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Inertia as a zero-point-field Lorentz force
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Under the hypothesis that ordinary matter is ultimately made of subelementary constitutive primary
charged entities or "partons" bound in the manner of traditional elementary Planck oscillators (a time-
honored classical technique), it is shown that a heretofore uninvestigated Lorentz force (specifically, the
magnetic component of the Lorentz force) arises in any accelerated reference frame from the interaction
of the partons with the vacuum electromagnetic zero-point field (ZPF). Partons, though asymptotically
free at the highest frequencies, are endowed with a suSciently large "bare mass" to allow interactions
with the ZPF at very high frequencies up to the Planck frequencies. This Lorentz force, though origi-
nating at the subelementary parton level, appears to produce an opposition to the acceleration of materi-
al objects at a macroscopic level having the correct characteristics to account for the property of inertia.
We thus propose the interpretation that inertia is an electromagnetic resistance arising from the known
spectral distortion of the ZPF in accelerated frames. The proposed concept also suggests a physically
rigorous version of Mach s principle. Moreover, some preliminary independent corroboration is sug-
gested for ideas proposed by Sakharov (Dokl. Akad. Nauk SSSR 177, 70 (1968) [Sov. Phys. Dokl. 12,
1040 (1968)])and further explored by one of us [H. E. Puthoff, Phys. Rev. A 39, 2333 (1989)]concerning
a ZPF-based model of Newtonian gravity, and for the equivalence of inertial and gravitational mass as
dictated by the principle of equivalence.

PACS number(s): 03.65.—w, 03.50.—z, 05.45.+b

I. INTRODUCTION

Inertia as formulated by Galileo (ca. 1638) was simply
the property of a material object to either remain at rest
or in uniform motion in the absence of external forces.
In his first law of motion, Newton (ca. 1687) merely re-
stated the Galilean proposition. However, in his second
law, Newton expanded the concept of inertia into a fun-
damental quantitative property of matter. By proposing
a relationship between external force acting upon an ob-
ject and change in that object's velocity (F=ma), he
defined and quantified the property of inertial mass.
Since the time of Newton there has been only one
noteworthy attempt to associate an underlying origin of
inertia of an object with something external to that ob-
ject: Mach's principle. Since motion would appear to be
devoid of meaning in the absence of surrounding matter,
it was argued by Mach (ca. 1883) that the local property
of inertia must somehow asymptotically be a function of
the cosmic distribution of all other matter. Mach's prin-
ciple has remained, however, a philosophical statement
rather than a testable scientific proposition. Thus apart
from Mach's principle, the fact that matter has the prop-
erty of inertia is a postulate of physics, and while special
and general relativity both involve the inertial properties
of matter, they provide no deeper insight into an origin of

inertia than Newton s definition of inertia as a fundamen-
tal property of rnatter.

Recently one of us [2] analyzed a hypothesis of Sa-
kharov [1,3] that Newtonian gravity could be interpreted
as a van der %aals type of force induced by the elec-
tromagnetic fluctuations of the vacuum, the so-called
zero-point fluctuations or zero-point field (ZPF). In that
analysis ordinary neutral matter is treated as a collection
of electromagnetically interacting polarizable particles
made of charged point-mass subparticles (partons). This
is a reasonable approach in ZPF analyses in which an
ideal Planck oscillator serves as an analytical surrogate
for more detailed representations of matter; or, more
specifically, it is a simple model in which at ultrahigh
(Planckian) energies matter appears as if formed of very
small elementary constituents that respond like oscilla-
tors characterized by a radiation damping constant I and
a characteristic frequency coo. The e6'ect of the ZPF is to
induce a Zitterbemegung motion in the parton in a
manner entirely analogous to that of the bound oscilla-
tors used to represent the interaction of matter with elec-
tromagnetic radiation by Planck [4] and others. This has
the consequence that the van der %'aals force associated
with the long-range radiation fields generated by the par-
ton Zitterbewegung can be identified with the Newtonian
gravitational field.
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We have now found that the inertia of such a particle
can also be calculated from the particle's interaction with
the ZPF. For the idealized case we have analyzed, the
F=m a equation of motion appears to be related to the
known distortion of the ZPF spectrum in an accelerated
reference frame. This distortion of the ZPF spectrum
due solely to acceleration gives rise to the well-known
Davies-Unruh effect [5]. We show in this paper that
there exists another effect, a heretofore unexplored elec-
tromagnetic Lorentz force (specifically the magnetic com-
ponent of the Lorentz force) on an ideal charged particle,
and since this ZPF force acts against the force giving rise
to the acceleration and is proportional to the accelera-
tion, it would appear to offer the interpretation of being
the "cause" of the property of inertia. Stated another
way, the resistance to acceleration which defines the iner-
tia of matter appears to be an electromagnetic resistance
(specifically Lorentz force) of the ZPF acting at the con-
stituent particle (parton) level. This furthermore opens
the possibility of specifying a causal basis and thus devel-

oping a scientific version of Mach*s principle involving
the universal ZPF, thereby offering deeper insight into
what has been thought to be a fundamental, nonderivable
property of matter, i.e., inertia.

The existence of an electromagnetic ZPF is a clear pre-
diction of quantum theory resulting from quantization of
the harmonically oscillating radiation modes in a
Hohlraurn. While quantum mechanics predicts a ZPF,
there is, in fact, a minority view in modern physics that
asserts that this situation might be turned around, and by
assuming a ZPF a priori several quantum effects can be
derived using classical formalism as a consequence of per-
turbation of elementary particles by such a random elec-
tromagnetic field. This approach, sometimes termed sto-
chastic electrodynamics (SED), is a modern development
of much earlier investigations by Planck [6], Nernst [7]
and Einstein and Stern [8]. Considerable progress has
been made in SED since the 1960 s when this line of in-
vestigation was reopened by Marshall [9],Boyer [10],and
others. A detailed account, with many references, of the
development of this theory may be found in de la Pe%a

[11]and in the brief update by Cole [12]. Given the rela-
tive ease and simplicity of the SED approach, and the
fact that Milonni [13]has shown that for a broad class of
problems (which includes the type of model being dis-
cussed here) quantum-mechanical and SED treatments
are isomorphic, we shall use the SED approach here. In
either case, quantum mechanics or SED, there appears a
ubiquitous ZPF which can be regarded as a propagating
electromagnetic field in free space with spectral energy
density,

CO
p(co)dco=

c
1+

NC

2

X + dco .
2 exp(2ncco/a) 1— (3)

