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It has long been known that the von Neumann entropy S is an upper bound on the information
one can extract from a quantum system in an unknown pure state. In this paper we define the
"subentropy" Q, which we prove to be a lower bound on this information. Moreover, just as the von
Neumann entropy is the best upper bound that depends only on the density matrix, we show that
Q is the best lower bound that depends only on the density matrix. Other parallels between S and

Q are also demonstrated.

I. INTRODUCTION

Suppose one is presented with a single quantum sys-
tem which is known to be in one of several possible pure
states, each having a certain a priori probability. For
example, the system may be an electromagnetic pulse
used in a quantum communication scheme, and the al-
lowed states might be nonclassical states that are not
necessarily orthogonal to each other. Given this a priori
description, one wishes to perform a measurement on the
system that will provide as much information about the
state as possible, where "information" is defined in the
sense of Shannon [1]. Although this problem has been
solved for a few special cases [2, 3], no simple and general
method has yet been discovered for determining either an
optimal measurement or the amount of information one
can expect to gain. However, a 20-year-old theorem due
to Kholevo does provide a general upper bound on the
accessible information [4]. The theorem states that the
amount of information one can extract from a quantum
system is no greater than the von Neumann entropy S of
the system. In the present paper we prove what might be
thought of as the mirror image of Kholevo's theorem: the
accessible information is no less than a certain quantity
Q, which we call the "subentropy" of the system. As we
will see, there are a number of parallels between the von
Neumann entropy and the subentropy [5].

The present work belongs to the general field of quan-
tum information theory, which is the study of informa-
tion carried by quantum systems. The potential practi-
cal applications of quantum information theory include
quantum cryptography, in which one intentionally uses
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nonorthogonal states to prevent eavesdropping [6], and
quantum computation, in which the basic information
storing and processing elements are objects that must be
treated quantum mechanically, such as localized electrons
in an array of quantum dots [7]. Aside from these poten-
tial applications, the study of information in quantum
mechanics also has value for the foundations of physics.
It has already contributed to our understanding of ther-
modynamic entropy [3, 4, 8], and it gives us new ways of
thinking about quantum theory as well [9].

To define our problem precisely, let E' be an ensemble of
possible states, specified by a set of vectors i/i), . . . , ~g~)
in an n-dimensional Hilbert space, together with a set of
corresponding probabilities p~, . . . , p . The amount of
information one initially lacks about the state is given

by Shannon's entropy formula [1]
m

H(f) = —Q p, lnp, .
7',=1

H(E) is called the mixing entropy [10] to distinguish it
from the von Neumann entropy. Note that H(E) depends
only on the probabilities of the states ~g, ) and not on

the states themselves. We use the natural logarithm in

our definition, so that the entropy given by Eq. (1) is

measured in "nats, " but for ease of interpretation we will

sometimes quote specific values of entropy in bits, where
1 bit = ln2 nats.

If the states ~Q, ) are not all mutually orthogonal, then
there is no measurement that can distinguish them from
each other perfectly, but one can at least reduce the mix-

ing entropy and in that sense gain information. A gen-

eral quantum measurement is described by a probability-
operator-valued measure (POM), which is a set of posi-
tive operators Ai, j = 1, . . . , r, such that P' i Ai = I,
where I is the identity [11]. Each operator Ai corre-
sponds to a possible outcome of the measurement and
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the probability of the jth outcome when the system be-
ing measured is in the state ~Q) is (Q~Aj~g). (A special
case is an orthogonal measurement, for which the opera-
tors Aj are orthogonal projection operators. ) It is helpful
to define the symbol p;~, which represents the joint prob-
ability that the system is initially in the ith state and
that the jth outcome of the measurement occurs. Thus

p;j = p, (@;]Aj~g;). After one has performed the mea-
surement and obtained the jth outcome, one's knowledge
of the original state of the system has changed and is now
described by the a posteriori probabilities p;~~, computed
via Bayes's formula:

p~, ——»;, ).»,, (2)
i=1

Here p;~~ is the probability that the system was in the ith
state, given that the jth outcome of the measurement has
occurred. Note that the system will typically change its
state as a result of the measurement, but this is not our
concern here. We are interested in inferring as well as
possible the original state of the system.

