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Counting the number of vibrational states of a molecule to improve the Born-Oppenheimer estimate
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I derive an approximate estimate for the number N of states in a vibrational band of a diatomic mole-

cule. The number N may be used to redefine and improve by a factor m. a well-known estimate of Born
and Oppenheimer [Ann. Phys. (Leipzig} 84, 457 (1927)]. The formulas for N are compared to data for H,
and a few other molecules.

PACS number(s): 33.10.Cs, 33.10.Gx, 36.10.—k

The spectra of diatomic molecules are well understood
[1]. Modern computers calculate energy levels very pre-
cisely and for very many molecules. Approximate esti-
mate thus seem old-fashioned and useless. Nevertheless
in this paper I discuss a simple, approximate estimate for
the typical number N of vibrational states in any diatom-
ic molecule, and use this result to sharpen a well-known

[2] formula due to Born and Oppenheimer [3]. The result
is so simple and the derivation so trivial that they could
have been found any time in the last 70 years, but ap-
parently have not. Approximate formulas are useful in
helping us understand more precise results, both from ex-
periment and from computers.
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whether the vibrational spacing is between the two bot-
tom states in the well, or the two top energy states. In H2
these two "frequencies" differ by a factor of 6.

I wi11 discuss the number N of vibrational energy levels
in a given electronic state of the molecule, and will show
that for the ground state of typical stable molecules this
is reasonably well approximated by the formulas
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I. INTRODUCTION

The spectrum of any diatomic molecule is distinct. For
each allowed angular momentum, the energy levels occur
in closely spaced bands, the vibrational states, which are
(usually) well separated from the next band, the vibra-
tional states of the next electronic state. The number of
states in each band is finite; this is in contrast to atomic
energy levels which are usually infinite in number at each
allo~ed angular momentum.

This grouping into bands is a well-known and under-
stood consequence of the disparity in mass between elec-
trons (mass m ) and nuclei (mass M »m }. The motion of
electrons is studied for a fixed nuclear configuration, and
the resulting electronic energy, together with the
Coulomb repulsion between nuclei, serves as potential en-

ergy V(r) for the motion of the nuclei. This scheme was
first described in quantum mechanics by Born and Op-
penheimer [3] in a widely quoted article though it had
been discussed earlier by Born and Heisenberg [3]. Many
textbooks [2] discuss this approximation and quote [3] an
estimate for the typical vibrational energy spacing
co„of a molecule, relative to an electronic spacing ~„
co, /co, =&m/M. I have not seen any (numerical) exam-
ples for this equation in textbooks. It is also not clear,
since the number of states in the vibrational band is finite,

where m is the electronic mass while p is the reduced
mass of two nuclei of mass M&, M2.

MiM~

M +M (2)

Formula (la) is for a homonuclear molecular
M, =Mz=M while formula (2) is for a heteronuclear
molecule.

Equations (2} involve the inverse of the dimensionless
parameter &tn/M, with an extra factor of n., so they
suggest that we try to reformulate the Born-Oppenheimer
estimate.

Equation (1} is very accurate for the ground states of
alkali-metal-atom molecules; the error is less than 5%. I
quote a few examples below:

Molecule Formula (1) Experiment Reference

Li2
Na2
Cs2

35.6
64.8

155.9

37
66

156+1

[lg]
[19]
[20]

I hope to discuss these and other examples elsewhere.
The average vibrational spacing & fico„ ) in a band may

be defined by dividing the dissociation energy of a mole-
cule (in the given electronic state) D, by the number of
spacings (N —1):
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(where I assumed N »1), and one can rewrite (3) in the
form

—vr dr
rO

(9)

m
77

M

' 1/2

II. DERIVATION OF EQS. (1)

The number of bound states N for the vibrational
motion of two nuclei, of masses M, ,M2, due to a poten-
tial energy V(R) can be estimated through the Bohr-
Sommerfeld-Wilson quantization condition [4]. This for-
mula was postulated by Wilson and by Sommerfeld to
give the quantization of elliptic orbits within the Bohr
model of the hydrogen atom. With the advent of quan-
tum mechanics, the formula was derived in the "semiclas-
sical" approximation of large quantum numbers by
Wentzel, Kramers, and Brillouin (WKB) [5,6]. The for-
mula relates the energy E to an integer quantum number
n through the phase-space integral:

2n(n+ —,')Pi=2 j &2p[E —V(r))dR, (5)
min

where the limits of integration are defined through the
turning point conditions V(R;„)= V(R,„)=E. To
determine the total number N of bound (i.e., negative-

energy) states, we set E =0 in (5) and replace (n + —,
'

) by N

to obtain

DNA= J &—2JLtV(R )dR,
Ro

(6)

where now V(Ro) =0 and we replace R,„by infinity, as-

suming a long-range potential. Equation (6) is valid in an

arbitrary system of units (such as mks), but we can sim-

plify it if we express distances r and energies v(r) in

atomic units:

R= r =aor,
me+

(7a)

eV(R)=mc a u(r)= v(r),
ao

(7b)

where ao is the unit of length, the Bohr radius. In these
units Eq. (6) has the form

1/2 i 1/2
1 22p I,

m f & v(r) dr=—GQ 1 2p
ro m

where I defined the dimensionless integral I as

In (3) and (4) I have only used Eq. (la) appropriate to the
homonuclear case. As already mentioned, in the early
1920s, Born, Heisenberg, and Oppenheimer [3] estimated
co, /co„where cv, is an "electronic frequency" to be of or-
der &m/M. Their estimate neglects anharmonicity in
vibrations, so that all vibrational spacings in the band are
identical. The estimate (4) based on defining an average
vibrational spacing for the molecule is more precise, and
provides an improvement by a factor of m. The dissocia-
tion energy D, is, as is well known, of the same order of
magnitude as an electronic spacing.

with v and r in atomic units. The lower limit of integra-
tion ro satisfies v(ro)=0. It is now easy to see that the
finite number of levels in a vibrational band is due to the
integral (9) being convergent, which in turn is due to the
long-range behavior of u(r ). Typically v(r ) —r if the
molecule dissociates into neutral atoms, and the integral
converges. However if the molecule dissociates into ions,
or for an atom which dissociates into an ion and electron,
u(r)-r and the integral diverges, so there is an infinite
number of states.

As will be discussed below the estimate (8) is very accu-
rate for getting the number N of energy levels. But we
still need knowledge of the potential energy u(r ) for the
specific molecule in the specific state. This is available
quite often. The estimate (1) is obtained by assuming that
the integral I is equal to 1. It is clear that both the size of
the integrand &—v and the "range" where it is
significant are of order unity in atomic units, since they
are obtained from an electronic Hamiltonian at a fixed
distance r. But clearly the assumption (or guess) I= 1 is
too general to be good for all molecules and all their ex-
cited states. In special cases we can evaluate I since we
know v(r), or alternatively we can infer the value of I
from the experimental data on N. We shall do this in the
next section. It should also be noted that (due to the
square root) formula (9) is rather insensitive to errors in
u(r); as the integrand is everywhere positive, cancella-
tions cannot occur.

III. COMPARISON WITH EXPERIMENT

For hydrogen H2, the approximate estimate (la) is

1/2
1 M = &1836=13.6,

7T Pl
(10)

where M is the proton mass. The estimate (10) is in
reasonable agreement with the actual number of vibra-
tional states of hydrogen H2, which is known from pre-
cise experiments of Herzberg and collaborators [7] to be
15 bound states for a rotationless (J=O) molecule. This
suggests I=1.103. But one can use the very accurate
computations of Kolos and Wolniewicz [8] to evaluate
the integral (9) more precisely. I obtained I=1.108,
which shows that for H2 the guess I=1 is very fortuitous.
The exact number N = 15 has also been known from nu-

merical integrations [9] of the vibrational Schrodinger
equation, which of course give precise values of all the
energy levels E„, much more information than is con-
tained in N. It is remarkable how good the WKB ap-
proximation [or the Bohr-Sommerfeld-Wilson formula

