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Theoretical treatment of radiation trapping: Steady-state conditions and quenching experiment
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Theoretical treatment of resonance radiation trapping under steady-state conditions, particularly of
quenching experiments, is presented. Applying operator manipulations, Holstein s equation of radiation

trapping [Phys. Rev. 72, 1212 11947)] is solved by a perturbation expansion, which can be physically in-

terpreted in terms of multiple scatterings. The resulting expression shows that in a steady-state quench-

ing experiment radiation trapping invalidates the relation of the Stern-Volmer type except when the
amount of the buffer gas is small. In the limit of low buffer-gas pressure, a simple expression is given for
the effective lifetime in the Stern-Volmer relation: the average time of the detected resonant photons
remaining within the enclosure. %hile it is true that this suggested approach is perturbative in nature,
the asymptotic behavior of the high-order expansion coe5cients, however, enables us to reduce the sum-

mation over infinitely many alternatives to some leading terms. Such a reduction procedure helps curtail
the computation time and improve the precision. Finally, some numerical illustrations of our suggested
ideas are presented, which shows this approach is a good tool to treat the steady-state trapping effect.

PACS number(s): 32.50.+d, 32.90.+a

I. INTRODUCTION

Resonance radiation trapping, the repeated absorption
and reemission of the photons, more or less besets experi-
mental investigations and industrial applications involv-
ing resonance radiation. For example, in Auorescent
lamps the trapping effect increases the probability that
radiation remains in the lamps and therefore the chance
of quenching. This decreases the lamp efficiency [1].

Another example showing the trapping effect is in
steady-state quenching experiments, one of the standard
experimental methods to study the impacts of the second
kind [2]. The steady-state quenching experiments mea-
sure the variation of the fluorescence intensity with the
amount of the introduced buffer gas under steady-state
conditions of illumination. In the absence of radiation
trapping, the quenching rate constant is determined with
the help of the Stern-Volmer formula [3]

1/Q=l+rzq=l+rzk p,
where quenching Q is the ratio of the fluorescence intensi-
ty with buffer gas added to that without buffer gas, ~0 is
the excited-state lifetime, and the quenching rate q is the
multiple of the quenching rate constant k and the
buffer-gas pressure. The presence of radiation trapping,
however, would invalidate the Stern-Volmer relation. To
arrive at an absolute value of the quenching rate con-
stant, the trapping effect must be understood.

The studies of radiation trapping began almost as soon
as the discovery of resonance radiation. The early at-
tempts were made by Compton [4), Milne [5], and Ze-
mansky [6], etc. Holstein's work laid a foundation for
the modern treatment of radiation trapping [7]. Holstein
used an integrodifferentia1 equation to describe the
space-time variation of the excited-state particle density
n *. The so1ution of the equation shows that at the very
late time of a pulsed experiment n' is dominated by one

of the eigenmodes, commonly known as the fundamental
mode and, consequently, the fluorescence exhibits a pure
exponential decay with an effective lifetime ~d. This
theory agrees with the experiments quantitatively
[8—10]. Later work by Payne et al. [11] and Post [12]
shows that in some special cases of the Voigt line shape,
subtle modifications that take into account the correla-
tion between the absorption and subsequent emission of
the photon are required.

%'hile the treatment of real-time experiments has made
steady progress, extension of this approach to handle the
steady-state trapping effect is, however, unsatisfactory.
Part of the reason, we think, is connected with the solu-
tion method, expansion in eigenfunctions, which is used
by Holstein to solve Holstein's equation. Unlike real-
time experiments where the fundamental mode dominates
at a very late time, similar dominance of one mode does
not exist under steady-state conditions. Consequently,
one has to use many eigenfunctions. Due to the
mathematical diSculty of the eigenproblems, such a pro-
cedure turns out to be cumbersome and inconvenient.
Some alternative method to solve the equation is there-
fore necessary.

One of the alternate methods is provided by the
multiple-scattering picture [13—17]. Different from the
standpoint of Holstein s equation, this representation de-
scribes radiation trapping as a sum over the contributions
of the photons undergoing alternative scatterings. The
alternatives are the following: the photons are not scat-
tered at all, or the photons are scattered once, twice, etc.
The most appealing advantage of this approach is that it
uses only quantities that are well defined in physics and,
therefore, it can be carried out by using the Monte Carlo
simulation in which complicated factors such as
hyperfine splitting, isotopic shifts, etc. may be readily in-
corporated in the computation. For example, Anderson
et a/. have used the Monte Carlo simulation to reproduce
their interesting experimental result: the addition of
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Hg to natural mercury decreased the trapping effect
and consequently increased the mercury lamp efficiency
[15].

