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Force field and potential due to the Fermi-Coulomb hole charge for nonspherical-density atoms
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In the work formalism for the determination of electronic structure, the exchange-correlation energy
and (local) potential of the electrons both arise via Coulomb's law from the same source, viz. , the
quantum-mechanical Fermi-Coulomb hole charge. The potential is the work 8'„,(r) done to move an
electron in the field of its Fermi-Coulomb hole and the energy is the interaction energy between the elec-
tronic and hole charge densities. For nonsymmetrical electronic density systems for which the curl of
the field may not vanish, a local effective exchange-correlation potential 8"„,(r) is determined from the
irrotational component of the field, the solenoidal component being neglected. In this paper we investi-

gate this approximation further to better understand its accuracy for nonspherical density systems by ap-
plication to a degenerate ground state of the carbon atom within the Pauli-correlated approximation.
The results of the non-self-consistent calculations indicate that the solenoidal component of the force
field due to the Fermi hole is negligible and two orders of magnitude smaller than the irrotational com-

ponent. Therefore, essentially all the effects of Pauli correlation are accounted for by the latter and the
effective exchange potential 8'„' (r) is thereby an accurate representation of the local exchange potential
in the atom. Further, the solenoidal component of the field vanishes at the nucleus, in the classically for-

bidden region and along certain axes of symmetry. Thus the work 8'„(r) in the field of the Fermi hole
for such nonspherical atoms is path independent over substantial regions of configuration space. Finally,
we discuss the structure of the loca1 many-body potential of nonspherical-density atoms when both Pauli
and Coulomb correlations are present.

PACS number(s): 03.65.—w, 31.10.+z

I. INTRODUCTION

The electronic charge densities of the majority of
atoms in the Periodic Table are non spherically sym-
metric. However, in most calculations of atomic struc-
ture, the atoms are treated within the central-field model
wherein these densities are sphericalized by ensemble
averaging the different orientations. In order to deter-
mine more accurately the properties of atoms, their non-
sphericity must be taken into account [l]. To do so in a
meaningful manner it is important to understand the
nonsphericity of the electronic charge distribution in
terms of the correlations between the electrons. In this
paper we learn about electron correlations in nonspheri-
cal density atoms by investigating further the work for-
malism for the determination of electronic structure re-
cently proposed by Harbola and Sahni [2].

The formalism has been applied [3] principally within
the Pauli-correlated approximation to symmetric systems
for which the inhomogeneity of the electronic density is
intrinsically one dimensional and to nonspherically sym-
metric systems for which the density has been so sym-
metrized. The results for the various ground- and
excited-state properties obtained have proved to be accu-

rate when compared with those of other theories, but
particularly so in comparison with experiment. We have
also recently demonstrated [4] the applicability of the for-
mulation to nonspherical-density atoms. In that work we
obtained the structure of the local many-body exchange
potential of a nonspherical density atom in different
directions as a function of the radial distance from the
nucleus. A significant fact learned from this work was
that the change from sphericity of the potentials in
different directions occurred principally in the intershell
region. This explains why the central-field model of
atoms is accurate. The present work is a contribution to-
wards an understanding of the work formalism with re-
gard to its accuracy for nonspherical-density atoms. In
turn this furthers our understanding of electron correla-
tions and provides an explanation for the structure of the
local many-body potential in such systems.

We begin with a brief description of the work formal-
ism. For a system of N electrons in an external potential
v,„,(r), the nonrelativistic Schrodinger equation [5] is
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where %(r„.. . , r~) and E are the system wave function
and energy, respectively. The physics of electron correla-
tion for this inhomogeneous electron gas is described by
the structure of the pair-correlation density g(r, r')
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defined as

g(r, r') = (2)

where the numerator expectation value represents the
probability of simultaneously finding electrons at r and r',
and the denominator expectation is the electronic density
p(r). Thus g(r, r') is the electronic density at r' when an
electron is specified as being at r. The pair-correlation
density can further be expressed as the sum of the elec-
tronic density p(r) and the Fermi-Coulomb hole charge
distribution p„,(r, r') at r' for an electron at r as

[
—

—,
' V +U,„,(r)+ vH(r)+ W„,(r }](t),(r) =e, (t), (r),

which is of the Sturm-Liouville type. As such its eigen-
functions form a complete set. Thus the wave function 4'

can, in principle, be obtained as an infinite linear corn-
bination of Slater determinants of these orbitals. The sys-
tem energy E, the expectation of the Hamiltonian, is then
the sum of the expectation value of the kinetic and exter-
nal potential operators, the Coulomb self-energy, and the
exchange-correlation energy E„,.