(8)] is in this molecular case. As states, the agreement of
(1) or (10) with the data is somewhat fortuitous, since we

do not know a priori that the guess I= 1 will be good for
hydrogen. Nevertheless the simple estimate (10) indicates
that the "natural" number of states in a vibrational band
of H2 is about 13—14 and so helps us comprehend the

facts.
It is trivial to scale the estimates (1) and (8) for various

isotopes of hydrogen Dz, HD, DT, HT, and T2 which are
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Molecule Formula (1)
Formula (8)

(with I=1.108) Data'

TABLE I. Number of vibrational states for hydrogenic mole-

cules (J=O).
compared to 32.8 predicted by formula (8), which is still
pretty good. But the guess I=1 is very inaccurate in this
case and other excited states which result from the
"crossing" of two electronic states.

H2
HD
HT
D2
DT
T2

PAP
drMd

13.6
15.7
16.7
19.3
21.1
23.6
0.95
1.34

15~ 1

17.4
18.5
21.3
23.4
26.1

15
17
18
21
23
26

1

2

IV. DISCUSSION AND SUMMARY

The literature on bound states contains exact results on
the number of bound states in a potential. For example,
Jost, Pais, Bargmann, and Schwinger have proven an
upper bound [16]:

'For Hz, HD, and Dt the experimental data are from Ref. [7],
while for the other isotopes we quote the computation of Ref.
[10]and for p)Mp the computations reviewed in Ref. [11].

all given in Table I. It is also amusing to consider the
molecule-ion Hz+, for which I found by numerical in-
tegration that the integral (9) is also close to unity in the
ground electronic state. I found I(Hz+ ) = 1.06. There-
fore the estimate (10}should also hold for H2+. Similarly
for the muonic hydrogen ion (p)Mp}+ we can use formula
(10) with the muon mass replacing the electron mass.
This gives N =0.95 in agreement with numerical compu-
tations which find a single bound state for muonic mole-
cules [11]. It is somewhat surprising that the simple for-
mula (1), based on the semiclassical Bohr-Sommerfeld-
Wilson (large-N) approximation, should work even for N
as small as unity.

For heavier molecules N is larger than for hydrogen
Hz. But we should recall that there is no obligation for
the integral (9) to be close to unity. We were lucky for
Hz. Therefore we should expect deviations, and this is
indeed the case. There is no intention to give a large sur-
vey in this paper, but a few cases will be discussed. For
example, for chlorine C12 where M=35 formula (1) pre-
dicts 80 levels, while the ground electronic state of Clz
has [12] only 59 vibrational states. Therefore we con-
clude that the integral (9) is about 0.73 for the ground
electronic state of Cl. A similar value holds for iodine Iz,
where with M = 127 formula (1) predicts 153 states, but
only 114 states are found in the ground electronic state
[13]. This corresponds to the integral I(I2)=0.745,
surprisingly close to that of chlorine. While the absolute
discrepancy is large, the percentage error is only about
25%. For the alkali-metal molecules the integrals are
also within 10%%uo of unity [15].

Dressier and Wolneiwicz have kindly pointed out that
the integral I is large in some excited states of Hz which
have double minima. For example, in the EF electronic
state the integral I is 2.41, and correspondingly there are
34 vibrational states (at J=0) in this electronic state [14],

As seen from the second expression, this inequality shows
that in the case of hydrogen N &1836. This is true but
useless, because N is large [17]. The formula (1) is not ex-
act, so it is violated, but not by so very much.

There are two comments to add here. It would clearly
be very interesting to compare formula (1) with a much
larger number of examples than in this paper. A second
comment concerns the parametrization of empirical po-
tentials, used to represent the vibrational motion of dia-
tomic molecules. It is customary to label them via equi-
librium distance R, and dissociation energy D„which
are indeed directly available from experiment. The in-
tegral I of Eq. (9) is just as accessible from experiment via
Eq. (8), and ought to be determined for each empirical
potential, together with R, and D, .

In summary, this paper provides an estimate, Eq. (1),
for the number N of states in a vibrational band. The es-
timate is sometimes a poor approximation, but it irn-
proves by a factor of ~, a related previous estimate due to
Bron and Oppenheimer.
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