The post-measurement mixing entropy is given again
by Eq. (1), but with p; replaced by p;~j. This final en-
tropy will typically depend on the outcome of the mea-
surement. When choosing a measurement, one does not
know in advance which outcome will occur, so to assess
the potential usefulness of a measurement one averages
the final entropy over all the possible outcomes. The
average final entropy is

m

H(~IA) = —).Pj).p')j»p'(j
j=1 i=1

(3)

where Pj = P, i p,j is the probability of getting the jth
outcome. The mutual information between the measure-
ment A and the ensemble E' is defined as

I(f:A) = H(E) —H(f]A). (4)
That is, the mutual information is the average amount
by which the mixing entropy is reduced as a result of the
measurement. From Eqs. (1)—(4) we obtain the following
more symmetric expression for I(f:A):

(
I(tA)= —) ) p;, ~ln ) p;,

) & )
() ) p&j lii ) pzj + ) p&j In pj

2 2 2 U

(5)

Some measurements are better than others at provid-
ing information, and it is interesting to ask how well one
can do when one is free to use any measurement allowed
by the laws of quantum mechanics, that is, any POM. Let
I(Z) be the maximum value of I(Z:A) over all POMs A.
This maximum information, called the accessible infor-
mation [12], is the quantity on which we focus our atten-
tion. In a communication context, the accessible infor-
mation has a very practical meaning: it determines the
number of signals necessary to transmit a long message
faithfully. For example, if for each photon sent along an

As was mentioned above, the Kholevo bound is equal
to the von Neumann entropy of p, which is defined as
S(p) = —tr pin p, or, in terms of the eigenvalues Aq of p,

n

S(p) = —) Ai, lnAg,
%=1

n again being the dimension of the state space [13].
Our new loner bound, the subentropy, is also a func-

tion only of the density matrix, and is defined by the
equation

a=i (i'
Ag ln Ag. (8)

If two or more of the A's are equal, one takes the limit
as they become equal, and one finds that Q(p) is finite
for all p. The origin of this unusual formula will become
clear in Sec. II.

It is important to note that a given density matrix
is consistent with many different ensembles [14], and
for some of these ensembles the accessible information
will be greater than for others. For example, in a two-
dimensional state space, the density matrix p = I/2
could represent the ensemble consisting of the two states
(1,0) and (0, 1) with equal probabilities, or it could rep-
resent the ensemble consisting of the three states (1,0),
(1/2, ~3/2), and (1/2, —~3/2) with equal probabilities.
In the former case, the accessible information is 1 bit,
whereas in the latter case it is 0.585 bits (see the end of
Sec. II). Thus the accessible information is not a function
of the density matrix alone but depends on the specific
ensemble.

It is therefore reasonable to ask, for a given density ma-
trix p, how large or small the accessible information can
get. The upper limit is the one given by Kholevo, S(p).
This limit is achieved by the "eigenensemble" of p, which
consists of the eigenvectors of the density matrix with a
priori probabilities A, For this ensemble one can always
determine the state perfectly (by making an orthogonal
measurement along the eigenvectors) and thereby gain
information S(p). Thus the Kholevo bound is the best
upper bound that depends only on the density matrix.

Similarly, we show in Sec. III that the smallest value
the accessible information can have for a given density
matrix p is Q(p). For an arbitrary p, we construct ex-
plicitly an ensemble of states consistent with p for which
the accessible information is exactly Q(p). Thus Q is the
best lower bound that depends only on the density ma-
trix. This is one sense in which the subentropy is the
natural complement of the von Neumann entropy.

Before presenting the proofs, it is interesting to give

optical fiber the accessible information is 1/2 bit, then it
will take approximately 200 photons to convey a message
consisting of 100 random binary digits.

Kholevo's upper bound on the accessible information
is based on the density matrix of the ensemble E',

m

p = ) p'I&')(&'I.
i=1
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Q(p) = — (lnz) det(I —p/ ) 'dz.
2%i

(10)

It is not diFicult to show that Eqs. (9) and (10) are equiv-
alent to Eqs. (7) and (8) [noting that the eigenvalues of
(I —p/z) i are z/{z —Ai)].

II. PROOF THAT Q IS A LOWER BOUND

To show that Q is a lower bound on the accessible
information, we average the mutual information I(F:A)
over all complete orthogonal measurements A. (A mea-
surement is complete if every POM element A~ is propor-
tional to a one-dimensional projection. For a complete
orthogonal measurement these projections are associated
with the elements of an orthonormal basis. ) It will turn
out that this average is equal to Q(p), which will imply
that there must be at least one measurement for which
the mutual information is at least Q(p), thus proving that
Q is a lower bound on the accessible information.

