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Single-Fock-operator method for matrix Dirac-Fock self-consistent-field calculations
on open-shell atoms
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A generalized coupling operator method is employed to construct a single Fock operator for matrix
Dirac-Fock self-consistent-Geld calculations on general open-shell multiplet states of atoms. The ap-
proach handles any number of open electronic shells. The matrix Dirac-Fock procedure is implemented
with analytic basis sets of Gaussian-type functions for expansion of the large and small components of
the Dirac four-spinors. Open-shell Dirac-Fock calculations in the single-Fock-operator formalism are
performed on the ground and 1ow-lying excited states of Li, 8, Na, Al, K, Ga, and In.

PACS number(s): 31.30.Jv, 31.20.Di, 31.20.Tz

I. INTRODUCTION

Relativistic Dirac-Fock (DF) theory and many-body
perturbation theory (MBPT), which account for relativis-
tic and electron-correlation effects, were developed by
several groups using discrete basis sets of "local" [1,2]
and "global" [3—5] functions. Implementations based on
expansion in analytic basis functions [1—5] have the ad-
vantage over those based on numerical finite-difference
algorithms [6—8] of providing a compact representation
of the complete Dirac spectrum. Further, they facilitate
the evaluation of many-body diagrams by finite summa-
tion [3,4]. In a series of studies [4,9], we have developed
matrix DF and relativistic MBPT for calculations on
closed-shell systems employing "global" basis sets of
Gaussian-type functions (GTF's), and applied it to
many-electron systems. Analytic basis-set expansion in
GTF's has yielded accurate results for closed-shell sys-
tems with no sign of the near-linear dependency problems
reported with Slater-type orbital basis sets [10—12].

In the present study, we extend our closed-shell DF
method to general open-shell systems. We employ the
generalized coupling operator method [13,14] and con-
struct a single Fock operator for open-shell DF SCF with
which one can determine all closed- and open-shell spi-
nors. Our interest in the single-Fock-operator method in
matrix DF calculations on open-shell systems arises from
the ne=d for a state-specific relativistic MBPT for general
open-shell systems. Since the pioneering work of
Roothaan in nonrelativistic Hartree-Fock theory [15], a
number of attempts have been made to construct a single
Fock operator with which one can determine all the oc-
cupied orbitals for open-shell and

multiconfigur

atio
(MC) self-consistent field (SCF) wave functions
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[13,14,16,17]. Construction of a single Fock operator for
general SCF theory is important not only to simplify
open-shell SCF calculations but also in formal applica-
tions; a single Fock operator is required when the
Mdller-Plesset-type separation of the ¹lectron Hamil-
tonian is used in the perturbation theory of electron
correlation. Our aim is to develop a relativistic many-
body perturbation theory based on the DF wave func-
tions for open-shell systems. In a forthcoming study, we
will report a state-specific relativistic MBPT for general
open-shell systems in which our single-Fock-operator
method is necessary for a Mdller-Plesset-type separation
of the relativistic many-electron Hamiltonian [18].

This paper presents an account of matrix DF SCF
method which employs a single-Fock-operator formalism
for general open-shell systems. We start with a general
form for the total-energy expression which does not re-
strict the configurational form of the total wave function.
Thus the formalism applies to excited as well as to
ground states. Using projection operators, we decouple
the set of Euler equations derived from the first-order
variation of the energy with respect to the closed- and
open-shell spinors, and transform them into a single pseu-
dosecular equation. In the next section, we outline a
single-Fock-operator method for matrix Dirac-Fock self-
consistent field calculations for open-shell systems. In
Sec. III, the results of matrix DF calculations on the
ground and low-lying excited states of the atoms Li, B,
Na, Al, K, Ga, and In are presented.

