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Relativistic Coulomb wave functions in momentum space
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In this paper, momentum-space wave functions are obtained for unbounded relativistic motion
of single electrons in a Coulomb potential. The waves are expressed in terms of a simple contour
integral which is easily evaluated numerically. Various examples for motion around a bare uranium
nucleus are displayed including negative-energy solutions and dependence on partial-wave angular
momentum.
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I. INTRODUCTION

Momentum-space wave functions for single electrons
bound in a Coulomb potential have been provided by
many authors both for nonrelativistic and relativistic mo-
tion. For the relativistic case we may refer the reader
to, e.g. , Rubinowicz [1] and Levy [2]. The situation for
unbounded motion in a Coulomb Geld is —to the best
of the knowledge of the present authors —quite differ-
ent. In this case, solutions in momentum space have been
published for nonrelativistic motion only; see the papers
[3—10]. Motivated by this apparent deficiency, we report
below on a computation of Coulomb wave functions in
momentum space for unbounded relativistic motion. The
waves obviously appear highly localized. This feature is
of substantial advantage in calculations including evalua-
tion of certain matrix elements as discussed, for instance,
by Guth and Mullin [10]. The applications we have in
mind lie within the realm of relativistic atomic collisions.
Examples could be bremsstrahlung and similar processes.

In order to obtain momentum-space wave functions,
two different approaches may be followed. One possibil-
ity is Grst to determine the wave functions in configura-
tion space and subsequently perform a Fourier transfor-
mation. The second possibility is first to transform the
wave equation into an (integral) equation valid in mo-
mentum space and then solve this equation directly. For
bounded motion, the paper by Rubinowicz [1] relies on
the former approach, whereas Levy [2] applies the latter.
In the present paper we shall make use of the availabil-
ity of configuration-space solutions for the unbounded
Coulomb problem and perform a Fourier transformation
to obtain the corresponding momentum-space wave func-
tions. We shall give general expressions for the Fourier
transforms and describe a way to obtain the momen-
tum waves for unbounded motion numerically. Towards
the end, various examples of momentum-space Coulomb
waves will be displayed and discussed.

II. GENERAL EXPRESSIONS

where the Compton wavelength Ac = Il/mc appears as
the natural unit of length. The 0"„ functions are the
usual spin-angular functions defined as

0„"= ) C(l, 2, j;y, —m, m)Y&" (0, 4)y, (2)
m=+1/I'2

where the C factor multiplying the spherical harmonic
YP is a Clebsch-Gordan coefficient, cf. [11,14], and y+iIz
a Pauli spinor. The j quantum number may be recon-
structed &om z as j = [r

~

—
z while the l quantum number

assumes the value

for]c) 0
—K, —1 for K, (0.

The expressions for the radial waves are

g(r) = Ks(2ker) ' Re[e* (s+ irl)X],

f(r) = NI(2kpr)' ' Im[e* (s + irl)X],
(4)

where X is defined as

a pure Coulomb potential cannot be given in closed form.
It is necessary to expand in partial waves. Expressions
for relativistic partial Coulomb waves in configuration
space have been given, e.g. , by Rose [11], Eichler [12],
and Greiner [13].

I.et the source of the Coulomb field be a charge Ze and
let the total energy of the electron of mass m be E =
Wmcz where ~W~ ) 1. The partial waves corresponding
to a total angular momentum quantum number j are
characterized by the quantum number r = 6(j + 2),
which may take on any nonzero integer value, and by
the magnetic quantum number p, which may assume the
values p = —j, (j —1), ...,

—j —1,j. They read

& g(r)n~(O, e) l
Q(r, t) =

~

.f( )&p (O @) ~

exp( —iWct/Ac), (1)

As opposed to the nonrelativistic case, the continuum
solutions to the Dirac equation for an electron moving in X = e *"'"F(s+ 1 +ir, 2s + 1, i2kpr), (5)
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F is the degenerate hypergeometric function, and Re[]
and Im[] denote the real and the imaginary part of [],
respectively. The normalization factors read

) 1/2

,.„)211'(s+i~)l(S (W+, )]i)2
E~~~) r(2s+1)

