The second type originates from dynamics; they depend

8) =82=83=04=90',

p&(&) = —(j)2(&), P3(&)= P4(&)—
with P&(t) and $3(t) satisfying

sin2$, sin(P, —P3)+
(1—cos2$, )

/ [1—cos(P, —P3)] ~

sin(P&+$3)+
[1—cos((()i+43)]'"

sin2$3 sin($3 —P, )

(1—cos2$3) ~ [1 cos($3 P, )]- —

sin(P, +P3)

[1—cos(P, +$3)] ~

(14)

(15a)

(15b)

where r1=2&2mro/e, is an exact solution of the r
frozen Lagrange equations. When $, =180 —

P3 is as-
sumed (e, and e3 move in reverse direction), Eqs. (15a)
and (15b) are reduced to

cosf)
sin P,

sing,

cos P)
(16)

This equation can be integrated; it gives

—P, = 1/sin/0+ I /cosPo —1/sing, —1/cosP, ."I 2=
2

(17)

It implies a periodic collective oscillation. When P&=Pp
or P, =90 —

Po, we have P, =0; hence the oscillation is
from $0 to 90'—$0 ($0 is determined by the initial condi-
tion). Evidently, it is an exact periodic oscillation and is

on the interactions, masses, etc; they are called additional
nodal surfaces. Different states may have different num-
bers of the second type and they may appear at different
locations. These two types of nodal surfaces together
determine the character and the vigor of internal motion.

Just as what we have found in three-fermion systems

[8], all the head states have only, if there is any, the in-

herent nodal surface. Hence the main feature of the head
states is essentially determined by the QM symmetry.
Consequently the head states of different systems (atomic,
nuclear, etc. ), although they may be greatly different in
size, mass, strength and range of interaction, etc., may
have similar features of structure if they belong to the
same QM symmetry [8].

(v) Although only the results of head states are report-
ed, the basic modes found in head states usually appear
also as important modes in excited states. This arises be-
cause the basic modes are essentially determined by in-
herent nodal surfaces; these surfaces appear in excited
states as well. However, new modes may appear and
even become important in excited states.

(vi) We have found two basic modes in even-parity
quantum states. Let us investigate their classical
correspondence. In the same model (all four electrons are
confined on a sphere with radius r, ), the classical set of
Lagrange's equations was shown in [1]. Although the
general solution of this set is diScult to obtain, it turns
out that the following solution:
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40-

FIG. 9. A typical periodic solution of the classical
Lagrange's equations [Eq. (15)]. The solid curve is P, (t), while
the dashed curve is P,(t). The initial conditions are

P, = —$,=70', ((),= —/~=160', and P;=0 (i =1—4). The unit
of t (abscissa) is the period of oscillation.

just the above R-S-R mode. The period of oscillation is

77/2 —
tttp

T=2 &rif (1/sinPo+ I/c os/ o
ttp

—I/sin(t, —I /cosP, )
' dP, . (18)

Thus the R-S-R mode, just as what we found in [1,9],
corresponds to a periodical solution of classical mechan-
1cs.

In general Eq. (15) can be solved numerically. When
e

&
and e3 move along the same direction, another type of

periodic oscillation can be obtained if the initial condition
is properly chosen. A typical example is shown in Fig. 9,
which is associated with the planar T2BC mode, where
the increase (decrease) of P, and P3 keep in phase.

The existence of basic modes in bound quantum states
and the correspondence of these modes with classical
periodic solutions are problems gaining research interests
[10]. In recent years a semiclassical method based on the
path integral [11] has been developed [12] and has been
used to explain the energy eigenvalues of the 'S' helium
states [13]. It was found that, among all the contributing
classical trajectories, one and only one (asymmetric
stretch) gives the dominant contribution to the energy of
the lowest intrashell 'S' helium state of a given Xth shell
(N& =N2 =N). Thus the semiclassical procedure reveals
also that the quantum states are intimate to specific
modes of classical motion. In this paper the mode of
internal motion of a quantum state is essentially defined
via the structure of the nodal surfaces; however, alterna-
tively, this motion is expected to also be defined by a
semiclassical procedure.
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