We have found that the associated modification of the
ZPF as seen from an accelerated frame leads to a new re-
sult. Upon analyzing the force F that the ZPF exerts per
constituent parton in an accelerated frame, it has been
found that this force is directly proportional to and
directed opposite to the acceleration vector a. In other
words, the acceleration process meets with a resistance
from the ZPF which is a function of a radiation reaction
damping constant I' defining the interaction of the parton
with the radiation field and of the acceleration a. We in-
terpret this as the inertia associated with the parton, i.e.,
the inertial mass of the particle (Planck's oscillator) con-
taining the parton. This is equivalent to stating that
Newton's law of motion, F=ma, may be formulated
from the ordinary electrodynamics including the ZPF via
the techniques of SED in the sense that the electro-
dynamic F(a) relationship predicts an inertial mass, per
parton, of

(4)

such as the Casimir effect [16], the Lamb shift [17], the
van der Waals forces [18], diamagnetism [19], spontane-
ous emission [20], and quantum noise [21]. That these
effects are due to the ZPF is well known from QED and
usually also from SED analyses such as those cited above;
for discussion of many other specifically SED references
concerning these and related effects, see de la Pena [11].

The ZPF spectrum of Eq. (1) is Lorentz invariant [22].
This has the consequence that motion through space at
constant velocity does not, by virtue of a Doppler shift,
change the ZPF spectral characteristics in any way so as
to make the ZPF detectable. However, in an accelerated
reference frame a manifestation of the ZPF does appear.
It has been shown by Unruh, Davies, and others [23] us-

ing methods of quantum field theory, and then by Boyer
[24] using SED formalism, that in a uniformly accelerat-
ed coordinate system with constant proper acceleration a,
a pseudo-Planckian spectrum will appear having a radia-
tion temperature

Aa

2mck

In such a uniformly accelerated frame the spectral energy
density takes the modified form

p(co)dco= dc' .2' C

The issue of whether this field should be regarded as
real or virtual has been an ongoing debate in quantum
theory [14],whereas in SED the ZPF is by definition real
[15]. Taking a pragmatic view, we use SED exclusively
as a useful and convenient tool that is straightforward
and intuitively clear, and which has been applied to the
very real effects attributable to ZPF-matter interactions,

' 1/2
c
fiG

(5)

We hasten to point out that although the Davies-Unruh
effect and the inertia effect proposed herein are both due

where I is the Abraham-Lorentz damping constant of
the underlying oscillating parton, and co& is the Planck
frequency,
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to the distortion of the ZPF as observed from an ac-
celerated frame, the Davies-Unruh effect manifests itself
primarily at low frequencies, as follows from the co depen-
dence of the second factor in the parentheses in Eq. (3),
whereas on the contrary, as the derivation in Sec. II will
show, the inertia effect here explored appears primarily
because of the distortion of the ZPF vector components
at very high frequencies. As follows from Eq. (3), the
very-high-frequency distortions of the ZPF have a spec-
tral energy density that, within the range of applicability
of Eq. (3), grows linearly with co. On the other hand, the
purely thermal pseudo-Planckian part that constitutes
the Davies-Unruh effect dies out exponentially at high
frequencies.

In the next section we present a detailed mathematical
derivation of Eq. (4). The last section presents some addi-
tional discussion.

er time, i.e., its time in S. We consider the simple case of
uniformly accelerated (in I„the instantaneous frame of
the particle) motion in the x direction, which yields so-
called hyperbolic motion [27]. A lucid description of this
situation and of the relations between quantities in the
various frames is given by Boyer [5], whose notation we
also follow.

We let p,=v„(r)lc and y, =(l —p„) ' and then use
the Lorentz transformation to relate E, (O, r) in I, to the
laboratory coordinates [28],

E, (O, r}
2= g f 1 k fie, +jy,[e —P,(kX&},]

+ky, [e,+P,(IX'} ]]

XHzp(to)cos[k R, (r) —cot„(r)
II. NEWTON'S EQUATION OF MOTION, F=ma —8(k, A, )], (6)

The SED technique we use for calculating the effects of
the electric and magnetic components of the ZPF on a
parton is similar to the method introduced by Einstein
and Hopf [25]. The particle model we use is that of
Puthoff [2]. The particle acts as a harmonic oscillator
with a characteristic frequency coo, free to vibrate in a
plane perpendicular to the direction of acceleration. The
relevant parameter for calculating the response of the os-
cillating particle to the driving force of the ZPF is the
Abraham-Lorentz damping constant I of the parton (see
discussion in Sec. III).

The ~0 is a characteristic frequency in the manner of
the Planck oscillators [4]. The aggregate of point charges
in a finite object are not free, but rather bound to the
whole. As our analysis will show, for the Planckian fre-

quencies of interest (co=co~), coo will be negligible, i.e.,

partons are asymptotically free. In the case of the elec-
tron, for example, coo would possibly be on the order of
the Compton frequency, since this is roughly the frequen-

cy at which the center of charge oscillates in Zitter-
bemegung around the center of mass in conventional in-

terpretations of QED [26]. The inclusion of coo at this

point affords physical clarity and will have mathematical
advantages at the stage of locating and of separating
poles in the process of contour integration. We do not
need to specify any further constraints on coo other than

coo&&~p. Eventually coo disappears from the calculations
and the final result does not contain coo.

A. Aeceleratien relative to the ZPF

The formalism we start from corresponds to that of
Boyer [5] for a small oscillator. Three coordinate systems
are specified: I„I„and S. We let the particle oscillator
be subject to a force along the x axis of an inertial labora-
tory coordinate system, I„in such a way that the coordi-
nate system of the particle, S, is accelerating with respect
to this laboratory frame with a constant acceleration a, as
viewed froxn a moving but non-accelerating inertial coor-
dinate system, I, that coincides with S at proper time ~.
We refer to time in I, by t„'~ refers to the particle prop-

The expression for the field in Eq. (6) results after a
Lorentz transformation from the random field

E, (R„t, ) at R, (r), t, (r), the equilibrium point of the
oscillator in the laboratory inertial frame I, . Since we

will be interested in the Lorentz force we also require the
Lorentz-transformed form of the magnetic field,

2

B, (O, r)= g fd'k[i(kXe}„+jy[(k,XE)y+P e ]

+ky, [(™kXe),—P,e ]]

XHzp(ra)cos[k R, (r) —cot, (r)
—8(k, i, )] . (8)

In Eqs. (6) and (8) we sum over the two possible polariza-
tions A, =1,2 and integrate over the wave vector k. The
fact that e should read e& is understood and is omitted for
simplicity of notation.