2s —1

g(k) = Ns
0

2s —1

f(k) = Nf
0

Re[e' (s+ ii!)X(l,o., s, rI)],

lm[e*s (s + irl) X(l, o, s, g)],

(14)

|W- Ii"
Ny ———N Sw [qW+1)

where Sw = W/]W[ is the sign of the energy. Note that
the sign of the ratio Ny/Ns changes with that of the
energy. The parameters ko, g, and b are de6ned as

QW2 —1
ko ——

&c
(W 2,s —K + ir!/W

kpAc
' 8+i'

where ( and s assume the values

8 = K

and o. denotes the Gne-structure constant. Note that It'0

corresponds to the momentum of a free electron of energy
R'mc2. The wave functions are normalized on the energy
scale, that is,

where the quantity X is de6ned as

X(l, ~, s, i!) = dx z'+' j((o.x)e

xF(s + 1+ irj, 2s+ 1,2iz), (15)

and 0 = k/ko. The configuration-space normalization

(9) implies a similar normalization in momentum space,
that is, g(k), f (k) fulfill the requirement

dk k [g
- gw+ f fw] -= b(W —W), (16)

where it is understood that the same value of K be chosen
for the two states of energy W and W.

The key quantity to be evaluated to obtain the mo-
mentum waves g, f of Eq. (14) obviously is X of Eq.
(15). Inspired by the approach used by Rubinowicz [1]
for bound states, we express jt (z) in terms of the spher-

ical Hankel functions Iit (z) and |i& (z), i.e. ,
(1) (2)

d r Q~ (r)gw(r) = b(W —W)b„- „bp,„, (9)

where the quantum numbers k and p belong to the state
of energy R'.

Consider now the Fourier transform of the wave func-
tion g(r) defined as

~ (z) = -[~,'"(z)+ h,"'(z)]

(—1)'+'e" ) (I + 2, k)(-2iz)
2z

+ e *' ) (I + ~, k)(2iz)
k=O

1
g(k) = d r g(r)e (10)

y(k)
. $ ~f

g(k)n~(0$, eg)
, -S„f(k)n"„(e„e,) &

Insertion of the expressions (1) and (2) and subsequent
integration over angles transforms Eq. (10) into

where

(I + k)!{'+"") =
k!r(i —k+1) ' (18)

see also [14]. Insertion of Eqs. (17) and (18) into Eq. {15)
yields

with (Og, @i,) denoting the polar and azimuthal angles of
k and S„=tc/[K[, cf. [15]. The g, f (k) functions entering
(ll) read

( 1)&+i s —k i(o —1)x~

g (k) = (2/vr) '~ dr r g (r )j((kr ),
0

+(—1)" s —k —i(~+1)~F
~

(19)

where j~ denotes a spherical Bessel function of order 1

and

Insertion of the expressions {4) and (5) into (12) yields

where the arguments of the hypergeometric function are
identical to those appearing in Eq. (15), that is, F
F(s+ 1+iq, 2s + 1, 2i~).

Below, we aim at a determination of X on the basis
of Eq. (19). In Sec. IV we substitute the degenerate hy-

pergeometric series for I" and integrate term by term.
This standard procedure, however, works only for k ) ko
as we shall see. To tract the general case, an integral
representation of F is introduced in Sec. U. The sub-
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sequent computation of X is performed by means of an
interchange of the order of integration.

with kz = k/nZ = k/(, b = arctan(kzA~), and No
(k)

defined as

III. INTERMEZZO: BOUND STATES

Let us digress for a moment and briefly quote a few
results valid for bound states: The wave function in con-
figuration space is again decomposed according to the
prescription given in Eqs. (1)—(3). The radial waves are
products of an exponential, a polynomial, and a factor of
r' in close analogy to the nonrelativistic case, see, e.g.
[11].For the ground state, whose energy is simply smc2,
the radial waves reduce to

) i!2
N(&) 2s+i/2

~

P /

~s~r(2. +1))
(24)

IV EVALUATION OF X FOR k ) Alo

The normalization in momentum space follows that in
configuration space, i.e. , an expression similar to Eq. (22)
holds with r replaced by k.

