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Eigenvectors of two particles' relative position and total momentum
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We give the explicit form of the common eigenvectors of the relative position Q, —
Qz and the total

momentum P, +P2, of two particles which were considered by Einstein, Podolsky, and Rosen [Phys.

Rev. 47, 777 {1935)]in their argument that the quantum-mechanical state vector is not complete. Ortho-

normality and completeness of such eigenvectors, as well as their use in constructing the unitary opera-

tor for simultaneously squeezing Q&
—

Qz and P, +P2, are derived by using the technique of integration

within an ordered product of operators.

PACS number(s): 03.65.Ca, 03.65.Fd

I. INTRODUCTION

Traditionally, when studying quantum-mechanical
models, one diagonalizes a complete commuting set of
coordinate operators and works with the associated 6-
function normalized eigenvectors. On rare occasions, one
may wish to diagonalize some coordinates and some oth-
er (commuting) momenta variables and work with the
relevant 5-function normalized eigenstates. Such states
may appear, for example, in Maslov's semiclassical
quantization scheme [1], on in an even more famous ex-
ample, in the scheme proposed in 1935 by Einstein, Po-
dolsky, and Rosen (EPR) in their study of correlated sys-
tems and the significance on the outcome of a second,
noncausally connected measurement to the results of a
first measurement [2]. While this experiment has under-

gone refinement in detail, as well as experimental confor-
mation fully in accord with quantum mechanics [3], these
facts do not diminish interest in properties of the original
set of operators and their eigenvectors as considered by
EPR. Specifically, let QJ, P1, j= 1,2, be a
standard pair of Heisenberg variables for which

[QJ,Pk]=i5,k Then th. e new variables of interest are a
relative coordinate Q, —

Q2 and a total momentum

P& +P2 which evidently commute and thus can be simul-

taneously diagonalized.
Our goal in this paper is to study constructing such

simultaneous eigenstates in terms of conventional
creation and annihilation operators, as we11 as to reex-
press several operators that employ these states in Dirac-
like representations involving integrations over the eigen-
values with and without dilations. The construction of
the operators of interest is greatly facilitated by the use of
the integration within an ordered product (IWOP) tech-
nique that has also been previously used in other prob-

*Permanent address.

lems [4]. The present example illustrates once again the
power and utility of the IWOP technique.

l7!)=exp — +rla rl*b +—a b l00)
2

(2)

in which g=g, +i g2 is an arbitrary complex number. In

fact, acting with a and b on l ri), respectively, gives us

alp&=(g+b )lq), big) =( —g*+at)lri) . (3)

It then follows that

(a —b')ln&=pig), (b —a')lg) = q*lg)—(4)

The sum and difference of these two equations lead to

—[(a+at) (b+b')]lg) =&—2q, lg) =(Q, —Q, )l7/&,

—.[(a —at)+(b —b')]lrl & =&2r12lrl & =(Pi+Pal)lq&,
2l

where

a+a~
Qt = ~- Qz=

a —a
P, = —,P2=

2l
are two-mode coordinate

b+b~
V2

b —b
v'2i

and momentum operators.

II. THK COMMON KIGKNSTATK OF Q t
—

Qp AND

I i +P2 IN A T%'0 MODE FOCK SPACE

In the two-mode fock space spanned by

fnb fm

lnm &
= loo&,

n!m!

where [a,a ]= [b, b ]= 1, l
00 ) is the ground state, we

shall prove that the common eigenstates of Q, —
Qz and

P& +P2 are all given by
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III SOME PROPERTIES OF I ri &

We now examine whether or not lz) & satisfies a com-
pleteness relation. This can be very easily studied with
the IWOP technique [4]. Using the normal ordering

I

form of the two-mode vacuum projector

l00& &QQl =—:e

we have

A2 2
:e

—
ITII +Tia —

Ti b +a b —a a —b b+TI a —Tib+ab.
7T

=:exp I (a t b—)(a br—)+a tbt+ah —a ta b t—b I:=1 .

Next we calculate the overlap & ri'le &. With the aid of (4)
we see that

&gl(a' b)=—g'&gl, &ril(b' a)—= g&gl —. (10)

Therefore, from (10) and (4) we have

&q l(.—b'}lq&=~&q lq&=q &~'lq&,

& q l(b -a t) lq &
= -g'*& q'lg &

= -g*&g'lg &,

using the IWOP we can prove that

f
k.e —lg +f(a +b)+g (b +a)—(a +b)(b +a).