In order to carry out the average, it is helpful to write
the mutual information I(E:A) in another form. Equa-
tion (5) shows that I(Z: A) is more symmetric in F and A
than our original definition (4) suggests. In fact I(E': A)
can also be written as

I(F:A) = H(A) —H(AIf),

where H(A) is the a priori Shannon entropy of the out-
come of the measurement A and H(AIE) is the average
Shannon entropy of the outcome given a knowledge of the
system's state. For a complete orthogonal measurement,
the a prion probability of the jth outcome is (n~ Ipln~)
and the probability of the jth outcome given that the
system is in the state Ii), ) is I(cr~. lg, )I, where In~) is
the jth eigenstate of the measurement. Thus the mutual
information can be written as

I(~:A) = —/(~ Ipl~ )»(~
I
pl~ )

+ Q&' Q l(~. l@*)I'I 1(~.I4*) I' (»)
2 2

We now want to average this expression over all com-
plete orthogonal measurements, that is, all orthogonal
bases (In~)). There is a natural measure on the set of
such bases which is invariant under all unitary transfor-
mations, and this is the measure we use in our average.

Notice first that for each of the sums over j in Eq. (12),
every term in the sum has the same average, because each
basis element In~-) covers the same range —the unit sphere
in '8„—with the same uniform distribution. Thus we can

an alternative pair of formulas for S and Q that empha-
sizes their relatedness. The von Neumann entropy can
be written as the contour integral

1
S(p) = — (lnz) tr (I —p/z) 'dz,

27ri

where I is the identity matrix and the contour encloses
all the nonzero eigenvalues of p. It turns out, somewhat
remarkably, that the subentropy is given by the same
formula except that the trace is replaced by the determi-
nant:

replace each In~) by a generic unit vector In). In order
to find the average of the first sum —the one containing

p—it is convenient to express
I
a) in terms of its com-

ponents aI, along the eigenvectors of p. The summand
depends only on the squared magnitudes of the a's and
not on their phases, so we can can convert the average
over the unit sphere into an average over the (n —1)-
dimensional probability simplex whose points are labeled
by (xi, . . . , x„), where zi, = Iai, l

and P& i zi, ——1. Un-
der this mapping, Sykora [15] has shown that the uniform
measure on the unit sphere in W„ is taken to the uniform
measure on the probability simplex, that is, the measure
kdx1 dx„ 1, where k is a normalizing constant. In a
similar way, we can also reduce the other sum in Eq. (12)
to an integral over the probability simplex: each Ii/~, ) can
be replaced by a generic Ig), and we can let zi be the
squared magnitude of the component of In) along Ig).
We thereby find that the average of I(E:A) is

(I) = —n (Aizi+ . + A„x„)

x ln(Aixi + . + A„z„)dx+ n xi lnzidx

Each integral in this equation is over the (n —1)-
dimensional probability simplex, with the uniform mea-
sure normalized so that I dx = 1. As before, Ai, . . . , A„
are the eigenvalues of the density matrix.

The evaluation of the two integrals is discussed in Ap-
pendix A. One finds that the first term is equal to

(I
(AglnAi, ) +I —+ —+ + —

I

(14)

and the second is

(1 1 Ii—
I

-+ -+ + —
I

(15)
(2 3 n)

Thus the mutual information averaged over all complete
orthogonal measurements, being the sum of the expres-
sions (14) and (15), is

(I) = —) (Ai, lnAi, ) = Q(p). (16)
A;=1 igk" ')'

This result shows that Q is a lower bound on the acces-
sible information. Note that there is no need to consider
nonorthogonal POMs here; we have shown that there is
an orthogonal measurement that provides an amount of
information equaling or exceeding Q(p), and this is suf-

ficient.
As an example of the way Q functions as a lower bound,

consider a single photon that could be in any of the fol-

lowing three linear polarization states with equal prob-
ability: vertical, 60 to the right of vertical, and 60 to
the left of vertical. One can sb.ow that the optimal mea-

surement in this case is a nonorthogonal POM with three
outcomes, each of which is associated with a state orthog-
onal to one of the given states [16]. This measurement
has the eKect of eliminating one of the three possible



LOWER BOUND FOR ACCESSIBLE INFORMATION IN. . . 671

states and leaving the other two equally likely. Thus the
accessible information is

I = H(Z) —H(t IA) = ln 3 —ln 2 = 0.405 nats. (17)

The density matrix in this example has eigenvalues A1 ——

2 and A2
——2. For these eigenvalues, the upper and lower

bounds S and Q take the values S = ln2 = 0.693 and

Q = ln2 —
2

——0.193. In this case the accessible infor-
mation happens to be somewhat closer to the subentropy
than to the von Neumann entropy, but in other cases it
often happens that S is the closer bound.