In the approximation when only correlations due to
the Pauli exclusion principle are considered, and the
ground-state wave function 0 is a Slater determinant of
single-particle orbitals (t();(r), the pair-correlation density

g„(r,r') is obtained as

g(r, r')=p(r') —p„,(r, r') . (3) g„(r,r') =p(r' }—p„(r,r'),

Thus the Fermi-Coulomb hole represents the reduction in
density about an electron due to correlations resulting
from the Pauli exclusion principle and Coulomb repul-
sion. The total charge of the pair-correlation density is
N —1 since the Fermi-Coulomb hole is the exclusion of a
charge equal in magnitude to that of an electron:

fp„,(r, r' )d r' = l.
Now according to the work formalism, the local poten-

tial representing the electron-electron interaction as well
as the interaction potential energy both arise via
Coulomb's law from the same quantum-mechanical
source charge distribution, viz. , the pair-correlation den-
sity. The pair-correlation density is a dynamic charge
distribution in that it changes as a function of electron
position. Thus the local potential is the work done to
move an electron in the force field of the pair-correlation
density. The potential energy in turn is the energy of in-
teraction between the electronic and pair-correlation den-
sities. The contribution of the static electron density
p(r') term of Eq. (3) leads to the Hartree potential
uH(r)= fdr'p(r')/~r —r'~ and to the Coulomb self-

energy EH= ,' f f [p—(r)p(r')/ ~r —r'~]drdr'. The dy-

namic Fermi-Coulomb hole charge p„,(r, r'} term leads to
the exchange-correlation potential W„,(r) and energy

E„,. Thus the potential W„,(r) is the work required to
bring an electron from infinity to its position at r against
the force field C„,(r) of the Fermi-Coulomb hole charge:

W„,(r) = —f C„,(r') dl', (4)

where

p„,(r, r'}(r—r'}
C„,(r) = dr' .

r —r'

The exchange-correlation energy E„, in turn is the energy
of interaction between the charge of the electronic densi-
ty p(r) and the Fermi-Coulomb hole charge p„,(r, r'):

(6)

The properties of the many-electron system are then
determined by self-consistent solution of the differential
equation

where p„(r,r')= ~y(r, r')~ /2p(r) is the Fermi hole charge
density at r' for an electron at r, and

y(r, r')=g;g,*(r)l(;(r') is the idempotent single-particle
density matrix with y(r, r) =p(r). The total charge of the
Fermi hole is also equal in magnitude to that of an elec-
tron fp„(r,r')dr'=1, it satisfies the constraints of posi-

tivity p„(r, r')~0, and the value at electron position

p„(r, r ) =p( r ) /2. The corresponding differential equation
for the orbitals l(;(r) is the same as Eq. (7) with W„,(r)
replaced by W, (r), the work done in the force field of the
Fermi hole charge. (We note that in the Pauli-correlated
approximation the idempotent single-particle density rna-

trix as defined above differs from the density matrix ob-
tained from the system wave function ql. )

Implicit in the above formulation is that the potential
W„,(r) is well defined in that it is path independent, or
equivalently that the curl of the electric field C„,(r) van-

ishes. This is rigorously the case for symmetrical density
systems that are intrinsically one dimensional as well as
for nonsymmetrical-density systems that are treated ap-
proximately as such. For nonsymmetrical density sys-
tems for which the curl of the electric field may not van-

ish [6,7], a well-defined [2,4] local effective exchange-
correlation potential W'„, (r) (for single simply connected
domains) is determined from the irrotational component
of the force field. The effective many-body potential and
other properties are then determined by self-consistent
solution of the differential equation Eq. (7) with W„,(r)
replaced by W'„, (r).