II. SINGLE FOCI OPERATOR
FOR MATRIX OIRAC-FUCK CALCULATIONS

Kim pioneered the matrix DF SCF method, using basis
sets of Slater-type functions to study the closed-shell
atoms He, Be, and Ne [19]. His work revealed a tenden-

cy for calculated energies to fall below the variational
limit. The failure of the matrix DF method can be avoid-
ed by constraining the global basis sets [3,4,9—12]. Gold-
man [10], Drake and Goldman [11],and Quiney, Grant,
and Wilson [3,12] have implemented the matrix DF equa-
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tions by employing S spinors (S for Slater) which avoid
variational failure and spurious solutions.

Kagawa has implemented the matrix DF SCF method
for open shell [20] and MC wave functions [21] using the
coupling operator method. Mohanty and Clementi [22]
have applied the matrix DF formalism of Kagawa [20] to
a number of closed- and open-shell atoms with so-called
"kinetically balanced" basis sets of GTF [4,9]. Kagawa's
algorithm [20), however, employs different DF operators
for closed-shell and open-shell spinors and thus is not a
suitable starting point for our relativistic MBPT method.
As an alterative to our MBPT, which is based on open-
shell DF wave functions, closed-shell DF SCF calcula-
tions may be done, followed by construction of a relativ-
istic MBPT for open-shell systems based on a V ' po-
tential. In a series of studies [1),Johnson and co-workers
have employed local basis sets of spline functions to at-
tain impressive accuracy in closed-shell DF SCF and rel-
ativistic MBPT calculations for open-shell systems em-
ploying such a method.

Our single-Fock-operator formalism for matrix Dirac-
Fock SCF calculations is a generalization of our nonrela-
tivistic coupling operator formalism [14] for open-shell
and MC SCF wave functions. There is, however, an im-
portant difference between the nonrelativistic coupling
operator formalism [14] and its relativistic generalization;
proper relativistic generalization of the projection opera-
tors used to construct the Fock operator is key to success
in the matrix DF SCF scheme for open-shell systems.

The approximate ¹lectron Hamiltonian for our
open-shell DF calculations is the relativistic "no-pair"
Dirac-Coulomb Hamiltonian [23,24],

H= ghD(i)+X+ gllr;

where P„,(r) and Q„,(r) are the large and small com-
ponents of the radial wave function.

The radial functions are expanded in GTF,

P„„(r)=g C„„g„,(r),

Q„„(r)=g C„„,g„;(r),

(4)

where

L L L

S S S

and

L
Cn~j

L
Cn~2

L
Cn~3

S
Cn~i

S
Cn~z

S
Cn~3

where [C„„;j and [C„;j are expansion coefficients for
spinors of symmetry k. [g„;(r}j and [g„;(r)j are the
large- and small-component basis sets, respectively. In
order to obtain a matrix form of our single Fock opera-
tor, Eqs. (4) and (5) are combined into a row-column
product;

P„„(r}

Q (r) Igr)Cnz &

where hD(i } is the Dirac one-electron Hamiltonian

hD(i)=ca; p;+(P—1)c +V„„,(r, ) . (2)

For the large component, the GTF's are of the form
[4,9]

g„,(r ) = A „,r "exp( —g„r ),
Here a and P are the Dirac matrices and p is the momen-
tum operator. V„„,(r) is the nuclear attraction term

V„„,(r ) = Z lr fo—r r )R

(ZI2R)(3 r —IR ) for r—~R .

The nucleus is modeled as a sphere of uniform proton-
charge distribution. Z is the nuclear charge. R is the ra-
dius of the nucleus and is related to the atomic mass A by
R =2.2677X10 ' A'~'. X+=L+(1)L+(2) . L+(n),
with L+ (i ) the projection operator onto the space
spanned by the positive-energy eigenfunctions of the ma-
trix DF SCF equation [23]. The projection operator X+
takes into account the field-theoretic condition that the
negative-energy states are filled [23,24]. Throughout this
study, atomic units are used and speed of light is taken to
be 137.037.