We have developed a solution to Holstein's equation
for a real-time experiment based upon operator manipu-
lations [18]. This paper extends this technique to handle
the trapping effect, particularly of the quenching experi-
ment as an application, under steady-state conditions.
Starting with Holstein's equation under the steady-state
condition of external excitation, we solve this integral
equation with the help of operator manipulations and ar-
rive at the multiple-scattering representation in a sys-
tematic and consistent manner. Based upon the asymp-
totic behavior of larger multiples of scatterings, problems
concerning the summation over the infinitely many alter-
native of scatterings are circumvented. Finally, for the
purpose of illustration, some numerical results are given.

II. FORMULATION

B. Radiation intensity operator

Experiments observe the radiation intensity instead of
n *. Relations between the radiation intensity and n * are
discussed in this subsection.

Falecki, Hartmann, and Wiorkowski [19] showed that
the total flux of fluorescence is related to n *

by

ItII(R, t) dS= A f dR'(1 —X)n*(R', t),
where I(R, t ) represents light intensity at point R at time
t. The volume integral is extended over the enclosed re-
gion. When the light intensity is the same at every point
of the boundary, e.g., for spherical geometry, this formu-
la can be readily used to evaluate the measured light in-

tensity.
In a general case, however, a direct expression for

I(R, t) is required. Under the assumption of isotropic
scattering and neglecting the flight time of photons, we
have

A. Formal expression of the excited-state particle density

where n* denotes the excited-state particle density at
point R, A = 1/ro is the Einstein spontaneous emission
coefficient, and q and W(R) represent the rate of quench-
ing and external excitation at R, respectively. X is an in-

tegral transform operator that we introduce for the sake
of brevity, and it is defined by

Xf(R)= fdR'G(R, R')f(R'), (3)

where G(R, R') represents the probability of the photon
emitted from point R' being absorbed at point R. Under
the assumption that the emission is isotropic, Holstein
showed that

In the presence of quenching and steady-state external
excitation, Holstein s equation [7] is modified as

—
( A +q)n*(R)+ AXn '(R)+ W(R) = =0,dn*(R)

C}t

(2)

I( R, t ) = A f d R'n '(R', r )
4mr r

where r=R —R', and T(r) denotes the probability of ra-
diation transferring a distance r. The integral is taken
over the volume of the enclosure.

To show the agreement of Eq. (8) with (7) explicitly, we

integrate Eq. (8) over the boundary surface,

ItI I dS=A fdR'n'(R', t))T(r)r/(4nr ) dS . (9)

Using the divergence theorem, we have

f T(r)r/(4rrr ) dS= f dRVz [T(r)r/(4mr )], (10)

where 5(r) is the Dirac delta function. The first term is
none other than —G(R, R'). Using the property that
T(0)= 1, one obtains

where the volume integral is extended over the enclosed
region. It is straightforward to show that

Vz [T(r)r/(4vrr )]=(4nr )
' +T(r}5(r),, BT(r)

G(R, R')= —(4mr )
fjr

(4)
Vz [T(r)r/(4mr )]=—G(R, R')+5(r) . (12)

where r= R —R', and T(r} is the probability of the radia-
tion transferring a distance r.

Equation (2) is a linear integral equation of n *. Mak-
ing use of operator manipulations, its solution can be
written in the form

n*{R)={3+q —AL) '8 {R) .

Expanding the expression in the operator L gives

n*(R)=(A+q) ' g @JXJW(R),
j=0

where 4= A /( A +q) is the fluorescence quantum yield
of emission. Now we have arrived at an expression
without appealing to the eigenfunctions. Although it still
involves an infinite number of terms, in the following sec-
tions we will show that the problem of summing the
series can be circumvented.

Combined with Eqs. (9) and (10), we arrive at

It) I d S= A f d Rn *(R, t )

—A f f dRdR'G(R, R')n*(R', t), (13)

which is identical with Eq. {7).
Here we introduce for the sake of simplicity a light in-

tensity operator 'T which gives the measured light inten-

sity I, or rather the radiant flux striking the detecting
surface X,

I= ATn*= A f dS fdR'n*(R', t)T(r)r/(4vrr ),
(14)

where dS denotes the surface element of the detecting
surface X and d R' represents the volume element of the
enclosure. The surface integral is extended over the
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detecting surface X. The volume integral is taken over
the enclosed region. In general, I is related to the time t
and the viewing point.