In this paper we investigate the work formalism fur-
ther with regard to nonsymmetrical-density systems. In
Sec. II we give the definitions of properties of interest,
such as the irrotational and solenoidal components of the
force field due to the Fermi-Coulomb hole charge, and
the scalar and vector source functions which give rise to
them respectively. We present in Sec. III the results of
application to the degenerate 1s 2s 2p, ground state of
the carbon atom assuming only correlations between the
electrons due to the Pauli exclusion principle. The
single-particle orbitals employed in the calculations,
which are non-self-consistent, are assumed to be hydro-
genic. We thereby demonstrate the accuracy of the for-
malisrn for such systems by a comparison of the relative
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magnitudes of the irrotational and solenoidal components
of the force field due to the Fermi hole charge. Brief de-
tails of the derivation and the specific analytical and in-
tegral expressions for the various properties are given in
the Appendix. Finally, in Sec. IV we summarize what
we have learned from our investigation and discuss how
these results obtained within the Pauli-correlated approx-
imation contribute to an understanding of the 1ocal
many-body potential when Coulomb correlation effects
are also considered.

II.DEFINITIONS

According to the Helmholtz theorem the most general
vector field has both a nonzero divergence and a nonzero
curl and can be derived from the negative gradient of a
scalar potential and the curl of a vector potential. We
can therefore write the electric field C„,(r) due to the
Fermi-Coulomb hole charge distribution of a system for
which the curl of the field does not vanish as a sum of its
irrotational C„,(r) and solenoidal C„(r) components.
The mathematical statement of Helmholtz's theorem in
this case is

C„,(r)=VX A„,(r),
where the vector potential

(16)

J„,(r')
A„,(r) =f I,

I

dr' (17)

J„,(r)= VXC„,(r) .
1

(18)

The expression for the vector source can be further
simplified to read

{19)

Finally, the solenoidal component of the field can also be
obtained directly from the vector vortex source as

(20)

is due to an exchange-correlation vector vortex source
J„,(r) given as

C„,(r) =8„',(r)+ C„,(r)
V' C„,(r') V' X C„,(r')= —V f "', dr'+VX f "', dr' .
4n. /r —r'[ 4n. [r —r'/

(10}

The irrotational component of the field is thus the neg-
ative gradient of a scalar effective exchange-correlation
potential W'„, (r):

C„,(r) = —V W'„, (r),
where the scalar potential

(12)

It is evident that in regions where the vortex source van-
ishes, the potentials W'„, (r) and W„,(r) are equivalent.
In these regions the work W„,(r) is then path-
independent.

In the Pauli-correlated approximation for which the
wave function is a Slater determinant of sing}e-particle
orbitals g;(r), the expressions for the various properties
described above are the same except that they are now
derived from the idempotent density matrix y(r, r'). Fur-
ther, since the Fermi hole charge satisfies the constraint
of charge neutrality, so does the effective Fermi hole:

Jp'„(r)d r =1. The effective exchange potential W„' (r) is
then determined by self-consistent solution of the
di5'erential equation

[——,'V'+u, „,(r}+u„(r)+W„'~(r)]q, (r)=e, 1(,(r), (21)
is seen to arise from a scalar (static) effective Fermi-
Coulomb hole source charge p'„,(r) which is

p'„,(r}= V C„,(r) ..a (13)

The expression for the effective source charge can be fur-
ther simplified to read

p'„,(r)=p„,(r, r)+ [Vp„,(r, r')] dr' .
4~ "' '

r —r'~'
(14)

p'„,(r'}(r—r')
C„,(r)= f "' dr' .

fr —r'/' (15)

The solenoidal component of the field is the curl of an
exchange-correlation vector potential A„,(r):

Since the total Fermi-Coulomb hole charge is unity [5],
so is the total charge of the effective source:
Jp'„,(r)dr= 1. The irrotational component of the elec-
tric field can also be obtained directly from the scalar
effective source charge via Coulomb's law as

which in turn leads to the properties of nonsymmetrical-
density systems within this approximation. The solution
in this approximation also gives the exact asymptotic
structure of the effective exchange-correlation potential
W'„~(r) of the fully correlated system when both Pauli
and Coulomb correlations are present. This is because
the total Coulomb hole charge and consequently the total
effective Coulomb hole charge is zero. {The Coulomb
hole can be defined as the difference between the
quantum-mechanical Fermi-Coulomb hole p„,(r, r') de-
rived from the pair-correlation density [see Eq. (3)] and
the Fermi hole obtained from the idempotent density ma-
trix of the Pauli-correlated approximation. ) Therefore,
for electron positions asymptotically far from this charge,
the force field and correlation potential W; (r) due to
this charge vanish. For these electron positions, the
differential equation for the fully correlated system
reduces to Eq. (21) of the Pauli-correlated case. Thus the
asymptotic structure of the exchange potential W„' (r) as
determined within the latter approximation is equivalent
to that of W'„~(r) of the fully correlated system.
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III. RESULTS AND ANALYSIS