III. ATTAINMENT OF Q

As was mentioned in the Introduction, for any density
matrix p there is a special ensemble, the eigenensemble,
for which the accessible information equals the Kholevo
upper bound S(p). We now show that the lower bound

Q(p) is similarly attained as the accessible information
for a special ensemble called the "Scrooge ensemble. "
This is an ensemble for which every complete measure-
ment yields the same mutual information Q(p). The des-
ignation "Scrooge" derives &om the fact that the ensem-
ble is particularly stingy with its information.

The Scrooge ensemble will be defined in terms of the
following construction called "p distortion. " Suppose
that we have an ensemble in an n-dimensional Hilbert
space given by (normalized) states I/i), . . . , Ig ) taken
with probabilities p1, . . . , p and having density matrix
—I:

).p*l&*)(&*l = „—I.
i=1

It is often more convenient to give ensembles simply as a
list of the corresponding states unnormatized so that the
squared lengths are the probabilities. The above ensem-
ble is then represented as (1@i&,. . . , Ig )}where

I@') = vp* I@*)

so that p, = (g;Ig;& and

(18)

Clearly the normalized states and probabilities can be
easily recovered from the data (1@i),. . . , Ig )}.

Now for any other density matrix p let

I&'& = vnp 14'&.

Then (I/i), . . . , 1$ )}is an ensemble with density matrix
p since multiplying each side of Eq. (18) on the left and
right by the Hermitian operator ~np gives

The ensemble (I/i), . . . , 1$ )}is said to be obtained from

(I/i), . . . , Ig )}by p distortion. The new probabilities
p', for the 1$;) are

p'; = (4*14*)= n p(&*l l&p*).

p distortion induces a map on normalized states

I*& ~ I*') = vnplz)/II v/nplx) II

which defines z' as a function of x:
(20)

z' = f (x).

The new probability density p'(z') is defined by an ex-
pression analogous to Eq. (19) but with p; replaced by
p(z)dz:

p'(z')dx' = n p(z) (zlplz) dx. (21)

So explicitly we get

p'(*') = n p(*) (*lpl*) J«(z/x') (22)

with z = f i(z') on the right-hand side. Then the con-
tinuous distribution of states lx') taken with probability
density p'(x') has density matrix p [as can be directly
verified from Eqs. (20) and (21)].

We can now define the Scrooge ensemble (or "Scrooge
distribution, " since it is a continuous distribution). We
start with the uniform distribution on the unit sphere in
state space, that is, the unique distribution that is in-

variant under all unitary transformations. This uniform
distribution has density matrix —I. The Scrooge distri-
bution for any given density matrix p is simply the p
distortion of the uniform distribution.

To represent continuous distributions explicitly we la-
bel (normalized) states by their components with respect
to some fixed chosen orthonormal basis lei), . . . , Ie„):

l&i ." t!-& =&ilei)+ "+(-Ie-).
All state distributions that we consider here will be in-
dependent of the phases of the ('s so that they may be
represented as distributions over the (n —1)-dimensional
probability simplex labeled by (xi, . . . , x ), where x; =
I(;I . For example, the uinform distribution in state space
is represented by the uniform distribution kdx1. . . dx
on the probability simplex. Here k is the normalizing
constant, which happens to have the value (n —1)!.