For constant acceleration as perceived by a particle wc
have the well-known case of hyperbolic motion in which
the acceleration a enters as [29]

Q7
P,= tanh

C
(9a)

a7
y =cosh (9b)

and we can select space and time coordinates and orienta-

where R, and t, refer to the space and time coordinates
of the central-force point of the oscillator in the laborato-
ry frame I, and 8(k, A, ) is a family of random variables
whose elements are mutually independent and where for
each choice of k and A, there is a diferent random vari-
able uniformly distributed between 0 and 2~, and

H»(~)= AN

2~2
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tion in I, such that [5]

C a~
R, (r).i= cosh

a c
(9c)

c . Q7t, =—sinh
a c

and therefore

(9d)

E, (O, r)= g fd'k ie„+jcosh
A, =1 c

Qg A A QV'
e —tanh (k Xe), +k cosh

c c
e +tanh (kXe)& 'Hzp(ci)}

c

c Q7Xcos k„ cosh
Q C

doc . . Q7
sinh —8(k, k) (10)

2

B, (O, r)= P f d'k i(kXe)„+jcosh
A, =1 C

(k Xe)„+tanh e, +k cosh
c c

QV
(k X e) —tanh ez c y

c Q'T
XHzp(co)cos k„ cosh

a C

NC . . Q7
Slnll

a c
—8(k, A, )

The ZPF is referenced with respect to the equilibrium
point of the particle.

The equation of motion is a particular form of the
Abraham-Lorentz-Dirac equation derived for a particle
undergoing hyperbolic motion [30],

2e dr a dr= —mac)or+—
d r

m()

+eE, (O, r), (12)

(13b)

where r is the vector displacement of the oscillating parti-
cle in the S frame. It is the additional term in a that
captures our attention, and as shown by Boyer [5] this
term is a relativistic one. This is the reason that we de-
velop relativistic expressions even though the particle ve-
locity (from constant acceleration) may be extremely
small. Inertia will be shown to be a relativistic effect, a
situation not so surprising if inertia originates in Zitter-
bemegung and somewhat analogous to the ordinary elec-
tromagnetic Lorentz force being a relativistic
phenomenon (resulting from the invariance of the equa-
tions of electrodynamics under Lorentz transformations).
Due to the fact that the effect to be derived is mainly due
to the very-high-frequency components of the ZPF, we
do not need to include any coherence effects. Hence in
Eq. (12) we may neglect the action of other particles.
Our high-frequency analysis automatically excludes
many-particle cooperative effects like those responsible
for refractive behavior, i.e., high index of refraction at
lower frequencies.

One can solve Eq. (12) using Fourier transforms. The
assumed two dimensionality of the Zitterbewegung trajec-
tories implies that the particle moves in a plane [2,26].
The instantaneous displacement of the parton in I, is tak-
en to be in the yz plane, and so we write

r(r) =(2n )
' f dQ g;(Q)exp( i Qr), —(13a)

E&~,)(0,r) =(2n. )
' f 1XQ~, (( ))Qexp( i Qr), —

I

from which we may also obtain B&~,)(O, r }.
The equation of motion (12), a particular version of the

Abraham-Lorentz-Dirac equation, in the nonrelativistic
case with constant acceleration has the form developed
by Boyer [5] in his Eq. (14). The Fourier transform of
Eq. (12) is

2 2

mo( i Q) —— (
—iQ) —( i Q) —

z +mac)02 2e . 3 . a

C c

Xri(Q) =eX(y,)(Q), (14)

where mo is the bare mass of the parton associated with
I', i.e., mo =2e 2/31 c 3. Our Eq. (14) has the solution

r(r) =(2n )

X(,)(Q)exp( —i Qr }
X 0

2 2, 2 2~p a)p —0 —iI 0 +Qa c

(15)

with

v(r)= r

=r=(2n )

( —i Q }XX(,)(Q }exp ( i Qr}—
2 2 ~ 3 2 2mp [coo—Q iI'(Q +—Qa /c )]

(16)

&(y.)(Q) =(2~) '"f" d E&r„(O,)r)exp(iQ ).r (17)

After laying out this formalism developed by Boyer [5],
the next step is to calculate a specific kind of radiation
pressure exerted by the ZPF in the accelerated frame S
on the oscillating particle. We compute the Lorentz
force on a parton oscillator and average over the random
phases. The ZPF will exert a magnetic Lorentz force on
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the parton,

F=e XB, (O, r),v(r)
c

(18)

(eie(k, A) ) —0 (19)

which is the only one that will remain since the electric
part of the Lorentz force will not contribute owing to the
[soon to be performed, see Eqs. (30)—(32) below] averag-
ing over the random phases,

yield an increase in the translational kinetic energy of
random motion for the particle [32], whereas in the
present case the particle oscillator is not free as it is con-
strained to undergo uniform acceleration by the applied
external force.

B. Solution of the force equation

We need to consider only very short times ~, so that to
first order in (ar/c ) outside the phases,

Because of symmetry we show below [Eq. (34}] that after
averaging, the resulting averaged magnetic Lorentz force
takes place only along the x axis; i.e., the direction of the
acceleration since the average force vanishes along the
other two directions. Three comments are then in order.
(i) As discussed in Rindler [27], the resulting force is an
ordinary three-force: It is the same in the I, and I„sys-
tems because it is collinear with the relative velocity be-
tween the two systems. (ii} The technique of first calcu-
lating the velocity v(r} from the effect of the electric field
and then proceeding to find the effect of the magnetic
field, as in Eq. (18), constitutes the essence of the method
of Einstein and Hopf [25,31]. (iii) When such techniques
are applied to a genuinely free electromagnetically in-

teracting particle, ZPF forces, in the absence of friction,

«1,
( 1 P2)

—1/2

and in the phases we go to second order in (ar/c ),
2 2

a~ 1 a~ 1 a~
cosh =1+- + ~ ~ 0 ~ 1 +

c 2! c 2 c
L

'3
.

h
av a~ 1 a~ a~

sinh ~ ~ ~

c c 3! c c

Thus the expression for the phases reads

(20)

(21)

(22)

(23)

k, cosh
c av
a c

sc . Q7
sinh

a c
—8(k, A, ) =k„+k,' a a 2

NC —8(k, A, )

c'=k„+ a w cow 8(—k, I, )—, (24)

and therefore

C Q7
cos k„ cosh"a c

NC . Q7
sinh

a c
c ar—8(k, A, =cos k, +k„—cor —8(k, A, )
a 2

=Re exp i k +k cur 8(k, k, )— —c ar
a

(25)

This explains why a relativistic formalism is relevant even for nonrelativistic displacement motions of the particle.
The velocity in the I, frame [Eq. (16)] can be written as

v('r) —(2ir)-'" j" dQ
o [coo Q iI (Q —+Qa —/c )]

e ~, zp, ~ ( iQ)exp[—iQ(r' —r)] (26)