We next apply the above formalism within the Pauli-
correlated approximation in a non-self-consistent calcula-
tion to the open-shell carbon atom. We assume the atom
to be in its degenerate 1s 2s 2p, ground state and the
single-particle solutions f; (r } of Eq. (21) to be hydrogenic
so that

0.5
0.0 '1

-1.0—

-2.0—

&e =0'

0=15'

0=30'
8 =45'

e =60'

(a)

( )
— Z 3/2 —Zr1

v'

( )
— Z 3/2

1
Z —Zr/21

2V2~ 2
(22)

0.8

0.4
05—0.0
L

cU 04
=90

0.0
0.0 1.0 2.0 0.0

r (a.u. )

1.0 2.0

FIG. 1. The radial probability density r p(r, O) as a function
of the radial distance r for different angles 6) ~

1t2& (r, 8)= —Z r cos8e
1

4&v~

with Z=6. (The choice of these orbitals implies that
there exists some hypothetical external potential such
that the effective potential seen by the electrons is cen-
tral. Thra . e assumption that the atom is in a degenerate
state is a means to simulate the non-sphericity of the den-
sity of an open-shell atom for which the effective poten-
tial is not central. ) The electronic density p(r) thus has
azimuthal symmetry and depends only on the coordinates

[ r, 8)—=q]. The highly nonspherically symmetric struc-
ture of the density p(r) is evident in Fig. 1 where the radi-
al probability density r p(q ) is plotted for different direc-
tions corresponding to 8=0', 30', 60', and 90'. The Fer-
mi hole p„(r,r') =p„(q,q') is also independent of the az-
imuthal angles P and P'. Thus the electric field C„(r}due
to the Fermi hole charge is independent of the angle P
and does not have an azimuthal component. [This is also
the case for the irrotational 4'„(r) and solenoidal C„(r)
components of the field. ] The electric field is thus
8 ( )=i 8„q =ir „,(q)+is@„e(q), so that its curl is also in-

dependent of P and only has an azimuthal component:
V X C„=i~[VX C„(q)]~.

In Fig. 2 we plot the curl of the electric field (or
equivalently the vortex source) as a function of the radial
distance r from the nucleus for different angles 0. The
curl vanishes for 8=0', but its magnitude increases [Fig.
2 (a)] with increasing values of 8 reaching a maximum for
8=60. With a further increase in 8 [Fig. 2(b)] the mag-
nitude of the curl decreases vanishing once again for
0=90'. Observe that the curl of the electric field is finite

x -3 0
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I I I I

e= go'
~reave, m~~~

e =85'
'll l
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I
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FIG. 2. Variation of the curl of the electric field
V X 8„=i~[VXC„(r,8}]&as a function of the electron position
r from the nucleus for different angles 0.

within the atom (see Figs. 1 and 2) and vanishes in all
directions for r ~2.0 a.u. It also vanishes at the origin.
Thus, in the classically forbidden region and right t
tht e surface of the atom, the vortex source and thus the
solenoidal component of the force field are zero. The to-
tal electric field in these regions is thus equivalent to its
irrotational component. Therefore, in the classically for-
bidden region as well as at the origin and in the directions
8=0' and 90', the effective exchange potential 8 (r) is

equal to the potential W„(r) due to the Fermi hole charge
itself.

What the above analysis, together with the fact that
the total Coulomb hole charge is zero, shows is that even
for nonsymmetrical-density atoms the work W„,(r) is in

fact path independent over substantial regions of
configuration space. Furthermore, with a knowledge of
the symmetry of a system, specific directions for which
this is also the case can be determined. In addition the
self-consistent determination of the structure of these
atoms is facilitated since the local many-body potential in
these regions and directions is then obtained directly
from the Fermi-Coulomb hole charge.