( q
s —1

g()=Noi' (),c)

with Np defined as

(20)

(21)

Let us turn again to the determination of momentum-

space wave functions for unbounded motion. We need
to evaluate X, Eq. (19). In order to compute the inte-

gral, a convergence factor exp( —ez) is multiplied on the
integrands. The second integral, for instance, then reads

f s —A; —c(a+1)xp
p

The g and f functions fulfill the normalization require-
ment

s —A: —(i [1+crj+~)xy
amp+ p

f der(g +f) =1.
p

(22) = »m V('~.
e-+0+

For the momentuin waves, the expressions (10)—(13) still
hold. Results for g(k) and f(k) obtained by direct Fourier
transformation have been presented in [1]. Direct solu-
tion of the Dirac equation in momentum space yields
identical answers [2]. The g, f functions are in general
expressed by means of a nondegenerate hypergeometric
function. For the ground state, however, the radial func-
tions may be written simply as

By insertion of the degenerate hypergeometric series for
I" = F(s+ 1+izI, 2s+ 1, 2ix), Y,

'
may be expressed as~ (2)

(2) ) . (s+ 1+ iz))„(2i)"
(2s+ 1)„n!

g(k) =No, 2 (,)/
sin[(s+1)b],(i, ) 1 I'(s + 1)

+ kz2Ae ('+i

1 —s 1 I'(s+ 1)cos[(s+ 1)b]
1+ s kAc (1+k A )('+')/

8+n —I(: —(i[1+aj+e)z

p

(23) where the symbol (a)„has the usual meaning

(a)„=a(a+ 1)(a+ 2) . (a+ n —1),

(26)

(27)

I'(s) sin(sb)
kz&c(1+ k2 A2 )'/2

The integral over x is convergent for the values of 8, n,
and k under consideration and, upon x integration, Eq.
(26) transforms into

( )
I (s+ 1 —k) (s+ 1+ iz)) (s+ 1 —k)„ / 2i

(e+ [1+o]i)'+ ~ (2s+ 1) n! (e+ [1+0']i)

I'(s+ 1 —k) /' . 2F
i
s+ 1+iz), s+ 1 —k;2s+ 1;e+ 1+oz'+- 1+o —ze)

(28)

cf. [14]. The radius of convergence for the hypergeometric series F(, ;.; z) is 1, i.e., the series is convergent only for

~z] ( 1. Since it is intended to take the limit e —+ 0+, cf. Eq. (25), convergence of (28) is assured only for o ) 1, i.e.,
for large momenta, k ) kp.



84 A. H. S9RENSEN AND A. BELKACEM

The treatment for the first integral in Eq. (19) is quite similar. By application of the Kummer transformation

F(a, b, z) = exp(z)F(b —a, b, —z) [14], the expression for Y, becomes

I'(s+ 1 —k) (s —iq) (s+ 1 —k)„( —2i

(e —[1+a.]i)'+i—" (2s+ 1)„n! I e —[1+cr]i)

r(s+1 —k) 2
kF! s —i', s+ 1 —k;2s+ 1;

{e [1 + 0]i)8+1—k ' 1+0'+ZE) (29)

Again, convergence requires large momenta, i.e. , k & ko in the limit e m 0+.
Upon substitution of the limiting forms of Y! ' l for the integrals in Eq. (19), the final expression for X(l, o, s, g) is

e'!' 'l )2

~
(t + k)!I'(s+ 1 —k) (1+o '!

~
e'!' 'l (s —i')„+ (s+ 1+i')„( 2

(1+a)'+ - k!I'(t —k+ 1) q 2o ) (2s+1)„n! " q1+ a)
(3o)

for k = oko & ko.