C. Radiation intensity of steady-state experiments

With the help of the light intensity operator V and Eq.
(6), the detected intensity can be evaluated by

I(q)= g a 4~+',
j=0

where

a = VX'8'(R),

(15)

(16)

and I(q) represents the measured fiuorescence intensity
when the quenching rate is q. Consequently, the quench-
ing Q is given by

Q=I(q)/I(0)= g a @i+
j=0 j=0

(17)

Equations (15) and (17) are very useful and important.
We can develop a physical interpretation of them in
terms of multiple scatterings. If the absorption and sub-
sequent emission of a photon is called a scattering, a
multiple-scattering picture of the radiation trapping can
be established. X~K is the excited particle density result-

ing from j scatterings, and a is the unnormalized proba-
bility of a photon being scattered j times before it is
detected. The quantum yield of the photons undergoing j
scattering is 4J+'. Consequently, the quenching Q,
which may be interpreted to be the overall quantum
yield, is an average of the quantum yield over aB scatter-
ings. The application of operator manipulations pro-
duces the multiple-scattering representation in a sys-
tematic and consistent manner.

Equation (17) shows that the quenching Q is related to
q in a complicated manner. Generally, one can observe a
simple linear relation of the Stern-Volmer type [see Eq.
(1)] only when q is very small. Expanding Eq. (17) to first
order in q leads to

1/Q =1+qrq, (20)

where r& =so/(1 —
A,

&
) is the late-time effective lifetime of

a pulsed experiment [7].

D. Reduction of equations

We have formally solved the trapping problem under
steady-state conditions. However, the equations involve
sums over an infinite number of terms. In actual applica-
tion one would find the convergence of these sums often
painfully slow. These problems are handled in this sub-
section.

We have found that X~W has a useful asymptotic prop-
erty [18,20],

X~W(R)~constXt)'r&(R)AJ, (as j~~), (21)

where A. , is the largest eigenvalue of X and f,(R) is the
corresponding eigenfunction, i.e., the fundamental mode.
Consequently,

a~ ~k', d (as j~ ~ ), (22)

This is equivalent to saying that given any arbitrarily
small quantity e one can find an integer m which satisfies
the condition that

aj —
V&d &ea. ( as j)m) . (24)

To start with the reduction procedure, we rewrite one
of the series of infinite terms used in Sec. II C,

ga =pa+ g A'd+ g (a —A'd). (25)
j=0 j=0 j=m+1 j=m+1

The last term can be safely neglected since

where d is a constant. The above equation serves as the
foundation of the reduction procedure, so we put it com-
pletely in a mathematically strict language,

(23)

1/Q=l+qr, (for qr, «1)
where

(18)
(a, —iVd) &e g a, &e g a, .

j=m+1 j=m+1 j=0
(26)

r, =ra g (j+1)a, g a, .
j=0 j=0

(19) Therefore, after analytically working out the second term
on the right-hand side of Eq. (25), we arrive at

Compared with Eq. (1), one can see that ro in the Stern-
Volmer formula is now replaced by an effective lifetime

~, due to the trapping effect. ~„the effective lifetime un-

der steady-state external excitation, can be interpreted in
terms of multiple scatterings as the average time of the
detected photons remaining within the enclosure. Obvi-
ously, ~, is related to the external excitation and the
viewing point. In some places in the literature v; is con-
fused with ~&, the effective lifetime at the late time of a
pulsed experiment. Actually, w, would coincide with ~&

only if W(R) matched the fundamental mode, i.e., the
eigenfunction of operator L with the largest eigenvalue
k, . In this case one would have, using Eq. (17),

g a = g a, +ding+'/(1 —A, , ), (27)
j=0 j=0

where the constant d and A, , may be evaluated by

a /a. , ~A, , (as j~~),
a. /V&~d (as j—~) .

(28)

(29)

Now we have successfully reduced the sum over an
infinite number of terms to a question of evaluating some
leading terms. The spirit of the reduction is that al-
though generally only some first terms of the infinite
series can be calculated, the use of the asymptotic proper-
ty leads to a fair evaluation of all the remaining terms.
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This helps curtail the actual computation amount and
improve precision.