As we have seen, the vortex source function J (r) is

finite only within the atom. Therefore, the significant
question which next needs to be answered is how the irro-
tational and solenoidal components of the force field

compare to each other. This will answer what fraction of
the many-body effects is incorporated in the effective Fer-
mi hole charge p'„(r) and therefore how accurate the lo-

cal effective exchange potential W„' (r) is.
The irrotational component C„(r) of the force field is

due to the effective exchange charge distribution, p' (r).
The resulting local effective potential W„' (r) must pos-
sess the symmetry of the system, and thus the structure
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d in ' (r).to the unit positive charge containe p'
E 1 tl since the vortex source vanishes

'
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structure ofsicall forbidden region, the asymptotic structure o

W,' (r) is the same as that of W (r) which in turn arises
from the unit positive charge of the Fermi hole p, (r, r' .
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tial W„' (r) is equivalent to the potential W (r) and its
slope there. as for spherically symmetric atoms, is zero.

Finally, for completeness we repeat [4] in Fig. 8 the
variation of the path-independent local effective exchange
potential W„' (r, 8) as a function of the radial distance r
for different angles 0. The potentials increase monotoni-
cally throughout space so that the work done to remove
an electron in all directions is always positive. The poten-
tials in each direction also clearly delineate between the
K and L, shells, there being a distinct change in the struc-
ture of the potentials in the intershell region. As expect-
ed from our discussion of the asymptotic structure of the
electric field, the effective exchange potentials decay to—1/r at different rates in the different directions. By
r=10 a.u. the potentials are all exact to two decimal
places. It is also evident from the figure that in the deep
interior of the atom, the differences between the poten-
tials in the different directions is negligible and that they
all approach the same value at the origin. Also observe
that the slope of these potentials diminishes as the origin
is approached and that the slopes are virtually zero even
at r =0.01 a.u.

IV. CONCLUSIONS

From our analysis of the work formalism as applied to
a degenerate ground state of the carbon atom in the
Pauli-correlated approximation, we have learned the fo1-
lowing.

The vector vortex source function J,(r) for the
solenoidal component C„(r) of the electric field C„(r)
due to the Fermi hole charge p, (r, r') is finite only within
the atom. This follows from the fact that for such finite
systems the Fermi hole charge is localized in the atom
about the nucleus. The vector source function vanishes
in the classically forbidden region and along certain axes
of symmetry. As such, the effective exchange potential
W' (r) in these regions and directions is equal to W„(r),
the work done in the force field of the Fermi hole charge.
Therefore, over the substantial fraction of configuration
space corresponding to these electron positions, the work
W„(r ) is path independent. Furthermore, the self-
consistent determination of the local exchange potential
in the classically forbidden region and along these specific
symmetry directions is facilitated since its structure for
those electron positions can then be determined directly
from the Fermi hole p, (r, r') itself rather than via the
effective charge p'„(r).

Although the solenoidal component C, (r) of the force
field is finite within the atom, it is two orders of magni-
tude smaller than the irrotational component C„(r).
This means that essentially all the many-body effects are
incorporated in the effective Fermi hole charge p'„(r).
Therefore, the potential 8" (r) is an accurate representa-
tion of the local exchange potential acting upon the elec-
trons within the atom, and will consequently lead to ac-
curate ground-state energies. Furthermore, the fact that
the difference in the potential W' (r) in the different
directions is small except for the intershe11 region ex-
plains why the central-field model of atoms is so accurate.

For the fully correlated case when both Pauli and

Coulomb correlations are considered, we know that the
Coulomb hole charge p, (r, r'), and therefore the effective

Coulomb hole p', (r) are localized about the nucleus of
the atom with total charge zero. Thus asymptotically the
effective correlation potential W; (r) vanishes and the
effective exchange-correlation potential W'„, (r) reduces
to that of W; (r) A.s noted above, the effective potential
W„' (r) in turn is equivalent to the potential W, (r) in the
classically forbidden region since there the vortex source

J,(r) vanishes. Thus, as is the case for closed-shell

atoms, the structure of the local exchange-correlation po-
tential for open-shell atoms in the region near and outside
the surface of the atom is also exactly known and given

by W„(r). In the truly asymptotic region W„(r)= —1/r
in all directions. The highest occupied eigenvalue of the
differential equation when only Pauli correlations are
considered, Eq. (21), should therefore be a good approxi-
mation to the ionization potential and electron affinity of
atoms and also give rise to accurate transition energies
and polarizabilities.

