
PHYSICAL REVIE% A VOLUME 49, NUMBER 2 FEBRUARY 1994

Analogies between light and electrons: Density of states and Friedel's identity
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By explicitly making use of analogies between Schrodinger potential scattering and classical
wave scattering, we generalize statements for electron-impurity scattering to similar statements for
scattering of scalar classical waves from dielectric particles. We mill focus upon density of states,
spectral function, Friedel s identity for screening, the Wigner phase-delay time, and the Thouless
criterion for localization.
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I. INTRODUCTION

Knowledge of classical wave propagation has undoubt-
edly facilitated the formulation of quantum-wave the-
ory for material particles. Nevertheless, quantum the-
ory has existed separately ever since, probably due to
the wealth of nonclassical phenomena that emerged from
wave-particle duality, nonclassical in the sense that these
phenomena are not predicted by Newton's laws of me-
chanics.

During the last couple of decades the close analogy
between the equations of motion for Schrodinger waves
and classical waves has been appreciated and explored.
Many concepts and ideas in quantum mechanics were re-
formulated for classical waves. Examples are Anderson
localization [1,2], weak localization [3], conductance fluc-

tuations [4,5], optical crystals [6], Berry phases [7], and,
more recently, tunneling aspects [8] and quantized con-
ductances [9].

In many respects classical waves are more convenient
for studying interference effects in multiple scattering. In
the electronic case one often deals with phase-destroying
(inelastic) effects, making interference in multiple scat-
tering measurable only at very low temperatures. Despite
technical difFiculties it has fortunately become possible
to enter the so-called meso8copic regime in condensed
matter where inelastic processes are negligible. Classi-
cal wave scattering, on the other hand, exhibits macro-
scopic interference even at room temperature, since the
role of absorption can be suppressed with relative ease,
making the observation of weak localization (enhanced
backscattering), and possibly the onset of strong local-
ization (vanishing or scale dependence of diffusion) much
more easy to achieve.

ID studying classical waves, several fundamental differ-
ences with Schrodinger particles show up as well. Some
of them are well known and hardly need to be mentioned
again. Long-wavelength classical scattering vanishes as
A, whereas in the same limit a finite (s-wave) cross sec-
tion is obtained for Schrodinger potential scattering. In
addition, the interpretation of the complex field g(r, t)

in quantum theory as a probability amplitude is funda-
mentally different from the one for classical waves. Here
Q(r, t) describes a measurable quantity, say the electric-
6eld vector. Furthermore, the impact of absorption on
classical-wave localization was recently shown to be dif-
ferent from the one of phase-destroying mechanisms in
electron localization [10,11].

We recently reported on a distinguished difference be-
tween classical and Schrodinger waves, showing up in
multiple scattering [12—14]. The velocity v@ entering into
the diffusion constant D = sv@I (l being the transport
mean free path) turned out to be considerably smaller
than the phase velocity v~ E/k (E the frequency, k
some average-medium wave number) in the regime of
resonant scattering. In electron-impurity language, the
slowing down of classical waves can be attributed to the
occurrence of giant mass-enhancement; corrections.

Mass-enhancement factors do not show up in the dif-
fusion constant for multiple electron-impurity scattering
[15]. Here v@ is equal to hkF/m*„with m," the effec-
tive mass of electrons in the underlying crystal and kF
the Fermi wave number. The cancellation of such fac-
tors is due to particle conservation. In optical language
the electron-impurity transport velocity could be called
the reciprocal phase velocity co2/v„. This can be seen by
using the analogy hE ~ m,'c& and kF ~ k.

The different conservation law for classical wave scat-
tering invalidates this typical electron-impurity result.
This can best be illustrated by comparing the equa-
tions of motion, in particular the eigenvalue equations for

g(t) = /~exp( —iEt) (see Table I). The presence of an
energy-dependent "potential" will afFect dynamical prop-
erties in scattering, such as the transport speed for mul-
tiple scattering. Closely related is the fact that ~g~ no
longer denotes the conserved quantity.

On the other hand, the associated currents are very
similar (Table I). Since the current is the probed phys-
ical quantity in a stationary (dc) experiment, we might
anticipate that stationary properties of multiple scatter-
ing will, from a theoretical point of view, be very similar
for both kinds of waves. In particular, transport quan-
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TABLE I. Comparison of the equations of motion for Schrodinger potential scattering (describing
spinless electrons) and for scalar dielectric scattering (describing spinless light).