In a similar manner, the other series concerned in Sec.
II C can also be reduced:

g %~a = g @~a +d4 +'AP+'/(1 —4A, &), (30)
j =-0 j=0

00 m

(j+1)a,= g (j+1)a
i=o j=0

(m +2)—(m +1)l,i+AP
+ 'd . (31)

(1—A. , )

III. NUMERICAL CALCULATION METHODS

Sec. II suggests a set of techniques to handle the
steady-state trapping effect. The remaining problem is to
work out the coelcients a . Except in some special
idealized cases an analytical approach to calculating the
a 's is not feasible. Consequently, we have no choice but
to resort to numerical calculations. The numerical ap-
proaches to calculating a include the quadrature method
and Monte Carlo simulations.

The standard numerical quadrature method (see, e.g.,
Ref. [21])can be used to evaluate a, since the expression
for a is a multiple integral. The advantage of the quad-
rature method is the fast convergence and stability of the
calculations, whereas its faults are that it generally
deserves great programming efforts and that it is incon-
venient, even impractical, to handle a complicated cir-
cumstance, say, when the chamber is irregular. We have
used this technique to work out a and, therefore, k, for
some systems of idealized geometry [20,22].

The Monte Carlo method, as a numerical technique to
evaluate multiple integrals, may also be used. Monte
Carlo simulation is widely used in treating radiation trap-

ping [15,16,23,24]. The ideas suggested in this paper can
be readily carried out by Monte Carlo simulation, since
the quantities a are well defined in physics. The pro-
gramming of the Monte Carlo simulation is comparative-
ly easy. The effects of the hyperfine structures, correla-
tions of the emission and absorption, irregular boundary,
etc. , may be included without much additional effort.
The fault of this method is that the results have some
Auctuations.

IV. EXAMPLE: A SIMPLE ONE-DIMENSIONAL
MODEL

G(x, x') =
—,'k exp( —k ~x —x'~ ),

Xf(x)= I G(x, x')f(x')dx',

(32)

(33)

where 2r is the physical length of the system used in the
model. Hartman and co-workers have successfully ap-
plied this model to fit a great many time-resolved experi-
ments [19,25].

The condition used by the following calculation is
kr =2 and the external excitation is W(x)=6(x).
Coefficients a describe the total Aux of the radiation, i.e.,

In this section, for the purpose of illustration we apply
our suggested procedure to treat the trapping effect of a
simple one-dimensional model introduced by Falecki,
Hartmann, and Wiorkowski [25]. The reason we choose
this model to demonstrate our suggested ideas is that the
model under steady-state conditions actually can be
analytically solved (see the Appendix) and therefore a
check of the numerical techniques can be readily made.

In this simple model photons can only propagate to the
left or the right in the x direction. Furthermore, an
equivalent absorption coefficient k is introduced. Conse-
quently, the transfer probability and the operator L are

TABLE I. Comparison of the numerically calculated a, and a, /a, &
values for the simple one-

dimensional model. kr =2, W(x) =5(x), where k denotes the equivalent absorption coefficients, and 2r
is the physical extension of the model.

Monte
Carlo

10a,

Quadrature Exact'
value

Monte
Carlo

a /aj

Quadrature Exact
value

0
1

2
3

5

6
7
8

9
10
11
12

1.3430
1.7020
1.4654
1.2461
0.9539
0.7323
0.5739
0.4508
0.3338
0.2687
0.2114
0.1672
0.1232

1.3533
1.6835
1.4984
1.2115
0.9514
0.7406
0.5750
0.4460
0.3459
0.2682
0.2080
0.1613
0.1251

1.3534
1.6855
1.4993
1.2119
0.9515
0.7405
0.5747
0.4457
0.3456
0.2679
0.2077
0.1610
0.1248

1.2673
0.8610
0.8504
0.7655
0.7676
0.7837
0.7856
0.7404
0.8048
0.7870
0.7911
0.7366

1.2440
0.8900
0.7853
0.7784
0.7763
0.7757
0.7755
0.7755
0.7754
0.7754
0.7754
0.7754

1.245 42
0.889 54
0.808 33
0.785 12
0.778 21
0.776 13
0.775 51
0.775 32
0.775 27
0.775 25
0.775 25
0.775 25

'The exact values were calculated using the iteration formulas specified in Ref. [25].
The greatest eigenvalue A, determined by the eigenvalue problem as is presented in Ref. [19], is

0.775 25.
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TABLE II. Comparison of the numerical results for g and r, of the simple one-dimension model.
kr =2, 8'(x) =5(x). Numerical computation used a, values obtained from the quadrature method list-
ed in Table I. Exact values used the formulas specified in the Appendix.