In the central-field approximation, the solution of the
Dirac equation is given by

P„„(r)X„(8,P)
(3)

+ g ( kl Jkl ki+ki }
k, (e6)

(7)

where fk is the fractional occupation of kth open-shell.
The h;, J,--, and K,. - represent core, Coulomb, and ex-
change integrals, respectively. The ak& and bk& are cou-
pling constants, the value of which depend on the state

with n„= —~ for ~ &0 and n„=~+1 for ~)0. A „; is the
normalization constant. The small component basis set
[g„;(r}j is constructed according to the kinetic balance
condition [4,9]. With the uniformly charged finite-
nucleus approximation, GTF's of integer power of r are
appropriate basis functions because imposition of the
finite nuclear boundary results in a solution which is
Gaussian at the origin [9].

The total electronic energy of a general open-shell sys-
tem can be expressed [20] as

E= g N, h, , + g N;N (J;~ K;~). . —
i(eC ) i j (eC)

+ X fk Nkhkk+ g NiNk(Jik +ik)
k(eg) i(eF )
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under study. The occupation number X, , of the ith spi-
nor shell is given by N, =2j,. +1. C and G represent
closed-shell and open-shell manifolds, respectively.

The first-order variation of the total energy in Eq. (7)
gives s set of Euler equations

the spinors onto the visual space. In the relativistic gen-
eralization of the coupling operator formalism, it is essen-
tial that the projection operator P, be constructed in

terms of both the negative- and unoccupied positive-
energy branches of the DF spectrum to satisfy complete-
ness:

F Ii&= g ~„ij), iEC
j (EAt)

~klj ), k&G (9)

P, + g Pk+P, =l .
k (cg)

(17)

where

(10)F, =h+ g N (J K)+— g fkNk(Jk Kk)—
j (eC) k (e8)

Fk =fk h+ g NJ(JJ —Ki ) + g (ak Ji —bkIKI )

j (eC) I (e6)

R =Ro+T,
where

(18)

Using the projection operator introduced in Eqs.
(14)—(16), the single Fock operator that satisfies the
correct variational condition can be derived [14]:

and

(i Fk F, ik)—=0, iEC, kEG (12)

and a set of Lagrange multiplier Hermiticity conditions
[13,14,17]

and

R =II,F,II, + g IIkFkIIk
k {60)

[(~ck ~kc)Pc(Fk Fc)Pk-
k (eo)

+(kk, kk—)Pk(F, Fk)P,—]

(19)

( k RIFI Fk i
i ) =0—, k e G, i F G . (13)

II, =P, +P„, IIk=Pk+P„kEG, cEC

with

(14)

Af is the manifold generated by a set of all the SCF occu-
pied orbitals. The [e; I are the Lagrange multipliers. h,

J;, and K, are, respectively, the core, Coulomb, and ex-

change operators.
In order to construct a single Fock operator, one needs

only introduce the projection operators in terms of the
occupied and virtual SCF spinors

+ g g (Aik
—

Akl )PI(Fk Fi )Pk . —(20)
k {E OI) t [ E 0(kW1) ]

Here the [A,; ] are arbitrary nonzero numbers satisfying

the conditions A, ; WA, ,, The operator T ensures the Her-

miticity of the Lagrange multipliers during the iterative
DF SCF procedure. Matrix elements of the operator T
become identically zero at SCF convergence. Thus only

matrix elements of the operator Ro enter the MBPT cal-

culations. With the coupling operator given above, the
DF equations for a general class of open-shell systems are
reduced to single pseudosecular equation form from
which all c1osed- and open-shell spinors can be deter-
mined:

and
Rii &=a, ii) . (21)

v (6V+)v (6V )

P, = g iu)(ui+ g iu)(ui, (16) In matrix DF calculations, the SCF equation in Eq. (21)
takes the form

where V and V+ are, respectively, manifolds generated

by the negative- and the unoccupied positive-energy
branches of the DF spectrum. A matrix form of the pro-
jection operators in Eq. (14) is defined by

II, =P, +P. , rr, =P, +P. ,

where

P, = g C, C,+, Pk =CkCk+
i (EC)

and

P, = g CC„++ g CC„+ .
v (EV ) v (EV+)

The crucial difference between the nonrelativistic for-
malism [13,14] and its relativistic generalization is the
definition of the projection operator P„which projects

SR SC;=e;SC; .