It is interesting in particular to get an explicit formula
for the Scrooge distribution. For this purpose let us take
our basis vectors lei), . . . , Ie ) to be the eigenvectors of p.
Then the Scrooge distribution can be written explicitly
as follows, as is shown in Appendix B:

kn dx1 ' dz

A, A„(xi/A, +. . . + z„/A„)"+' (23)

p distortion provides a one-to-one correspondence be-
tween the set of all ensembles with density matrix —I
and the set of all ensembles with density matrix p. (A
generalization of this construction applying to any pair
of density matrices is described in Ref. [14].)

p distortion can also be applied to continuous ensem-

bles, which will be our main interest. Let x pararnetrize
the state space and suppose that the distribution of (nor-
malized) states lx) taken with probability density p(z)
has density matrix —„I:

1
p(x) Iz)(zl dx = I. —
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As before, the numbers Ay are the eigenvalues of p.
We now show that the amount of mutual information

obtained by performing a complete measurement on the
Scrooge ensemble is constant, independent of the choice
of measurement. This constant must be Q(p), since we

have already seen that the average over all complete or-
thogonal measurements is Q(p). By a theorem of Davies

[2] the maximal information can always be obtained using
a complete measurement, so we will get our desired result
that the accessible information in the Scrooge ensemble
is Q(p).

To see that the mutual information for the Scrooge en-
semble is independent of the choice of complete measure-
ment, we write the equations first for the case of a discrete
ensemble, which makes the argument more transparent,
and indicate afterwards the modifications necessary for
continuous ensembles (as Scrooge ensembles are always
continuous) .

Let E denote an ensemble (Igq), . . . , IP &), and let the
POM A represent a complete measurement with r pos-
sible outcomes. The elements of A can then be written

b,' = &AIR& IA& = IA&lb~ .

Note that Q,. IP, )(P, I

= pn, so

) b2=~

Also the quantity

B=) i&%I~')I'

BlnB——B) b ln(b ) (28)

and the term (27) becomes

B) b,'»(b,')+) b,') l&Pil&'&I'»(l&Pgl~'&I'). (29)

will be independent of IP~) if the lo, )'s are exactly uni-

formly distributed in state space (as would be the case
in the continuous limit if E were a Scrooge distribution).
The term (26) of I(E:A) becomes

where the Ini& are unnormalized vectors satisfying

(24)

p,i = Prob(lg, &
and outcome A, ) = I&nil/, ) I

Now suppose that E' is obtained by p distortion of an
e»emble (10~& " Io-&). Then

I&') = v~pl~'& z= l, . . . , m

and

(n I&'& = (n~lv~sl~') = (Al~*&

where we have set

IPi& = v&~ln~&.

The mutual information is given by substituting these
expressions into Eq. (5), which results in

If the measurement A is performed on f then the result-
ing probability matrix has entries

In the expression (29) the term P, I &P~ la, ) I

ln(l(P~la, ) I ) will be independent of IP~) if the la, )'s are
exactly uniformly distributed. Hence the combination of
(28) plus (29) will be independent of IP~& and b~, i.e. , of
the POM A.

The above argument is only approximate in that the
discrete ensemble (Ioq), . . . , Io )) cannot be exactly uni-

formly distributed over the whole state space (but can
provide an arbitrarily good approximation). However,
the same cancellations occur if the above calculation is
carried out starting with a continuous ensemble E' which
is the p distortion of the exactly uniform distribution
(i.e. , if F is a Scrooge ensemble. ) The formulas are given
in Appendix C.

Thus for any given density matrix, Q(p) is the amount
of information one can obtain about the system's state in
the worst case, when the ensemble is as stingy with infor-
mation as it could possibly be (given that it is composed
of pure states).

IV. PROPERTIES OF Q

~e now compare and contrast some properties of Q(p)
and g(p) . If A~, . . . , A„are the eigenvalues of p listed in

decreasing order, then both 5 and Q have th«orm

I(~:A) = —) I&@-I+') I
ln I&@'I+'& I (25) —) c, lnA;,

) I(P. I ') I' 1 ).1(P. I
'&I'

2 &' J E' 1

+ ) I(P, l~*& I'»(l(P'l~*& I')
(26)

(27)

The first term (25) is clearly independent of A. For the
terms (26) and (27) we separate out the magnitude of
each IP~&, writing

where the coeKcients ci satisfy

For S the coeKcients are just the eigenvalues of p,
whereas for

c; =A," (A, —A, ),
jwi
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which alternate in sign and can become arbitrarily large
in magnitude.

Since Q(p) is a lower bound for accessible information
it follows from Kholevo's theorem that

ties py, . . . , p . There is a general form of Kholevo's the-
orem that applies to this case—it is the form in which he

actually stated the theorem —which places the following

upper bound on the accessible information [4]:

Q(p) ( S(p) for all p.