Non reduced'
7 terms 16 terms 7 terms

Reduced b

16 terms
Exact
value

0.1

0.2
0.4
0.6
0.8
1.0

0.7336
0.5664
0.3765
0.2758
0.2153
0.1755

0.6668
0.4926
0.3148
0.2276
0.1768
0.1438

0.6651
0.4887
0.3109
0.2241
0.1737
0.1411

0.6587
0.4833
0.3085
0.2231
0.1732
0.1409

0.658 55
0.483 40
0.308 60
0.223 20
0.173 32
0.14099

Ts 3.6473 4.6182 5.0064 5.0036

'This column used Eqs. (17) and (19) and the series in the equations were approximated by 7 and 16
leading terms, respectively.
This column used Eqs. (17) and (19) and the summation used our suggested reduction technique.

a&= x 1 — JWx (34) V. DISCUSSION

Both of the numerical methods, quadrature and Monte
Carlo simulation, were used to evaluate a~. The quadra-
ture method approximated XJS'(x) by a linear Lagrange
interpolate [21] with 200 equally spaced interpolation
points. Monte Carlo simulation was performed for
100000 photons and the renormalization technique [16]
was used to ensure the accuracy of aJ for higher j values.
The running times on an IBM PS 486 computer were 20 s

and approximately 2 min for the quadrature and Monte
Carlo simulation, respectively. Exact values of a were
obtained by the iteration procedure specified in Ref. [25].

Table I compares the numerical and exact values of a.
and one can see that the agreement is good. Results of
the Monte Carlo simulation show some fluctuations,
which is characteristic of the method. Consequently, to
get a fair value of A,„it is better not to use Eq. (28) direct-
ly. Instead, A, , may be determined by the average of the
ratios a /a, for large j. The constant d could be evalu-

ated in a similar manner. Compared with the Monte
Carlo simulation, the superiority of the quadrature tech-
nique is obvious: less computation amount and running
time, and stability of the results. The quadrature method
can be further improved by using better interpolation
functions, say, cubic splines [21].

After working out the coefficients a, we continue to
calculate the fiuorescence and the quenching Q. The
computed values are listed in Table II. This table pro-
vides a vivid illustrated of the power of the reduction
technique. If we do not apply the reduction method, but
just sum up some leading terms and neglect the remain-
ing, the resulting values of Q and r, using 16 leading aj's
are still worse than those obtained by only keeping the
first 7 terms but applying the reduction procedure.

In conclusion, this example shows that our suggested
techniques are useful tools in treating the radiation trap-
ping effect under steady-state conditions.

Holstein's equation is generally solved by using the ex-
pansion in eigenfunctions, as Holstein did. To handle the
steady-state radiation trapping, this expansion is not con-
venient. We suggest in this paper an alternative solution
approach to the equation: applying operator rnanipula-
tion and expanding in the operator. The physical inter-
pretation of the resulting formula, the multiple-scattering
picture, shows that this, in effect, is a perturbation expan-
sion. Considering the two approaches to Holstein's equa-
tion, two points are noteworthy: first, except for the fun-
darnental mode the eigenfunctions of the spatial distribu-
tion of n ' can take on negative values (see, e.g., Ref. [26])
and therefore are nonphysical. Second, the perturbation
expansion coefficients have an important asymptotic
behavior, which we have used in the reduction technique
to help curtail the calculation amount and improve pre-
cision.

As an application of our suggested idea, particular at-
tention is given to the quenching experiment under
steady-state conditions. In our approach, once some
leading terms of a are known, the variation of the
quenching Q with the quenching rate q is completely
determined. Here, we used implicitly the fact that the
coefficients a are independent of q. This corresponds to
the general experimental circumstance: the amount of
buffer gas of interest is small. In the presence of a large
amount of buffer gas, although a. is not relevant to q it-
self, the variation of the buffer-gas pressure would greatly
aRect the absorption line shape and therefore the trap-
ping effect as well as a .. In this case one has to calculate
a different set of a. 's for different buffer-gas pressures.
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APPENDIX

General techniques to treat the one-dimensional model
can be found in Refs. [19] and [25] by Falecki, Hart-
mann, and Bocksch. Here, the extension of their ideas to
the exact solution of the model under steady-state exter-
nal excitation W(x ) =5(x) is presented.