V. EVALUATION OF X FOR ALL A:

In order to obtain X for all values of k, we shall now apply an integral representation of the confluent hypergeometric
function and, subsequently, interchange the order of integration. It turns out to be practical to apply a representation
in terms of a contour integral, as integrals are to be done numerically and contours may be chosen such as to avoid

regions near poles in most cases.
According to [16], the degenerate hypergeometic function may be represented as

r 2. +1r -s —i&
!'+l

F(s+ 1+irI, 2s+1, 2ix) = — dt e '*'(—t)'+'"(1 —t)'
2vrir (s —i')

Here, the contour starts at t = 1, encircles the origin once in the positive sense, and closes at t = 1, and all powers have

their principal values. By inclusion of the usual convergence factor, insertion of the contour-integral representation

(31) in the expression (19) for X(l, o, s, rl) yields

I'(2s+ l)I'( —s —i') ., ). (t+ k)! ( i l
2mir(s —i') - k!I'(l —k+ 1) g20)

( !o+l
x hm (—1)'+' dt (—t)'+'"(1 —t)'-'-'~

a~0+ 1

(o+)
( 1)k dt ( t)s+i77(1 t)s —1 iTJ—

1

s —I (—~+'[~—x+2tj~)dxx e

8 —k (—e —i[cr+1—2t]x)dxx e {32)

Interchange of the order of integration and subsequent computation of the x integrals further transform this expression
into

I'(2s + 1)I'( —s —i'),X = — i lim
2vrir(s —i') .~o+

(t + k) ~I (s k + 1) x

k!r(E —k+ 1) q2cr)

( 1)1+1
( 1)k

x „+
(e + i[1 —o. —2t])'+' —" (e + i[1 + o —2t])'+'

—~ —2Imt & 0 (34)

where all summations are performed in the integrand
since it is intended to perform only a single contour inte-
gration for each setting of the parameters in the numer-
ical calculation.

The order of the x and the t integrations may be re-
versed as above provided

I

everywhere on the contour of integration, that is, the
contour is not allowed to dive as far as e/2 below the real
axis. [If the Kummer transformation were to be applied
as in Eq. (29), the sign on Imt would be reversed in (34).]
Equation (33) reveals poles at

1+0
2
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It is evident that these poles are to be outside the closed
contour of integration. In view of the positioning (35),
the contour is chosen as sketched in Fig. 1. It consists of
two circular arcs and a straight line segment: It starts as
a circle centered on the real axis at 1—R and with a radius
B slightly larger than 0.5, the polar angle extending from
0 up to 0—:vr + e/3B, then continues as a straight line
heading straight in the direction of t = 1 and finally ends
as a circular arc of radius ti = (3+o)/8 and centered on
the real axis at 1 —tg, the polar angle decreasing from
0 to 0. In case a. ) 1, tq is chosen to have the value 0.3.
It should be noted that although the powers in Eq. (31)
are supposed in general to have their principal values,
the variation of the argument of —t should be continuous
when the real axis is crossed from below between 0 and
1 on the return on the smaller circular arc. As a check of
our procedure, the degenerate hypergeometric function
F(s+ 1+i g, 2s+ 1, 2iz) has been computed numerically
according to Eq. (31) with the above contour. The inte-
grations are performed simply according to the Simpson
rule, cases with s ( 1 requiring a splitting of the inte-
grals over the arcs near 0 = 0. Variation of o and the
radius B shows explicitly independence of the choice of
contour. All values of rc and W (which defines s and i7)
are tractable, as are all values of x. The results for E
agree with those obtained by a routine based on a series
expansion of the confluent hypergeometric function.

At this point it should be mentioned that contour-
integral representations of the confluent hypergeometric
function have been applied by a number of authors, in
particular Nordsieck [5], Pradhan [6], and Ford [7] (see
also Chen and Chen [4]), to obtain momentum waves in
the nonrelativistic case. After interchange of the orders
of integration and subsequent computation of the Fourier
integral, the function to be integrated along the contour
in the complex plane is analytic (see remarks in [6] on
branch cuts), and the Cauchy integral theorem may be
applied. In the relativistic case, however, this does not
hold true as is evident from Eq. (33), which displays non-
integer negative powers of t —t~ ~, where tp ~, are the pole
values listed in Eq. (35). Consequently, it is necessary to
perform the t integration numerically.