In the yz plane of the oscillator motion the projection of the electric vector is [33]

E&,~(0,r)= g f d k'(je'+k ')He(czop'}exP[i[k'. R~(r'} co't„(r') ——8(k', A')]],
2

= y I d'k'(je,'+«')IIzp(co')exp i k„''
A, '=1

k„'a ~'—8(k', A, ') —co'r'+
2

(27)

where we have used the approximation (arlc ) =0 outside the phases because (ar/c ) « 1. Of paramount importance
to this equation as well as to many of the following ones, see, e.g., Eq. (28) and (90) below, is the fact that only very high
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2

v(r)= ' f" dr' y fd'k'(je, '+km,'}Hzp(~)exp ~ k,
'

2mmp a

X dQf (
—i Q)exp[in(r' —r}]

[co() Q— i—r(Q +Qa /c )]

k„'ar'—8(k', A,
'
}—co'r'+

2

frequencies will be found to contribute to the inertia effect. We write the velocity as

(2&)

where we have been able to integrate over ~' from —00 to + Oo because of the fast-wave approximation of physical op-
tics. As the relevant contributions to the inertia effect come exclusively from very large co', the large

~

r'~ part of the in-
tegral is irrelevant. Within the same order of approximation the magnetic field becomes

2

B zP(0, r"}=g f d k"[i(k"XP')„+j(k"Xe')„+k(k"Xe'), ]Hzp(co")

Xexp i k„" 8(k—",1") ,co"—r"+
a 2

(29)

Next we compute the (magnetic component of the) Lorentz force, where ( ) refers to the usual average over random
phases. The proper times ~ and ~" must be the same in the force expression; however, we retain the formal distinction
to allow us to more easily trace the origin of the various factors. Later we will set r"=r. The Lorentz force is

F=e XB* (O, e"))v(r)
C

2=—Re — 7 ~6y+kEz Hzp N exp i
2 c 27TPl p

—oo gF 1
a

k,'a v'
8(—k', A') ,co'—r'+

2

X dQ ( i n)e—xp[i Q(r' r)]-
[ coo Q iI—[Q +—Q(a /c )]j

2

e y f d k"[i(k"Xe")„+j(k"Xe')+k(k"Xe"), jHzp(co")
V'=1

k„"a~"—8(k",A,
"

)
—co"r"+

2

X 'exp i k,"
a

and now setting ~"=~ we arrive at

2

where denotes the vector cross product, and the asterisk the complex complementation. Noting that

( expi [8(k', A, ') +8(k",A,
"

) ] ) =0,
( exp i [8(k', 1,') —8(k",A,

"
) ] ) =5&&5(k' k"), —

(30)

(31)

(32)

F= l e
Re f dr' g f d3k' f dn ( in)exP—[in(r' r}]-

2C 27Tmp —oo [~2 Q' ir—(n +—na~/c')]

iak'
Xexp i co'(r' r}—+ (—r' r)—

2

X [—ke'(k'Xe')„+is'(k'Xe'), +jr,'(k'Xe')„—ie„'(k'Xe )„] ' . (33)

Now the F and F, components of F vanish because of symmetry, i.e., the situation must be cylindrically symmetric
around the x axis of acceleration, so we need only compute F, which is

F„=i F= I e Re. f dr' g f d k'f dn ( Q) "p Q(r H (m')
2~~ p [coo Q il (Q —+Qa—/c )]

iak„'
Xexp ico'(r' r)—+ (r' —r )

—[e'(k'XF), —e,'(k'Xe') ]
'

2

R. , f2c 2~mp
dr' g f d k' f dn H (co')

A,'=1 [co()
—Q —iI (Q +Qa /c )]

iak'
Xexp ico'(r' r)+ — (r' —r) [i.[e'X(k'—Xe )]j2

(34)
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Observe that

e X(k'Xe ) =k'(e' e ) —e'(k' e ) =k',
hence taking the x axis as the azimuth axis we have

F„= Re. f d~' g f d'k'cos8' f dn '
Hzp(a)')

2c 2mmo — z, , —~ [co',—n' —ir(n'+na'/c')]

iak'
Xexp i —e'(~' —w)+ (w' —~ )

2

To compute the angular part we do the following:

(35)

(36)

I= f d —k'cos8'exp
2

cos(8')(~' —2)

=f k' dk' f dP' f d8'sin8'cos8'exp
0 0 0

=2m. k' dk' dp p exp JM

where

Q—: (~' —+) .
iak'

2

Since [34]

f pe QPdp =e QIJ 1

2

iak', 2

2
(~' —H)cos8'

(37)

(38)

(39)

we find

I=2m f k' dk' e~"
0 ] Q Q2

f k,pdk, . sin[(a /2)k'(r' —2)] cos[(a /2)k'(r' —2)]
[(a /2)k'(r' —2)] [(a /2)k'(w' —2)]

and thus

e R f d, 4. f k, qdk, Hq, sin[(a/2)k'(r' —2)] cos[(a/2)k'(r' —2)]
2cmo — 0 [(a /2)k'(~' —2) ] [(a /2)k'(~' —2)]

—iQ exp iQ ~' —~

[coo n i I'—( n +—na /c ) ]

Converting from wave vector k' to angular frequency N' and using

Hzp(~ )= AN

2m2

we find

(40)

(41)

(42)

Re f" d~'f"
~ Cm0

I

Gos — (v —
7 )

2 c

(~' 2)—a N

2 c

Xe i~(~ —~' dQ QexP &'0 v

[coo n il (n +—na —/c )]
(43)
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The last integral,

0 exp[iQ(r' —r)]
[a)0 —0 —ir(Q +Qa /c )]

(44)

can be computed by contour integration on the complex
plane using residue theory. Letting 0—:x, v' —~=a, and
a /c =P, we may write

J= 00

~ ~
~

X8' dx

[ i—I x x— i—rp x +co 0]

We know that

(45}

ze' 'dz

[—i rz' —z' —iry'z+~,']
z&

iaz
=2@i gRes;z, (46)

[—irz' —z' —iry'z+~,'] ' '

where [j] represents the collection of poles that are lo-

cated inside the area enclosed by the path. Since z, e'
and [ I,

—I'z z—i—rP z+coo] are analytic everywhere,

the only poles occur in the zeros of the denominator. We
thus find the roots of the polynomial,

—i.rz' —z' —i ry'z+ ~,'= o,

where r, P, co 0&R, and z E- C.
Since the coef6cients are in general complex, from the

d'Alembert-Gauss fundamental theorem of algebra we
know there are in general three possibly difFerent com-
plex roots, z„z2, and z3. Given the positions of the poles
to be found below, there are reasonable options for the
closed contours of integration,

g=&im I" +J'' ",a&0, (48)

= lim +, a(0, (49)

Jc=J~+Jc~ (50) —z'+~,'=0, r 0, (53}

We know that the integral we need is with solutions z =+cop. Hence for small I we expect that
the approximate forms of the two roots would be

lim J„
g ~ oo

and thus we want to have that

z) cop l5 ~

z2 cop l 6

(54)

(55)

»m Jc~=o
gazoo

(52)

where 5,eER. We may check the roots z, and z2 and
derive some internal consistency conditions that 5 and e'

must satisfy,

This may be ascertained by means of Jordan's lemma.
Therefore if a=~' —~(0 we select the lower complex
plane path (taking care of the minus sign because of
change in chirality of the integral}, and if a =w' —r )0 we
select a path in the upper plane.