To avoid direct calculation involving the 6 function,
we introduce an auxiliary excitation function,

n '(x) =An,*„„(x)+5(x)/(3 +q) .

Combined with Eq. (7), we arrive at

I=@[exp( k—r )+I,„„], (A3)

Comparing the above formula with Eq. (Al), it follows
immediately that

W,„„(x)=X5(x)=—,'k exp( —k ~x~ ) .

Using Eq. (6), we have
I,„„=A f dx(1 —X)n,'„„(x), (A4)

00

n "(x)= g 4~LJ5(x)
A+q .

+ g 4X'5(x),5(x) + 1

A+q A+q .

00

n,'„„(x)= g O'L'W, „„(x)A+q .

(Al)

1 y a Jr'+'5(x), (A2)A+q .

where n * and n,'„„denote the excited particle density un-

der the external excitation W=5(x) and W= W,„„,re-
spectively. Multiplying Eq. (A2) by P, we obtain

00

4n,'„„(x)= g O'+'X'+'5(x)
A+q .

where I and I,„„denote the total radiant Aux for
W =5(x ) and W = W,„„,respectively.

Now we continue to solve for n,'„„. Due to the symme-
try of the problem, n* and n,*„„are even functions.
Therefore it is sufficient to consider only x ~ 0. From Eq.
(2),

—( A +q)n,"„„(x)+AXn,'„„(x)+—,'k exp( —kx ) =0

(x ~ 0) (A5)

where, from Eq. (32) and (33),

gn,'„„(x)= —,'k f "n,'„„(x')exp[—k(x' —x )]dx'

+ —,'k f n,'„„(x')exp[—k(x —x')]dx'

00

g O'X'5lx) .
A+q .

Making use of the fact that n,*„„is an even function, one
has

Xn,*„„(x)= —,'k exp(kx) f n,'„„(x')exp( kx')dx'+ —,'k—exp( —kx )
X

X n,*„„x'exp —x' x'+ n,*„„x'exp x' x'
0 0

(x ~ 0) . (A6)

The twofold differential of Eq. (A6) with respect to x
gives

(1/k )d Xn,'„„/d x =En,*„„n,„„(x—~0) .

Using Eq. (A5) to eliminate Xn,„„in the above equation,
we obtain

f(p) =exp[ —(1—p)R ]/(1 —p, ),
g(p) = f(p)+2p/(1 ——p'),

and R =kr is a scaled quantity introduced for the sake of
brevity. Setting the constants before exp( —kx ) and
exp(kx) to zero gives the following values of C, and Cz..

( & +q)d n,'„„(x)/d x =k qn,'„„(x~0) .

Putting p=(q/A +q)'~, we have

n,*„„=C,exp(pkx)+C2exp( —pkx) (x &0) . (A7)

C)=- k (1—p)exp( —pR )

4(A+q)p coshpR+psinhpR
k (1+p, )exp(pR )

4( A +q )p coshpR +p sinhpR

The constants C& and C2 are determined by inserting the
above equation into Eq. (A5), which leads to

(C,g(p)+ C2g ( p)+ k /3 ]exp( —kx—)

Inserting the above values into Eq. (A7) results in

n,'„„(x)= k p coshp(kx —R )
—sinhp, (kx —R )

2(A +q)p coshpR+p, sinhpR

where

—[c,f(p)+ C2f (
—p)]exp(kx) =0, (x ~0) .

With the help of Eq. (A4) and the fact that n*(x) is an
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even function, we arrive at

I,„„=2A 1 — n,*„„dx
0

= —exp( —R) + 1/(coshpR +p sinhpR ) .

Combined with Eq. (A3) we have

I=4/(cosh{ttR +{ttsinh{LtR ) . (AS)

This agrees well with our thoughts regarding the results.
In the absence of quenching, the output fluorescence is
the same as the input, whereas when q~ oo no fluores-
cence can exit. Finally, we see the circumstance as q ~0.
Putting in p =q/(q+ A) and expanding the equation to
first order in q, we have

Three special cases are of interest, namely q =0,
q~ao, and q~O. Since p=O when q =0 and p=1 as
q~oo,

I(q =0)= J dx5(x)=1,

I(q —+ac )=0 .

1/Q=I(0)/I(q)=l+r&q(1+R+ —,'R ) (as q~0) .

Consequently, the effective lifetime is

r, =ro(1+R+ —,'R ) . (A9)
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