Schrodinger waves Quantity Classical scalar waves

y(r, t)
p + V(r) @ = i'@

p + V(r) g& = E@E
V(r)

E, energy

probability density
Im Q'B„g

G(z, p) = z —p —V

wave function
equation of motion

eigenvalue equation
potential

eigenvalue
conserved quantity

current

Green's-function amplitude

y(r, t)
p'+s(r)B,' @ =O

p +V@(r) @E=E QE
VE(r) = [1 —s(r)] E'

E, square of frequency
—,'s(r) IB~OI'+ —,'IB.@l':

energy density
R—e Bgg'B,@

G(z, p) = sz2 —pz

tities such as the dc conductivity should not be affected
by the different equations of motion.

In this paper we will investigate what other concepts in
electron-impurity scattering will be modified by the in-
troduction of an energy-dependent potential. We shall fo-
cus on Friedel's identity [16],linking the change in density
of states caused by impurities to the Wigner phase-delay
time [18], and often quoted in the context of screening,
Jauch's space-integral formulation [17] for the Wigner
phase-delay time, density of states (DOS) and the as-
sociated spectral function, giving the distribution of the
levels (E,p) in an unbounded random medium. We shall
also formulate an Einstein relation for classical wave dif-
fusion and discuss the consequences for the Thouless cri-
terion for localization.

algebraically in terms of Green's functions and t matri-
ces t» (k) = (p~ t(k) ~p'), so to arrive at a t-matrix for-
mulation for the phase-delay time in three dimensions.
However, following Friedel et al. [16], such an elaborate
procedure can be circumvented by making the physical
observation that the presence of the impurity implies a lo-
cal change in the number of states that the electrons will
occupy. From Eq. (1) it follows that the expected num-
ber of extra electrons with wave number k~ surrounding
one impurity in a large but finite volume V is given by
the dimensionless quantity J(ki)/V. The total number
is therefore

.J(k ) dsk

V v~' (2z)s
2

II. FRIEDEL'S IDENTITY AND JAUCH)S
FORMULA FOR ELECTRONS

For a dilute medium with n randomly positioned impuri-
ties per unit volume, the change in differential DOS per
unit volume should, according to Friedel's argument, be

The formula of Jauch [17] is a rigorous identity which is
best interpreted as a formula for the amount of screened
charge surrounding some impurity potential. The quan-
tity,

J(k)—:f d r ~cP~(r)~~
—1

bp(k)—:n = n d k J(k) = n J(k) .

dbms

k2

27r 3

We shall refer to this result as Friedel's identity, and it
is a well-known result of scattering theory [19]. We can
now find J(k) by using the conventional trace over the
spectral function [20],

1 + , , t(k) ik)
1

(2)

[t(k) being the transition operator of one impurity at en-
ergy k ] the right hand side of Eq. (1) can be worked out

(gg being a normalized continuum eigenfunction at en-

ergy eigenvalue E = k2 of the impurity Hamiltonian)
is proportional the amount of screened charge (e = 1)
near one impurity in vacuum given an incoming station-
ary electron fiux exp(ik r) from direction k. The Jauch
formula relates J(k) to the Wigner phase delay time [18].
This shows, not unexpectedly, that the accumulation of
electrons near the impurity is proportional to the delay
suffered by them due to the presence of the interaction.

In principle, by using the Born series for the eigenfunc-
tion,

2k d3p
p(k) = —— 1mG(k, p),

7r (2vr) s (4)

bp(k):—p(k) —pp(k)
2nk d3p

Im
(2m)s

2nk d3p
Im

m (2vr)s

t (k)

(k -p +i0)
BGp(k, p)

B(p')

Using one integration by parts, this is readily shown to
be equal to

with G(k, p) = k2 —p2 —Z(k, p) the Dyson retarded
Green's function. Inserting the usual "independent-
scattering" approximation for the self-energy [21],
Z(k, p) = nt»(k), we arrive at
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nk 2 (BpRetp~(k) r 2 s BRe Gp(k, p)

By invoking a Ward identity [15] (page 617) [22] for the off-shell t matrix t:—[t] exp(iP),

2 „BRetpp (k)
0(k2)

2„,[tpp (k)[ 0$(p, p', k) 2 s BReGp(k, p)
(4') 2 Bk hark

"
B(k )
™.P

and using that 0 Re Gp/cjp = —8 Re Gp/Bk, Eq. (6) can be rewritten as [23]