We make use of the physical fact that the bare mass
mp is very large and thus I =2e /3mpc is very small.
In the limit I ~0 the equation becomes

i rz 3,
—z f—i I P z, +c—oo =0,

and from Eq. (54),

—ir[coo —3cooi5+O(5 )]—[coo 2cooi5+O(—5 )]

iry'(~, in)+~,'=0,

(56}

(57)
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where we are neglecting second-order terms in 6 and thus we can neglect I e, i.e.,

ir~,'+2~,i5 —3r~,'5 iry'~, —ry'5=0 (58) Iv=0, (63)

and so, to first order in 6, from the real and imaginary
parts we get

i [
—I coo+2coo5 —I P coo] =0,

—r5[3coo+P ]=0 .

(59)

(62)

This implies that the level of approximation is exact to
the order of neglecting

5r=r5=0.
We are thus left with

analogously we obtain

e =—
[coo+ P ]=5)0 .

r
2

We thus have to O(5 ) =O(e ),

z, z =+coo i —5= +co 0
—i—[cooz+ pz ] .. I

Next we multiply as follows:

(z —z, )(z —zz)=zz —(z, +zz)z+z&z2

=z +2i5z —(coo+5 )

(64)

(65)

We repeat this for zz= —
cop

—ie. Exactly the same ap-
proach yields that to the level of approximation in which

=z +2i5z —
coo [to O(5 )] . (66)

From the fundamental theorem of algebra we know that
the original cubic equation (47) may be factored as

i rz—' z' —i ry—'z+ ~', = i r(—z z, )—(z z, )—(z z, )—

= —il (z —z, }(z +2i5z —coo)

iI z —+iI z z +21 5z 2I 5z—z +ircooz il co—oz (67)

and from (61) then

z (1+iI z )+ir(co +P )z —co (1+iI z )=0 (68)

We now replace the z3 solution of (71) in Eq. (47) in or-
der to determine the error and we obtain that

or, because of (62) P +coo--0 . (74)

z (1+iI'z )+2i5z —co (1+ii z )=0 . (69)

For this last identity to hold we need to have 5 very small

and

This is the error in the fit. It is a very small number in
comparison to I

The integrand of J, is of the form

1+iI z3 =0 . (70)

F ze iaz

G [ i rz' z'—i ry'—z+~—', ]
(75)

Therefore we have for the three poles so that

3 r
G'= = 3i I z —2z—i I P—dG

dz
(76}

Z2 COp 15

Zi COp 16

(72)

(73}

Thus we evaluate the residues around each pole by means
of the well-known theorem that for integrals of the form
F (z) IG (z), where G has only simple zeros, the residue at
z is F(z, )/G'(z, ), where the z must be simple zeros of
G.

F(z) F(z& ) F(coo i5)—
G'(coo i 5)—

(coo —i5)exp[ia(coo —i5)]
3i I (coo i5—) 2(coo—i 5) —i 1 P— — (77}
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F(z) F(z2 )
Res ;z =z2 = Np l5

G(z) ' ' G'(z2)

F( —
cop i 5)

G'( —
cop

—i 5)

(
—

cop
—i 5)exp[ia( —

cop
—i 5) ]

—3iI ( c—o 0 i—5) 2—( co—p i —5} i —I P
(78)

F(z) i F(z3 } exp( —a/I')
Res 'Z —Z

2
=0 for a&0 .

G(z) ' ' r G'(z, ) 1 —(yr)'
(79)

, ~0, /z/~~ .Z

i1 z— z —i I P—z+cop
(80)

Hence if a &0, we integrate over the upper semicircular
contour [Eq. (48)] and Jordan's lemma guarantees that

Next we examine the evaluation of J, as stipulated by
Jordan's lemma. As ~z~ ~ ~ we have

for ~' larger than r by several I . Therefore we must have
r' (~ for the force F„not to vanish; or more properly, we
should integrate over r' the contributions from —~ to r
since the part from r to oo essentially vanishes.

We then look at the case a(0. Jordan's lemma
guarantees convergence in the lower complex plane.
However, the integral performed over the contour of Eq.
(49) has opposite chirality and the residue theorem reads

F(z) iJ= (2m i )Res . 'Z —Z
G(z} ' ' r (81) J,= (2n.i —) g Res [z,],

IA

(84)

So for a & 0, because of (79)

00 xe' "dx
2=0—iI X —X —/I X+Np

(82}

where j refers to the poles of the integrand inside C. We
then have

R

—R C~', e=p ~Izi=R

or more precisely, (2ni )(—Res[z, ] +Res[z2] ) (85)

J (2 )
exp( —a / I' )

1 —(yr)2
(83) in the limit when R —+ ~, and the integral Ca goes to

zero because of Jordan's lemma. We obtain

J=—2mi
(cop —i 5)exp[ia(cop —i5) ] ( cop i—5)ex—p[ia( cop i 5)—]-

3i r(co i—5 ) 2(co —i 5 )
—i rp — ——3ir( —~ —i5) —2( —~ —i5)—i rp2 (86)

Let J=8„„ /8d, „,where 8„„and d'd, „denote, respectively,

~„„.= "e.s (~02+52)(NO+l5)+ " (&02+52)+ (~0 l5) e""0-

(cop+5 )(cop i 5) —(a)0+—5 )+ (cop+i5) e

~2 (cop i5)—
3I' 31 3 (~2+52)

(~0+&5} iaro-
(cop i5) +— —

2 2
e

(cop+5 )

2

+den (~0+5 } + (~@+5 ) + + (Np+ 5 )(ci)0 i5 ) (cop+ 5')(c—op+i 5 )3I 9 3I 3I

+ [(Cop i5} +(Cop+i5) ]—— (rd pi5)+ (Co +i5)2 2 P 2s . 2i
3 3 3I 3 3I

2
2cop

3I

(87)

(88)
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The denominator simplifies considerably via the dominance of certain large terms. Recall that the 6 terms could be
neglected [5=(I /2)(coo+5 )]. Moreover, terms with I ' are much larger than terms with coo or coo. All in all, the

term winds up determining the denominator, leading to the simplification. Thus for a &0 the expression becomes

J— co e
2m.