R =Ro+T

with

and

Ro=II,F, II, + g IIkFkIIk
k (e8)

T= g [(A.,k
—A.k, )P, (Fk F,)Pk-

k (e8)

+ (A,k,
—

A,,k )Pk(F, F„)P,]—
(Aik Wkly)Pi(Fk FI )Pk . —

k (eo) 1 I eg(k&l) J

Here S is the overlap matrix given by S = ( gag ) and

(22)
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TABLE I. Total DF SCF energy of the S, /z ground state Li
(in a.u.).

Basis set'

6s
8s
10s
12s
16s
20s
32$
Numerical limit

Total energy

—7.415 622 543
—7.430 211 140
—7.432 917 191
—7.433 373 434
—7.433 522 930
—7.433 532 399
—7.433 533 788
—7.433 533 6'

'Geometric basis set of Schmidt and Ruedenberg (Ref. [25]).
bGeometric basis set with a=0.0080 and P=1.755 188 (present
work).
'DF limit obtained by using the numerical finite difference DF
SCF program of Desclaux (Ref. [27]).

III. RESULTS AND DISCUSSION

A series of matrix DF calculations on the ground and
low-lying excited states of the Li and Al atoms were per-
formed with geometric GTF basis sets which were pro-
gressively enlarged. The exponents of a geometric basis
set [25,26] [g„;I are generated by a geometric series
g„;=ap' ', i=1,2, . . . , N, with a and p parameters.
Table I contains seven representative sets of total DF en-
ergies for ground-state Li along with the total DF energy
obtained with the numerical finite difference DF program
of Desclaux [27]. Geometrical basis sets of 6—20 GTF's
were taken from the work of Schmidt and Ruedenberg
[25]. The 32-GTF basis set was constructed for this
work. A basis of at least 12 GTF is needed to obtain
rnhartree accuracy in the total energy. The total DF en-

ergy computed with the 20-GTF expansion agrees well
with that from the finite-difference calculation. Basis-set

truncation error is on the order of 1 phartree. The 32-
GTF basis gives a total energy accurate to better than a
phartree. The computed energy is about 0.2 phartree
lower than that obtained via numerical DF because of the
difficulty the numerical finite-difference method has in ac-
curately integrating across the boundary of the finite nu-

cleus. Matrix DF calculations with GTF basis sets can,
therefore, be more accurate and provide better upper
bounds to total DF energies that can other methods be-
cause GTF's are able to accurately represent the solution
near the finite nucleus.

Table II displays six representative sets of DF energies
for the ground P, /2 and excited P3/2 states of alumi-

nurn. In both the ground and excited states, the same
geometric basis functions were used, with a=0.01449
and p=2. 061 but varying basis-set size. The results
demonstrate the convergence patterns of the total DF en-

ergies. As expansion size increases, total energy ap-
proaches the numerical limit smoothly from above. The
accuracy and reliability of our matrix DF calculations on
open-shell multiplets are confirmed by the excellent
agreement between our results and those obtained by the
numerical method of Desclaux [27]. For both ground
and excited states, use of the large 31s29p basis set gives a
total DF energy accurate to 10 phartree. The fine-

structure separation between the P j/2 and P3/2 states
computed by the matrix DF calculations is 119.507
cm ', in excellent agreement with the value 119.51 cm

Li 32sb

Li
Li

2
S1/2

2
P1/2

2

—7.433 533 79
—7.365 862 32
—7.365 859 76

—7.433 533 6
—7.365 861 7
—7.365 859 1

TABLE III. Total DF energies of the ground and low-lying

excited states (in a.u.).