For an electron at the nucleus, the Fermi-Coulomb
hole charge is spherically symmetric. The vortex source,
therefore, vanishes, and the efFective potential W'„, (r)
there is equal to W„,(r). Thus the unique value of the
potential at the origin can also be determined directly
from the Fermi-Coulomb hole charge. Since the electric
field C„,(r) is also zero at this electron position, the
effective potential W'„, (r) in the different directions all

approach this unique value at the origin with diminishing
slope, with the slope finally vanishing at that position.

Finally, as we have seen, even with the choice of hy-
drogenic orbitals the solenoidal component of the force
field is negligible in comparison to the irrotational com-
ponent. For self-consistently determined orbitals for
which the distortion of the electron density from spheri-
city is expected to be far less pronounced, the solenoidal
component will be still smaller. As a consequence, the
effective exchange potential W„' (r) will be more accurate
since essentially all the many-body correlation effects
would then have been accounted for in the determination
of its structure. A self-consistent solution within the
Pauli-correlated approximation with the true electron-
nucleus external potential would also answer whether
there even exists a solenoidal component of the force
field, and therefore whether the potential W, (r) for such
nonsymmetrical-density systems is in fact path-
independent throughout space.
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APPENDIX

In this appendix we give the analytical and integral ex-
pressions for the various properties discussed in the text
as derived for the hydrogenic orbitals [Eq. (22)] assumed.



816 MARLINA SLAMET, VIRAHT SAHNI, AND MANOJ K. HARBOLA

To simplify the expressions we define q
=—(r, 8),

q' =—(r', 8'), z=r cosH, z'=r'cosH', p= 1 —3r, and
p'=1 —3r'. The functions f, (r, r') and f2(q, q') up to
f5(q, q') are defined as

f~(r, r')=e "p —e "p',

fz(q, q')=e "z' —e "z,

f3 (q, q') =z'p —zp',

f4(q, q') =-z —z'+ 3z [i„(r—r') ],
f5(q, q')=z —z'+3r(sinH)[ie (r —r')] .

The electronic density has azimuthal symmetry so that

p(r) =p(q ) = e "A (q ),432 —6r

where

A (q ) =e "+
—,'(p +9zz) .

The Fermi hole is independent of the azimuthal angles

P and P' so that

(
,

)
216 6„ B (q, q')

p„ q, q' = e

C„(q ) =i„6„„(q)+isa„e(q )

i„(r—r')
=I, p~ qq'

3
dr'

r —r'

ie.(r —r')
+Ig p q q

r —r'

Vp, (q, q') X(r—r')
dI

~P . , 1 ~P
[ie (r —r')] —[i„(r—r')]-

dr " r 88
dI

/r —r'[3

The vortex source function [see Eq. (18)] is then

J„(q ) =i&J„&(q ) =i&[VX C„(q )]&l4m. .

The effective exchange charge [see Eq. (14)] is

ett( )
p q( )

X

The curl of the electric fteld also has azimuthal symme-

try but only an azimuthal component:

V X C, (r) =
i&[V X C„(q ) ]&

where

B(q,q') =e '"+' -
—,'(pp'+9zz') . +e '"f2f4+ ,'f3f5]d '.-

The gradient of the Fermi hole

~P . 1 ~P
Vp„(q, q') =i„+ie-

dr r BH

where

Bp

Br
e " [re '"f + e '"(1+3r )f cosH

~A

+ —,
' f, cosH],

1 ~P —6r'[ —3rf 8+ ] f 8]

The electric fteld due to the Fermi hole [see Eq. (5)] has
azimuthal symmetry and does not have an azimuthal
component. Thus

As with the electric field, its irrotational component [see
Eq. (15)] has azimuthal symmetry and only radial (r ) and
|9 components:

8', (q ) =i„C„„(q)+isa'„e(q )

i„(r—r')
=i, p' q' dr'

/r —r'f3

ie (r —r')
+isfp'„(q') dr' .

r —r' 3

The solenoidal component of the electric jield [see Eq.
(20)] only has azimuthal symmetry and only r and 8 com-
ponents:

C„(q ) =i„6„„(q)+isa„e(q ),
where

6'„„(q)=f
and

Bp„(q',q") 1 Bp„(q',q")
[ie (r' —r")], —[i„"(r'—r")]—,

T

4m. /r —r'f fr' —r"
/

' [(ie.i&. )[i& (r —r')] —(i&.i& )[ie (r —r')] ]dr'dr"