8 (k) = J(k) = nk — d'k dkR " (k) + d'kd'k' lt»'(k)I dg(k, k')

(2vr) s k d(k2) (4~) 2 dk
(8)

This formula is the most important result of this sec-
tion. Equation (8) gives J(k) conveniently in terms of
total derivatives of on-shell t matrices t» (k) of the in-

dividual scatterers. The quantity ]t» (k)[ /(47r) is usu-

ally called the difFerential cross section do/dO. Given
definition (1), the first equality in Eq. (8) is Friedel s iden-

tity, the second Jauch's formula. That the third term is
indeed (proportional to) the Wigner phase-delay time in
three dimensions can be illustrated explicitly for spheri-
cally symmetric potentials [13,14]. Then Eq. (8) reduces
to

J(k) = —) (28+ 1)
1 . dPt

e=o

where Pt (k) is the phase shift in the angular-momentum
channel 8.

We stress that the Ward identity (7) states that all
mass-enhancement factors cancel, as was mentioned ear-
lier. Since these factors are (by our definition [24]) all en-

ergy derivatives, they will no longer cancel if the t matrix
is obtained from an energy-dependent potential. This is-
sue will be addressed in Sec. III. In this context we also
mention that J(k) is, contrary to what Eq. (9) might sug-
gest, not a mass-enhancement correction. As is evident
from Eq. (6), J(k) is a genuine wave number derivative.

EJ'(E) = d2k J*(k) .

The second equality in Eq. (10) is a natural consequence
of "equipartition" that can easily be checked from the
eigenvalue equation; E = kk is now the frequency.
By making explicit use of the analogy of an energy-
dependent potential it was recently demonstrated by one
of us [25] that bauch's formula holds true for J*, that
is the second equality of Eq. (8) [and thus Eq. (9) as
well] is valid for scalar waves as well provided one then
uses J*(E). jt was shown that the difference between J
and J*, that is the potential energy of the scalar field,
is completely equivalent to the extra mass-enhancement
contributions entering into Eq. (7) due to the energy-
dependence of the potential.

Let us next find out whether Friedel's argument ap-
plies, linking J'(E) to the change in DOS, thus the first
equality of Eq. (8). From Table I we are tempted to as-
sociate an "energy" E = k with the eigenfunction gk,
since this is the eigenvalue of the "Hamiltonian. " But
Eq. (10) gives the total excess of classical-wave energy
near the dielectric scatterer. The excess number of states
near the dielectric is therefore E J*(E)/E2 = J*(E).
For a dilute sample of n dielectric particles per unit vol-

ume the excess DOS per unit volume thus becomes, ac-
cording to the Friedel argument,

III. FRIEDEL'S ARGUMENT FGR CLASSICAL
WAVES

Let us first modify the definition for J(k) in Eq. (1) for
classical scalar waves. Judging from Table I it seems logi-
cal to redefine J(k) for this case (denoted by an asterisk)
as

E J*(k) = d r —s(r)E [Qi, (r)[
1

2

bp*(E) = -', n J'(E) .

The extra factor 1/2 emerges since for classical waves
there also exist counter-rotating states with E & 0, with
p*(E) = p*(-E)

Can this identity be derived directly from scattering
theory'? Following the analogies leads us to consider the
scalar-wave Green's function

1
G(z, p, r) =

e(r)z —p

+- I~.@k(r)I' —E'
2

= E d r Ie(r)[gi, (r)~' —1], (10)

After ensemble-averaging (denoted by ( ) ) the Dyson
Green's function becomes translationally invariant and
takes the familiar Dyson form (G(z, p)) = [z —p
Z(z, p)] . As was done for electrons, we may construct
a positive-definite distribution from its imaginary part,

where gk is the same eigenfunction as in Eq. (1), for a
"potential" V(r, E) = [1 —c(r)]E Furthermore, . S(E,p) = ——lm (G(E+ i0, p)) . (14)
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[Note the extra factor 1/2 again when compared to
Eq. (4)]. This distribution is not normalized to unity
since it obeys the sumrule [13]

For this reason S(E,p) cannot be the true averaged dis-
tribution of states (E,p) in the medium. The tempting
analogy with electrons thus here leads to an erroneous
result.