In the numerical evaluation of X according to Eq. (33),
the convergence parameter ~ attains a small but finite
value, and the outer radius of the integration contour is

t plane

FIG. 1. Contour in complex t plane applied in the integral
representation of the conBuent hypergeornetric function, Eq.

chosen as R = 0.50001. The integration is performed by
a simple Simpson routine as for F with a splitting of the
integration over the circular arcs at 0 = 0.02 maintained
for s & 1. For 0 approaching the critical value 1, conver-
gence is assured by splitting the integration over angle
despite the value of 8. It was found adequate to perform
this splitting for values of 0. between 0.9 and 1.1 with
splitting angles at O,~ht

——0.08+ 2~1 —o [
and 8 —0»i;i

(for s ( 1 the splitting at the lower angle is maintained
at 0.02).

The variation of X with o is smooth except, as ex-

pected, in the region near 0 = 1, where large and rapid
variations are encountered. The details of the excursions
of X in this region depend on the value of the convergence
parameter e. For 0. ) 1 and e ~ 0+, values obtained by
the contour-integral prescription (33) approach those ob-
tained by the summation (30). Indeed, if a finite value of
e is introduced also in the latter expression, cf. Eqs. (28)
and (29), very good agreement between the results of the
two procedures is revealed in the region o ) 1 for any
value of the set e, K, , and W. To be specific, a 251-point
Simpson integration for each segment of the contour (the
two circular arcs—or fractions thereof when split —being
treated simultaneously) leads to a relative deviation of
the contour-integral results for the g and f functions of
less than 1 x 10 &om the converged result of the sum-

mation (for finite e) for o —1 ) 0.02. By increasing the
number of steps in the Simpson integration to 1001, the
same precision holds true down to o.—1 = 0.002. It should
be stressed that since the two methods for determining X
are completely independent, the above precision checks
constitute very important checks of the overall procedure
for calculating momentum waves.

VI. RESULTS FOR g(k) AND f(k)

Insertion of X(l, o, s, i7) and X(l, o, s, i7) in Eq. (14)
yields the final results for g(k) and f (k). In the following

we shall present a number of such results with X com-
puted numerically according to Eq. (33) for finite values
of e.

Figure 2 reveals a standard example with Z = 92, W =
2, ~ = —3, and e = 1x10 . The major features observed
are (i) the large excursions for k attaining values very
near ks and (ii) a substantial weight in the region above
kp extending up to, roughly, 1.5kp. The first feature is
a result of the electron being unbound and nearly free.
The second derives from the acceleration of the electron
near the attracting Coulomb center. As to the sensitivity
to the convergence parameter, a decrease of the value of
e is found to cause only minor changes in the values of
g and f for the region covered by the major part of Fig.
2. Indeed, application of the expression (30) valid for
A: ) A:p and corresponding to ~ = 0 leads to curves for g
and f which are indistinguishable from those plotted for
k ) 1.01kp except at the local extremes appearing near
k/ko ——1.026 where an increase in the numerical values
of 8'Fp is encountered. For the region covered by the inset,
the situation is obviously difFerent. Here a decrease of the
convergence parameter by an order of magnitude leads to
an enlargement of peak heights by an order of magnitude
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I
I
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e = 1 x 10, integration of the overlap over the intervals

[1.98; 2.02] and [1.95; 2.05] yields 0.904 and 0.960, respec-
tively. Overlap curves similar to those presented in Fig. 6
have been produced for a variety of cases corresponding
to difFerent values of e, K, and W. In all cases, the curves
were very close to normalized Lorentzians,

M

c 2
- 0.5

0
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+
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I

0.5
I

1.0

k (units of A,, )

I

1.5 2.0

waves, the overlap integral defined by the left-hand side
of Eq. (16) has been computed in a number of cases. In
the limit e -+ 0+, the delta function 8(W —W) should
result. Figure 6 reveals examples of the overlap as a func-
tion of W for three difFerent values of e and TV fixed to 2,
the remaining parameters being Z=S2 and ~ = —3. For

250

K
O0

200—

150—

100—
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j I

! '. ~=5x~p'
I

j l

j I

j 'I

I

FIG. 5. Momentum waves g(k) and f(k) and the corre-
sponding density k (g + f ) for a hydrogenlike uranium ion

(Z = 92), cf. Eq. (23).