4m /r —r'/'/r' —r" /'

The local effective exchange potential [see Eq. (12)] is

Bp„(q',q") 1 Bp„(q',q")
[itr

.(r' —r" )], —[i„"(r' —r" ) ]—,
6'„ t3(q)= I j(i& i&, )[i, (r —r')] —(i„.i&. )[i&.(r —r')]]dr'dr".
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p'„'~(q}=—f ~ q, dr'+ f q 'q
I [i„..(r' —r"}]r'e "'f,(r', r"}+e "'fz(q', q")fs(q', q")1 p(q' },243 B(q', q" )e

2 /r
—r'I 2tr A (q')fr —r'//r' —r" /'

+ ,'f3-(q' q" }f5(q' q"}]«'«".

The six-dimensional integrals for the irrotational and solenoidal components of the electric field and that for the
effective exchange potential are performed by the Monte Carlo method [8].

[1]J. F. Janak and A. R. Williams, Phys. Rev. B 23, 6301
(1981);F. W. Kutzler and G. S. Painter, Phys. Rev. Lett.
59, 1285 (1987).

[2] M. K. Harbola and V. Sahni, Phys Re.v. Lett. 62, 489
(1989); V. Sahni and M. K. Harbola, Int. J. Quantum
Chem. Symp. 24, 569 (1990);M. K. Harbola, Ph.D. thesis,
City University of New York, 1989 (unpublished).

[3]Atoms: Y. Li, M. K. Harbola, J. B. Krieger, and V. Sahni,
Phys. Rev. A 40, 6084 (1989); V. Sahni, Y. Li, and M. K.
Harbola, ibid. 45, 1434 (1992); J. Samuel and K. D. Sen,
Int. J. Quantum Chem. 44, 1041 (1992); K. D. Sen, M.
Slamet, and V. Sahni, Chem. Phys. Lett. 205, 313 (1993).
Atomic ions: K. D. Sen and M. K. Harbola, ibid. 178, 347
(1991);K. D. Sen, Phys. Rev. A 44, 756 (1991);Y. Li, J. B.
Krieger, and G. J. Iafrate, Chem. Phys. Lett. 191, 38
(1992). Atomic excited states: K. D. Sen, ibid. 188, 510
(1992). Metallic surfaces: M. K. Harbola and V. Sahni,
Phys. Rev. B 39, 10437 (1989); V. Sahni, Surf. Sci. 213,
226 (1989); L. Orosz, Phys. Rev. B 47, 12 806 (1993). Me-
tallic clusters: M. K. Harbola, J. Chem. Phys. 97, 2578
(1992).

[4) M. K. Harbola, M. Slamet, and V. Sahni, Phys. Lett. A

157, 60 (1991).
[5] Atomic units are used: )e) =1=m= l.
[6] H. Ou-Yang and M. Levy, Phys. Rev. A 41, 4038 (1990);

M. Rasolt and D. J. W. Geldart, Phys. Rev. Lett. 65, 276
(1990);M. K. Harbola and V. Sahni, ibid. 65, 277 (1990).

[7] The relationship of the work formalism to density-

functional theory for systems for which the curl of the

electric field may not vanish has been investigated by us

(Ref. [4]) and by Y. Wang, J. P. Perdew, J.A. Chevary, L.
D. Macdonald, and S. H. Vosko, Phys. Rev. A 41, 78

(1990); see also M. Slamet and V. Sahni, Int. J. Quantum

Chem. Symp. 26, 333 (1992). For the explanation of elec-

tron correlations in the local-density approximation, see

V. Sahni, in Density Functional Theory, Vol. 336 of NATO

Aduanced Study Institute, Series B: Physics, edited by E.
K. U. Gross and R. M. Dreizler (Plenum, New York,
1994); V. Sahni and M. Slamet, Phys. Rev. B 48, 1910
(1993);and M. Slamet and V. Sahni, ibid. 45, 4013 (1992).
For the relationship to Hartree-Fock theory, see M. K.
Harbola and V. Sahni, J. Chem. Educ. 70, 920 (1993).

[8] G. P. Lepage, J. Comput. Phys. 27, 192 (1978).