The spectral operator that is manifestly normalized to
unity is

S'(E)= ~E[ (b (E —s(r) p ))
g= ——(e(r) Im G(E+ i0, p, r) ), (16)

which does not depend on r as a result of averaging.
Using the complete normalized plane wave set ~p~) /~&,
the spectral distribution S"(E,p~) can be constructed as

=1 *,p'S'(E p ) —= —(p IS'(E) Ip ) „:,S(E p) (»)

S(E,p) was defined in Eq. (14); we have applied the
identity (sG(E, p)) = 1/E2 + ((p2/E )G(E,p)). This
treatment shows that S'(E,p) is the spectral function
for scalar classical waves, and not S(E,p). As a result,
the total DOS per unit volume becomes

~'(&)= p~). ~'%', v~): f .~'(&, ~), (&8)

2

(19)

The first term is actually the spectral function in Eq. (4)
for electron-impurity scattering and gives rise to a Friedel
identity (3) with the extra factor of 1/2. We are left to
show that the wave-number integral of the second extra
term of the spectral function equals —n [J*(E)—J(E)].
The identity

1 dsp tpp (E)
nE

™

(2m) E —p2 + i 0

E
2 (2')s
1= —[J (E) —J(E)1
2

follows straightforwardly from scattering theory [26],
thereby using Eq. (2); the second equality is obtained
by subtracting the definitions (10) and (1).

which we will now show satisfies a Friedel identity. To
this end we write

p2 E2
S'(E,p) = S(E,p) + S(E,p)

= S(Ep)+ Im, ~, . +O(n').
erg E2 —p'+ io

We can thus conclude that Priedel's argument to find
the change in DOS using the Wigner phase delay time
works for classical scalar waves as well. This is consis-
tent with heuristic derivations of Friedel's identity [15]
(page 233) [27] (page 343), which involve a counting of
the number of nodes of the wave function.

Finally, we want to comment on the difference between
the spectral distributions S(E,p) and S'(E,p). We have
shown that the latter describes the true distribution of
levels (E,p) in the random medium. The difference be-
tween both is particularly large away from the energy
shell E(p), and thus signifies contributions near or even
inside the scatterers. This makes it plausible that S(E,p)
can be regarded as a distribution of traveling waves,
whereas S'(E,p) represents the one for both traveling
and standing waves. As a result S(E,p) is nevertheless a
relevant distribution in transport theory. In Sec. IV we
argue that the use of S*(E,p) is sometimes essential, for
instance in the Einstein relation for the conductivity.

IV. THE EINSTEIN RELATION AND THE
THOULESS CRITERION

The electric (longitudinal) conductivity is an extremely
important quantity in condensed matter theory, since it is
accessible by experiment, and is extremely sensitive for
details in electron transport. The dc longitudinal con-
ductivity describes a stationary electron current in the
presence of a homogeneous static electric field.

One important property of this dc conductivity is
the absence of energy derivatives [15,28]. The Z-
renormalization factor,

0 Re Z(E, p) &

) z=i, ~

often called the mass-enhancement factor, is one example.
This Z factor is actually the first terin in Eq. (7) gener-
alized for higher densities, and cancels against the other
two mass-enhancement factors in this equation. Conse-
quently, no such factors appear in the diffusion constant
for electron-impurity scattering [22]. From Eq. (4) it is
evident that such factors do not show up in the DOS
either [recall that J(k) is not considered to be a mass-
enhancement]. By the Einstein relation for the electric
conductivity,

~(E) = p(E) D(E) (22)

these factors must therefore indeed be absent in the con-
ductivity. In the present section we make it plausible that
mass-enhancement factors also cancel in the conductiv-
ity for scalar waves, despite the fact that the cancellation
theorem, as expressed by Eq. (7), no longer applies for
classical scalar waves.

The last fact causes mass-enhancement factors to show
up in the classical-wave diffusion constant. In terms of
J*(E) defined in Eq. (10), the formula for the classical-
wave diffusion constant reads [13,14]
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D*(E) ( )
1+ 27r n J"(E)/E2

(23)

L
0 = T-A' (24)

where T is the stationary diffusive "all-channel-in all-
channel-out" transmission coeKcient for slab with length
I and front surface A, and is known to be proportional
to k2AH/L [30]. The Friedel identity (12) for classical
waves shows that the DOS is renormalized as p*(E) =
po(E) 1+2x n J'(E)/E . Filling in po k~/co and
Do co/ we find that

&*(E)- ~*(E)D*(E) (25)

apart from a numerical factor of order unity. The Ein-
stein relation thus holds true, at least in the low-density
regime under consideration. Its validity is more surpris-
ing for classical waves since it relates two quantities sub-

ject to mass-enhancement to one that is not affected by
these corrections. For simplicity, we have assumed that

J(E) is negligible compared to J"(E), which is typically
true near resonances. The exact microscopic outcome
shows that co in Eq. (23) must be replaced by co2/v„(v„
being the phase velocity) and J' by J* —J. In the con-
text of other work we note that the cancellation of the
transport velocity in the conductivity is not unrelated to
the cancellation of the group velocity in one-dimensional
multimode waveguides [9].