3I 26)p

3r

2

2«~~p 2i iA~p

3r' + 3r'
i(p —i5)( ~' —~) —i (~p+i 5 )( 8—T)=~i e ' +e (89)

whereas for a & O, J=0, from (82).
Thus the expression for the force becomes

1rce
R f~ d, f co'dco

~ cmo " o c3

sin — (r' r)—
2 c

2

(r' —r')Q CO

2 c

I

cos (r r )
2 c

(r 2 r2)
2 c

i[($ cop)+i5](7 7 ) I [(a)'+up)+i 5](7 7 )
X(1ri) e ' +e (90)

since only the case ~ —~ &0 contributes. At high frequencies —which are the only ones that substantially contribute to
the final result because the frequency integration over co' peaks near a frequency co, to be introduced in (108) below-
the exponentials in the co +coo introduce rapid oscillations in frequency for ~r —r~ sufficiently large. This is a sufficient
reason to justify the claim that the only case producing a nonvanishing result is ~ =~. However, there are additional
reasons. The exponent exp[ —i(i5)(r' —r)]=exp[5(r' —r)] strongly damps the expressions for (1.' —r)5(0 when

r»5 —. Moreover, the sine and cosine expressions oscillate strongly with frequency in the frequency integration
when z' differs considerably from ~. As a consequence, ~' =~ is the only case in which a contribution may be expected.

Let

I

p,
= — (r' —r )

[2 c

Clearly for r in the immediate neighborhood of r, I is very small and then

(91)

I

sin — (r' —r )
2 c

Ia co
(

2 c

I

cos (7 r )
2 c

I

(r'2 —r')
2 c

sing

p

cosy 1 sing —cosy
JM p p 3 (92)

sing

p

for small)Lc, after neglecting terms of O()tc ) and higher. Thus

I I

(1' —r ) =— (r' —1.)(1.'+1) =— [a +21a],
p 3 3 2c 3 2c 3 2c

J

(93)

where a was defined just before Eq. (45) above.
We thus find for I'„

1 2e A a1 oo i[(co cop)+i 5]a —i ((et) +ct)p)+i 5]a
2
——Re i f da f y(co')co' dco'[a +21a][e +e 0

] .

3' pc c 2 2 —oo Q

(94)

where y(co') is a form factor obtained by Rueda [35] to represent the fact that components of the ZPF electromagnetic
radiation whose wavelengths are smaller than the size of the electromagnetically interacting particle (which in the
present case is the parton) are ineffective in producing any translational motion of the interacting particle (parton) as a
whole. Wavelengths shorter than the interacting particle diameter can only yield internal deformations and vibrations
of such a particle. We recall furthermore that partons cannot be smaller than a fundamental minimal length, the
Planck length A,z [36], and for concreteness we assume (within a parameter of order one that we omit for simplicity)
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that this is actually the size of these fundamental entities. Given this limit on the parton size, it is not necessary to as-

sume a cutoff of the ZPF itself which would destroy the Lorentz invariance of the spectrum. The cutoff originates in

the size of the parton, in that ZPF frequencies with wavelengths less than the parton size mould cease to result in
effective translational interactions.

Letting v =——a, dv = —da,

)+ '5 I+
F„= I R—e i f dv f y(co')co' dco'[U 2«.—U][e ' +e '

] . .
2% g2 2 0 0

%e define

V=N V (96)

(97)

N0p=
N

(98)

q —= (99)

to serve the purpose of normalizing the expressions. Since N is positive, the limits of integration in v are the same as
for v, namely, —00 and +00. Thus

F„= a Re i y(co')~'d~'
"

[v 2Tv—]dv[ei ( Pi+i«)v+ei((i+Pi+i«)v]
4~ C' 0 0

(100)

%e may proceed to integrate over v.
We evaluate Re[i J 0 y(co')co'dco'K ] where

K — 2 2T if(1—P)+iqlv+ if( 1, +P)+iq)v
0

v v —2Tv e ~ cos 1 —p v +cos 1+p v +i sin 1 —p v +i sin 1+p v
0

but

(101)

Re i y N'N' N'K = y N'N'Re iK N'
0 0

y N'N' N' vv —2Tv e ' sin 1 —p v +sin 1+p v
0 0

We use Gradshteyn and Ryzhik [37] to obtain

(102)

hence

-p . 1(iu) 5
0

x" e "sin(5x)dx=
(p2+ 52)p/2

sin iMarctan — for p„,13,5ER, p, & —1, P&0, (103)

v sin[(leap)v]e q'dv= sin 3 arctan
2 1+p

0 [e'+ (1+p )']'" (104)

and

oo
~ v

—2Tf —2Tv sin[(1+p)v]e «"dv= sin 2arctan
0 [e'+(1+p )'1

1+p
(105)

Observe that as mainly co'»coo, expressions like p =coo/co' and q =5/co'=(I /2'')(coo+a /c ) are extremely small
(negligible by many orders of magnitude) for all regions of co' of any relevance in the co' integration. The parameter a/c
cannot be much larger than N0 and most likely is much smaller even for collisions in particle physics experiments where
a takes high (negative) values. So (I'c00)coo«co, and (I a/c)a/c «co„where co, is a frequency bound introduced
below. Hence we can neglect p and q in comparison to unity at this stage, and thus are left with

Re i y N' N'dN'E = — y N' N'dN' —4sin 3arctan —+4T sin 2arctan—
0 0 q q

(106)
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However,

1 m. 3~
lim arctan —=+—,+

0+ q 2 2
(107)

and thus for all practical purposes it can be shown that
the form factor y(co') efFectively produces a cutoff' at a
frequency co, [35],so that we write

Re i y co' co' co'E = — co'de'4sin +
0 0 2

=+4 co' co'=+2', . 108
0

Therefore finally we arrive at

(109)

where the negative sign is selected because the action of
the vacuum on the accelerated body is an opposing ac-
tion, in other words, the inertia. The ZPF-determined
inertial mass associated with the parton oscillator is

I A'co,
m;=

277c
(110)

III. DISCUSSION AND CONCLUSIONS

It is useful at this point to give an overview of our ar-
guments and assumptions. Because of the 1/r singularity
of the Coulomb potential, any charged particle suffers an
infinite self-energy problem arising from its own electro-
static field. For this and other reasons (e.g., the elemen-

tary fact that a neutron may decay into a proton and an

This corresponds to the rest mass associated with the
subelementary particle that is the parton or Planck oscil-
lator. The cutoff cu, comes from the ineffectiveness of the
ZPF in producing any translational motion of the parton
at wavelengths smaller than the parton size, and not from
the introduction of any ad hoc cutoff in the ZPF spec-
trum. It is important to note that this leaves the Lorentz
invariance of the theory intact.