Atom Basis set State Matrix DFC Finite difference'

TABLE II. The DF energies of the ground 'P1/2 state and
excited P3/2 state of the Al atom (in a.u.).

B
B

23$23p'

Na 30s28pd

2
P1/2

2
P3/z

—24.536 6162
—24.536 523 2

—24.536 6169
—24.536 523 9

S1/2 162.078 095 162.078 101

State

2
P1/2

Basis set'

20s20p
22s20p
24s20p
26s24p
28s26p
31s29p
Numerical limit

Total energy

—242.319306
—242.329 417
—242.330 856
—242.331 084
—242.331 125
—242.331 133
—242.331 143

Al 31s29p'
Al

P1 /2
—242.331 133

P3/z 242.330 588

—242. 331 143
—242.330 598

K 31s29p S1/2 601 526 020 601.526 058

—1942.566 82
—1942.563 18

Ga 32s29p24d P1/2 —1942.566 70
Ga P3/2 1942.563 06

2
P3/2 20s20p

22s20p
24s20p
26s24p
28s26p
31s29p
Numerical limit

—242.318762
—242.328 873
—242.330 311
—242.330 540
—242.330 580
—242.330 588
—242.330 598

'Geometric basis set (a=0.01449 and P=2.061).
DF limit obtained by using the numerical finite-difference DF

SCF program of Desclaux (Ref. [27]).

In 32$29p24d" P1/2 —5880.441 26
In P3/2 —5880.431 50

—5880.442 19
—5880.432 43

'DF energies obtained by using the finite difference program of
Desclaux (Ref. [27]).
a=0.0080 and P=1.755 188.

'a=0. 03592 and@=2. 1034.
a=0.0080 and P=2.010510.

'o.=0.01449 and P=2.061.
a=0.01822 and P=2.02715.

s a=0.015 and P=2.010902.
"a=0.012 and P=2.040705.
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computed with the finite-diff'erence program [27].
Table III displays the total DF energies of the ground

and low-lying excited states of Li(Z =3), B(Z = 5),
Na(Z = 11), Al(Z = 13), K(Z = 19), Ga(Z =31), and
In(Z =49). These open-shell systems have been chosen
because we can assess the accuracy of our open-shell ma-
trix DF algorithm by comparing the results of our calcu-
lations to those obtained numerically [27]. The atomic
masses used were, respectively, 6.94, 10.81, 22.99, 26.98,
39.098, 69.72, and 114.82 for LI, B, Na, Al, K, Ga, and
In. The size of the geometric basis set appears in the
second column, accompanied by the parameters a and P
in the footnote. In the fifth column, the total finite-
difference DF energies are tabulated for comparison. For
all the systems examined, both the ground and low-lying
excited states were computed with the same basis set. In
each case, the DF SCF process converged in about 40
iterations to within 1.0X10 hartree in total energy.
For all systems except In, the total DF energies agree
with the corresponding numerical limit to one part in
10 . Basis-set truncation error for In is on the order of 1

mhartree. The fine-structure interval computed for Ga
and In are, respectively, 800.30 and 2141.9 cm ', in ex-
cellent agreement with the finite-difference values of
800.24 and 2142.2 cm

IV. CONCLUSIONS

The aim of this study has been to develop the matrix
DF SCF scheme for general open-shell systems using a
single-Fock-operator formalism. We have developed reli-
able procedures for accurate matrix DF calculations on
the ground and excited multiplet states. The single Fock
operator constructed in the present study can be em-

ployed in a straightforward manner in relativistic MBPT
for a general class of open-shell systems if one employs a
Mdller-Plesset-type separation of the many-electron
Hamiltonian. The DF algorithm has been successfully
applied to a number of open-shell systems and it has
proven to be capable of accuracy comparable to that of
finite-difference numerical methods.
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