We discuss one important case where the conductiv-
ity and the Einstein relation play an important role: the
Thouless criterion for strong localization [31,32]. When
applied to classical waves this criterion asserts that states
start to become localized whenever the dimensionless
conductance g'(E) T becomes equal to some univer-
sal critical value g of order unity. Since T is a time-
integrated transmission and thus dc, we learn from this
criterion that dc transmission experiments in principle
provide suKcient and conclusive evidence for the onset
of strong localization of classical waves. Applying the
Einstein relation (25) gives

, (E) N (E)D',(,E) . (26)

Here N*(E) = p'(E) . AL is the total number of states
at frequency E. Equation (26) is the well-known Thou-
less ratio of level spacing 1/N*(E) and energy uncer-
tainty D'/L &om the diffusive transport. Localization
thus implies that the level spacing exceeds the diffusive
uncertainty. Since we have made it plausible that the
same mass-enhancement factors enter in numerator and
denominator of Eq. (26) these factors are not expected
to modify the criterion for localization. This suggests
that the correct classical-wave spectral distribution (17)

Here Do 3 co Z. For classical waves no linear response
theory can be applied to define the (Kubo) longitudinal
conductivity. We can therefore define the classical-wave
conductivity for a slab using a Landauer-type formula

[29],

is crucial in the experimental application of Eq. (26).
If we would have used the spectral function in Eq. (14)
the dimensionless conductivity would have suffered from
mass-enhancement factors. In Ref. [13] this was a reason
to reformulate Thouless's criterion in terms of uncertain-
ties in wave numbers, rather than energies. If we incor-
porate the states inside the dielectric scatterers, such a
procedure becomes redundant.

The criterion (26) is often used to discuss the role of
both the diffusion constant and the DOS separately. As
we will point out this can be misleading. Contrary to
what is sometimes believed, the existence of a small dif-

fusion coefBcient may not be sufBcient to decide for the
onset of localization since it suffers from both (weak)
localization corrections and mass-enhancement factors.
The latter can be quite large (n J' 5—10 in some exper-
iments [12,33,34]).

On the other hand, DOS arguments for the onset of
localization should also be carefully applied. It does not
seem to be generally true that spectral regions with low

DOS are the best suited to find localization of classical
waves. Since the DOS suffers from mass-enhancement
factors, it is large near scattering resonances. Neverthe-

less, it is often stated that these spectral regions are likely

to be subject to localization [35,36] since the mean free

path is small and the IofFe-Regel criterion k8 1 may
be satisfied. We think that DOS arguments for localiza-
tion should only concern the DOS for the traveling waves

(thus p and not p') or even the one for the parent sys-

tem (the one without disorder and thus po). This last
statement is put forward by John [37].

V. CONCLUSIONS

k~ 1=
dk J(k) = —) (28+1)Pg(kz) = Z

e=o
(27)

Z being the atomic number of the impurity and k~ the
Fermi wave number, tells that (spin 1/2) electrons scat-

In this paper we have discussed some fundamental dif-

ferences between scalar classical waves and Schrodinger
waves related to energy-dependent potentials. We have

shown that, in spite of these differences and by explic-

itly making use of them, some very fundamental state-
ments remain analogous, such as Friedel's argument to
find the change in density of states from the phase shifts,
the cancellation of mass-enhancement factors in the con-

ductivity, and the Einstein relation. We have shown that
resonances in classical-wave scattering result in small dif-

fusion constants and large density of states. The quantity
unambiguously sensible for localization is the dc conduc-

tivity or, for classical waves, the time-integrated trans-
mission coeKcient, where all these microscopic delay ef-

fects cancel.
Some other results in condensed matter theory do not

seem to have an analogy in optics. These are often related
to the absence of "photon-photon" interactions at the
level of classical wave physics. For instance, the Friedel
sum rule [27],
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ter from a self-consistently screened (spherical) potential
that decays faster than I/r by charge neutrality. It does
not seem to have a classical-wave counterpart.
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