A simple estimate, using this value of m, , as done by
Puthoff [2] gives co, =(2n)'~ cop, .where cop is the Planck
frequency, co& =(c /RG )'~ and G is the Newtonian grav-
itational constant. Hence

Wp 2 m,2
m =(I co ) =—a

3 mC m0

where a is the fine structure constant, a=e /Pic, and
m~=4'co~/c is the so-called Planck mass. This holds,
provided the parton has a charge e equal in magnitude to
the electronic charge. Relation (111)corresponds to that
in Ref. [24] of Puthoff [2]. However, if we consider both
the parton's charge e and its bare mass m0, as free pa-
rameters (a more general viewpoint given the fractional
charges of quarks and the possible existence of further
structure at the very high energies under discussion) then
there is a relationship between the particle's inertial mass

m; and the parton's charge e and bare mass m0 predicted
by our model, m; ~ e /m0.

electron) models have been developed which assume that
"large-scale" particles, whether charged or neutral—
such as protons and neutrons —actually consist of small-
er, more elementary charged particles, such as quarks.
The situation for the electron is still less clear [38]. This
leads to the distinction between the external "dressed
mass" of a particle and the aggregate internal "bare
mass" of the constituent elementary particles.

Our model does not address differences between the
various types of fundamental particles. We simply as-
sume that material objects at the most fundamental level
are made of positively and negatively charged entities, re-
ferred to as partons, capable of interacting effectively
with the ZPF at all frequencies up to those corresponding
to the size of the parton, assumed to be the Planck length

These partons are simply the oscillators developed
by Planck [4] and extended to the smallest possible size
scale. In the SED analysis an equation of motion is set
up for the response of the parton to the driving forces of
the ZPF electromagnetic waves. The unknown free pa-
rameter is, of course, the parton mass m0, or, entirely
equivalently, the Abraham-Lorentz damping constant,
I =2e /3moc .

Puthoff [2] found that the mass equivalent of the Zit
terbetaegung motion of his parton resulted in a mass m

which could be interpreted as the gravitational mass of
the associated particle, i.e., the gravitational "dressed
mass, " because that mass, m, was the one involved in

the gravitational interaction. This mass appears to be
twice as large as the inertial mass, m;, derived herein in

Eq. (110). However, in Appendix A we discuss a possible
resolution of this factor of 2 discrepancy, and argue that
in fact m; =

mg The significance of our result is that by
tracing a totally different effect of ZPF-matter
interaction —the Lorentz force that appears simply as a
result of coordinate transformation to an accelerated
system —we derive an identical mass as in the gravity
case for a particle consisting of an oscillating parton.
This mass, m;, appears to be an inertial "dressed mass"
because it is precisely a resistance to acceleration result-
ing from ZPF forces.

The linkage of inertia with the ZPF sheds light on
Mach's principle. In its simplest terms Mach's principle
states that the inertial mass of a body cannot in principle
have an operational meaning in the absence of the rest of
the matter in the universe. This is due to the fact that the
acceleration of a body, wherein inertial mass comes into
play, implies acceleration relative to some frame with
respect to which the acceleration can be measured. In
standard parlance, this concept is operationalized in
terms of acceleration relative to "the fixed stars. " Em-
bedded in this measurement-of-acceleration concept is

the deeper implication that not only is the existence of
the inertial mass of a body in question dependent on the
"fixed stars, "but its magnitude must somehow be depen-

dent on the aggregate mass of those stars, since asymptot-
ic elimination of those stars would of necessity result in

asymptotic diminution to zero of any meaningful mass

concept.
In this article we have demonstrated how the ZPF may

be shown to give rise to the inertial mass of a particle.
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The ZPF could thus serve as the Machian cosmic refer-
ence frame. This may in turn be related to the cosmic
distribution of matter in the context of the model of
dynamically balanced absorption and reemission of ZPF
radiation by mass distributed over cosmological space re-
cently proposed [39]. We propose that this quantitative
ZPF-based formulation of Mach's principle answers ob-
jections such as those posed by Jennison and Drinkwater
[40] to a nonlocal origin of inertia.

An interesting point is that the bulk of the contribution
to the effect, in this case the inertial mass, comes from the
very-high-frequency components of the ZPF, a fact that
explains why it has taken so long to recognize a relation-
ship between inertia and electromagnetism. It is frequen-
cies not far below the Planck frequency that are relevant
in the integrations leading to Eqs. (109) and (110) [41].

An additional comment is that, as pointed out in the
derivation, the inertial effect is indeed a relativistic one
although it is used here only to obtain the nonrelativistic
limit of the equation of motion, as can be seen from the
initial steps of Sec. II and from the analysis and discus-
sion in Boyer [5]. This is perhaps not so surprising once
one realizes that the inertial effect comes from the
Lorentz force, Eq. (18), and that the ordinary Lorentz
force is relativistic, i.e., can be cast in covariant form
[42].

In conclusion (i) it appears that a magnetic component
of the Lorentz force arises in ZPF-matter interactions in

accelerating reference frames such that the property of
resisting acceleration which defines inertia could be attri-
buted to this interaction. (ii) Newton's equation of
motion F=ma thus appears to be made explainable
directly by ZPF electrodynamics. (iii} The equivalence of
the ZPF inertial mass derived here and the ZPF gravita-
tional mass in the Sakharov-Puthoff model of Newtonian
gravity would appear to provide some corroboration to
this aspect of the principle of equivalence. (iv) Alterna-
tively, if the principle of equivalence is taken as given,
our argument for inertia expounded here seems to pro-
vide some independent collateral support for the concept
of ZPF-based Newtonian gravity developed in the
Sakharov-Puthoff model. (v) Finally, a causal and
quantifiable basis for Mach's principle is suggested.
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x= @zan
mo

where for simplicity of notation we have used E„ to
refer to the usual

2
EzP =Re g f 13k eHzp(co)

Xexp [ik r i tot +—i 8(k, A]', , (A2)

we may compare the results for (x ) in the two methods.
Method I. Taking

2

Re g f d'klan x)Hzp(co)—
mo CO

Xexp[ik. r —itot+i8(k, A, )] ', (A3)

APPENDIX A: EQUALITY OF m; AND mg

We address the apparent factor of 2 discrepancy be-

tween Puthoff's [2] gravitational mass, rn =I'%to, inc~,
and our inertial mass, m; = I'%to, /2nc .