(36)

For the full-drawn curve in Fig. 6 and the interval
[1.98;2.02], the rms deviation of Y/Yl. from 1 where YL, is
a normalized Lorentzian of half-width I'/2 = 2.990x 10
is as low as 0.2'%%uo. The half-width turns out to scale lin-

early with e, which clearly emphasizes the role played by
this quantity as a convergence parameter. On the other
hand, I' is independent of K and the dependence of I'/ko
on W is moderate. The results may be summarized as

I'/2 = s QWz —1 P(~W~),

where P is an increasing function of ~W~ which attains
the value 0.831 at S'=l.l and approaches the value 2
asymptotically as W tends towards large values. We
have further considered states which are quite far apart
in the energy spectrum by computing the overlap of a
positive- and a negative-energy state as well as the over-
lap of unbound states with the ground state specified
in Sec. III. In all cases the overlaps were low, although
larger than suggested by the tails of the Lorentzians (36).
For instance, the overlap of unbound states with

~
W~ = 2,

e = 1 x 10, and ~ = —1 with the ground state attains
values of 3.67 x 10 and 1.31 x 10 for the positive-
and the negative-energy states, respectively. These val-
ues are roughly an order of magnitude higher than those
predicted by Eq. (36)—but of course still five orders of
magnitude smaller than the maximum YL, (0).

As an additional check of normalization, as another
indicator of accuracy, and as yet an illustration of the role
played by e as a convergence parameter we have checked
norm squares of wave packets which by construction are
supposed to be normalized. The waves are packets of
partial waves corresponding to a given set of values K, p.
They are constructed according to the prescription

Q(k) = dW Cw@w(k),
W

50—

0

where @w is a wave of the form (11) of energy W and
1 ( W ( Wg. Note that while superpositions of this
form in configuration space create localized objects out
of nonlocalized energy eigenstates, the situation in mo-
mentum space is somewhat reversed; starting kom the
well localized Qw(k) superposition produces a broaden-
ing. In order that the packets (38) be normalized it is
required that the weight factor C~ fulfill the condition

1 .99 2.00

W

2.01 wg

1 = dW ]Cw~' (39)

FIC. 6. Overlap integral de6ned by the left-hand side of
Eq. (16) as a function of W for W = 2, Z=92, n = —3, and
three diferent values of e.

in view of Eq. (16). We chose the bell-shaped weight
Cw = /218790(Wb —W ) "~2(W —W )4(W —Wb)4,
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constructed smooth packets according to Eq. (38) with
our spiky g and f functions as input, and computed norm
squares. At this point it is important to realize that the
latter will not in general come out as a plain 1 due to the
finite value of e. There are two reasons. First, the tails of
overlaps outside the interval [W; Wb), cf. Eq. (36) and
discussion above, lead to too low numbers; the deficiency
may be estimated roughly as 2I'/vr(Wb —W ). Second,
the variation of C~ on the scale I' leads to a correction
which in the present case is negative and which may be
estimated roughly as [2I'/(Wb —W )] . For corrections to
be small, I'/(Wb —W ) obviously needs to be small, that
is, e divided by the relative width of the packet needs
to be small. Wave packets were created for Z = 92 and
v = —1 with R' = 2 and Wb ——2.1. For e = 1 x 10, the
norm square was calculated to 0.899. By decreasing ~ to
1 x 10, the value improved to 0.990, and a further de-
crease to e = 5 x 10 gave 0.995. In total, it is seen that
the deviation from 1 essentially is proportional to ~, that
is, the normalization integral converges to 1 as ~ tends to
0. We remind the reader at this point that for given ~ the
precision with which we compute the momentum waves
is considerably higher than the three digits given in the

last few lines might seem to indicate, cf. final paragraph
of Sec. V.

VII. CONCLUDING REMARKS

We have succeeded in determining the wave functions
in momentum space for relativistic single electrons in un-

bound motion in a Coulomb field. Guidelines for prac-
tical calculation have been given and examples obtained
by simple numerical integration have been displayed. It
is our hope that the results may find applications in the
future, e.g. , in collision problems.
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