7r

(15)

(16)
which together with (9}implies that

&q lq& =~a")(q —q) . (12)
Let us recall the definition of two-index Hermite po-
lynominals [5]

Hence, l g & is an orthonormal eigenstate of ( Q, —
Qz ) and

(Pi+Pz), which as given by (2} has apparently not been
considered in the literature before.

IV. THE EIGENSTATE OF Qi +Qz AND Pi Pz—or

min(m, n) m!n!

1)lgrn
—lg»n —I (17)

On the other hand, we can also derive the common
eigenstates of Q, +Qz and P, Pz The—y are.all given by

(Qi+Qz)lk& =Ill(& (Pl —Pz)l(&=(zlzz&

n+m
(g g» )

— ft +kg+I'g
mn ' m inc

whose generating function is

&=f'=0

lg& =exp — +pa +g'b ab—
2

(14)

mt n

(g g» )
—tl +tg+ t'g

0 m!nf (19)
g= gi+i gz

where g is also an arbitrary complex number. Similarly,

I

We can expand the exponential, which is within the sym-
bol::, as

e:e e
—I/12. —atb +(a~+)' bt —ah+a'b+g' a —a a —b b.e

oo tmb fn

(g g»). —a a —b b H» .(g P) (2Q)m!n! m'!n'!

Thus, the completeness relation can be rewritten as

m, n, m', n'=0
lmn & &m'n'lH „(g,g*)H*.„(g,g')=1 (21)

which tells us the important property that H „((,g') possesses, namely,fn(k V}H', '(C 0'}= ' 'm"n" ~&n, . , (22)

This expression is the generalization of the simple integral

d2@» e lfl g™~n b „Qn)m) (23)

used in the Bargmann representation construction. This relation holds because
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~,o(k 4*)=4 Ho, .(4 V)=k*" (24)

V. SIMULTANEOUS SQUEEZING UNITARY TRANSFORMATION FOR Qi Q2 AND P 1 +PT

In this section we derive the squeezing unitary operator for both Q, —
Q2 and P, +P2, since they commute each oth-

er. Note that 71
=g, +i qz, so we may reexpress

l q ) as

lr) ) =exp[ —
—,'(q, +gz)+r), (a —b") +ipse( a +b )+a b ] l00) =—lr), ,q~) .

Let us introduce the following integral-form unitary operator,

'g
I pni, vip) ( ni, qp I,

(25)

(26)

where p, v are two independent positive numbers. Using (25) and (8) and the IWOP technique, we can perform the in-
tegration in (26) to get

d2
U=&pv I:exp ' — (1+p ) — (1+v )+ri, [p(a b)+—(a b)—]

7r
'

2 2

+iri2[v(a '+bt) (a+b)—]+atbt+ab —a a btb '—:

2Vpv (p v)(at—+b )+2(1 pv )a b-
exp

+(1+p )(1+v ) 2L
:exp (a b )

——1
b

(v2 p)(a +—b , )+2(p v 1)ab-
Xexp (27)

where 1 is a 2X2 unit matrix and

(p, +v)(1+pv) (p, —v)(pv —1)L=(1+ )(1+v ), g=
(p —v)(pv —1) (p+v)(1+pv) (28)

Note that

det
(1+p, )(1+v )

(p+ v)(pv+ 1) (p —v)(1 —pv)
(p, —v)(1 —pv) (p, +v)(pv+1) (29)

[(pv+1)[(p+v)a+(v —p)a ]+(1 pv)[(p v)b —(p+v)b "—]}—,
4pv

UbU '= [(pv+1)[(p+v)b+(v p)b "]+(1—pv—)[(p—v)a —(p+v)a ]] .
4pv

UaU

With the use of (29), we know how a and b change under the U transformation, i.e.,

(30)

(31)

It then follows that U(P& P2) U '=P(Pi —P2) (34)

U(Qi —Q2)U '= —(Qi —Qp),
JM

(32)

U(P, +P2)U '= —(P, +P2)

Note that p and v are independent, as [Q i
—Qq,

p, +p ]=0. From Eqs. (30) and (31) we can also derive

U(Q, +Q )U '=v(Q, +Q ) . (35)

So, U is indeed an operator which simultaneously
squeezes Q, —

Q2 and P, +P2.
In summary, we have found the Fock representation of

the common eigenstate of Q, —
Q2 and P, +P2, the im-

portance of which was first considered by EPR in 1935
[2]. The orthonormal and completeness relations of the
eigenstates are derived, and the squeezing operator for
both Qi

—
Q2 and P, +P2 is also obtained, by virtue of

the I&OP technique.
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