PuthoFs nonrelativistic calculation of the Zitter-
bewegung used a technique of Rueda [43] for calculating
the (x ) in his Eq. (12)-(22). Starting from x, he in-

tegrated over time, introducing the form x = f jY dt.

This assumes implicitly that x(0)=0 and preselects a
frame of reference. Our approach is different. We calcu-
lated x(t) via Fourier expansion without requiring x(t) to
vanish at t =0. Let us call this Fourier method "method
I" and the one used in Rueda [43] and Puthoff [2]
"method II." Then starting from the simple expression
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2 2(.p), e Sm 'tunic

'
m 3 4m.c

(A4)

Method II. In order to calculate x from x we integrate
from 0 to t:

straightforward calculation with averaging over the
phases as in Eq. (32) yields

2

x(t)= Re f dt' g f d k(e x)Hzp(co)exp[ik r icot'+i8(k, l)—] . ,

mo 0

2 l COt

Re g f d k(e x)Hzp(co)
mo ltd

exp[ik. r+i8(k, l, )] . , (A5)
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and again a straightforward calculation yields

2 2

&x )= e Sm. ~~c

m 3 4mc
(A6)

which is twice as large as (A4).
Both methods I and II can be considered correct given

the reasonable order of approximation in the gravity
analysis, but there is a subtle difference between the
meaning of x. In method I, only the purely fluctuating
part of the Fourier expression is captured. In method II,
on the other hand, one begins with an a priori assumption
that x(0)=0 which automatically introduces, as in Eq.
(A5), a sort of phasing of each Fourier component indi-

vidually by requiring each one to adjust the velocity to a
zero value at t =0.

Restating this, in method I we average the Fourier
components around their means. Say we take for simpli-

city cosset =Ree' ', then

& costiit & =0,
&cos2cot & =-,',

or equivalently,

( trent )

(A7a)

(A7b)

(ASa)

( (eight)2) —t Re
NE =277 ~

e tafte trdtod( t )
27T 0

CO

(ASb)

where the first term on the left-hand side should be taken
in the symbolic sense. In method II we are rephasing the
Fourier components to adjust to the zero velocities value
at t =0, so that we take, say, coscot —1 instead of cosset,
and then

and symbolically again,

(A9a)

( (eight 1 )2) —t Re (eicut 1 )(eirut 1 )t'
2' 0

Xd(cot) =1, (A9b)

hence the factor of 2.
Physically, method I is appropriate when the purely

Auctuating part of an effect is thought to be the relevant
one, as should be the case for Zitterbemegung. Method II
is the appropriate one to use for analyzing a systematic
increase, as, for example, when calculating the growth of
a velocity after a reference time t =0 for a particle sub-
ject to secular ZPF acceleration as in Rueda [43]. For a

fluctuating effect resulting in zero average velocity,
method I would appear to be the more appropriate, and,
in retrospect, this would be the method of choice for the
gravity analysis of Puthoff [2]. We therefore propose that

APPENDIX C: RADIATIVK MASS SHIFT

An interesting point with respect to our inertial rest
mass m; of Eq. (110) is its remarkable similarity to the
so-called radiative mass shift. This similarity appears to
be more than just a coincidence. Under an intense elec-
tromagnetic field (e.g. , laser or microwave maser irradia-
tion) it has been theoretically predicted that the electron
experiences an increase in its rest mass of the form [44]

e'& A')bm=
2m 0

where m0 represents now the ordinary rest mass of the
particle and A is the vector potential. This analogy was
discovered by Dr. Peter Milonni and he did the follow-

ing short derivation [45]. Let Hz be the part of the
particle's electrodynamic Hamiltonian that after expan-
sion of the (p —e A) factor has the form

H„= ', (A') .
2m pc

(C2)

APPENDIX 8: BARK MASS m 0

In [2] the mass m,. is interpreted as the energy associat-
ed with Zitterbewegung. In Eq. (11) we found that rn; de-

pends on the damping constant I or entirely equivalent-

ly, on the "mass" m0. This last is a free parameter intro-
duced in the dynamic Abraham-I. orentz-type equation
(12). Its interpretation here is that of an "internal mass"
for the description of the internal dynamics in response
to the ZPF. If the inertia effect is exclusively due to the
ZPF then m0 per se does not contribute to the inertia.
We call m0, above, a "bare mass" but since it also in-

volves the electromagnetic or Coulomb component, such
a name may not be entirely appropriate. The mass m0 is
really the superposition of the "bare" plus the "electric"
mass components, and it may be positive or negative. We
assumed it to be very large and positive, however, its
"bare mass" designation may suggest that it is very large
in absolute value but negative. This last case for the m0
parameter does not affect our derivation. Recall that in

Eq. (109) we selected the negative sign. However, if mo
and hence I happened to be negative we would select the
positive sign in (109) so that the inertia effect consistently
opposes the acceleration. Furthermore, if we inspect Eq.
(12) within the electromagnetic viewpoint of this article
and assume that Hooke's recovery force is of electric ori-
gin and depends linearly on the electrical charge e, then
changing the sign of m0 is entirely equivalent to not
changing the sign of m0 but instead switching the sign of
the charge from +e to —e. A final comment in this re-
gard is that the dynamical meaning of the "internal
mass" m0 is somewhat similar to the quark masses of
some quark particle models whose quarks have masses
much larger than the mass of the corresponding particle.

I A'co,
m =m, =

27TC
(A10)

Then after expanding A in terms of its creation and an-
nihilation operations and averaging in the standard
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fashion we get

2M'=2'
~ Vmoc

2m op

e fi
N

27Tm OC

r 2' V t. d3k

(2~) " cok

(C3)

which, once the standard form for I'=2e /3moc is re-
placed, is seen to coincide (modulo a factor of order uni-

ty) with our Eq. (110). The cavity normalization volume
is denoted by V and the cutoff frequency is co, . This anal-

ogy, we believe, is not a coincidence. It reinforces the
view xnade evident by our classical approach that inertia
is generated by the vacuum that opposes the externally
imposed acceleration and tends to throw back the system
into an inertial frame. It is tempting to explore
modifications of our model in a manner that would yield

m; as a radiative mass shift. However, in order to make
the two approaches coincide fully we would need to leave
the exclusively electromagnetic viewpoint of SED and as-
sume other interactions whose corresponding zero-point
fields generate the inertia of the nonradiative mass mo.
This is beyond the scope of the present paper.
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