Alternatively, we can avoid an appeal to Kholevo's
weighty result by considering the eigenensemble of p. In
this case S(p) is clearly the maximum mutual informa-
tion, since the ensemble is orthogonal, whereas Q(p) is
the average mutual information over complete orthogonal
measurements and hence is less than or equal to S(p).

For a fixed dimension n, S is a maximum when Aq ——

~ ——A„= 1/n, in which case

S(1/n, . . . , 1/n) = ln n,

I(C) ( S(p) ).p*S(p )
i=1

(32)

Here p = P, p, p; is the density matrix of the whole en-

semble. To put it in words, the accessible information is

no greater than the von Neumann entropy of the whole

ensemble minus the average von Neumann entropy of the
individual signals.

We now prove the following analogous theorem which

gives a loner bound on the accessible information for gen-

eral ensembles:

which is monotonically increasing with n and unbounded.
We now show that for a fixed n, Q is also a maximum
when Ai —— . ——A„= 1/n. We begin with

I(C) & Q(p) ).p'Q(p')
i=1

(33)

/'1 1 11
Q(Ai, . . . , A„) = G(Ai, . . . , A„) —

l

—+ —+
(2 3 np

where

(30)

As in Sec. II, we prove the theorem by averaging the
mutual information I(C:A) over all complete orthogonal
measurements A. The mutual information is

I(C A) = II(A) —H(Al C )

= —) :{~~lpl~~)»(~'lpl~~)

G(Ai, . . . , A„) = nj (Agzg +— . + A„2:„)

x ln(A, x, + . +A„z„)dz (31)
+):p* ) {~~lp'l~~)»(~~lp'l~~)

)
(34)

and the integral is over the probability simplex [cf.
Eq. (13)]. G is a strictly convex function of (Az, . . . , A„)
and hence has a unique maximum on its convex domain
(the probability simplex). Also G is symmetrical in its
arguments so that the maximum can occur only where
the A's are all equal. Then Eqs. (30) and (31) give the
maximum value of Q as

(1 1 11
Q(1/n, . . . , 1/n) = inn —

l

—+ —+" + —I.
(2 3 n)

'

This is again monotonically increasing with n but now
bounded above by

where [o.i), . . . , [n„) are the eigenstates of the complete
orthogonal measurement A. The first sum has appeared
before, in Eq. (12), and we have already computed its
average which has the value [cf. Eq. (14)]

/1 1 1i
Q(p)+ I

-+-+ + —
l

~2 3 n&
(35)

The remaining sums over j—one for each value of i—are
all of the same form as the one we have just evaluated,
and their averages are therefore also of the same form,
with Q(p) replaced by Q(p;). Thus the average mutual
information is

(1 1 1i
lim inn —

l

—+ —+. + —
l

= 1 —p 0.42278,
nm ao n)

(I) = Q(p) ).& Q(p*'). (36)

where p is Euler's constant. Thus for any p, Q(p) never
exceeds 0.422 78 nats (or 0.60995 bits) whereas S(p) may
be arbitrarily large.

The right-hand side of Eq. (36) is therefore a lower bound
on the accessible information, which is what we wanted
to prove.

V. EXTENSION TO MIXED STATES VI. DISCUSSION

So far we have considered only the problem of trying
to distinguish among a set of pum states. Imagine now
a communication scenario in which each of the messages
is represented by a mixed state. Such a scenario is actu-
ally more realistic than the one with pure states, because
any pure-state signal will almost certainly be degraded
to some extent during its passage through the channel.

Let the ensemble E', then, consist of a set of
mixed states pq, . . . , p, with corresponding probabili-

Thus there are two natural entropic quantities that one
can associate with a density matrix: the von Neumann
entropy S(p) and the subentropy Q(p). These are the
upper and lower limits on the amount of information one
can extract from an ensemble of pure states with the
given density matrix, and they also have significance for
ensembles of mixed states, as we have just seen in Sec.
V.

There is another, rather different, context in which
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both S and Q appear, and to the best of our knowledge it
is the only other context in which Q has been mentioned
previously in the literature [17, 18]. Rather than trying
to infer the initial state of a quantum system as we have
been imagining here, suppose that one knows the initial
state, which may be mixed or pure, and one is trying to
predict the outcome of a complete measurement on the
system. The complete measurement whose outcome can
be predicted best, that is, whose outcome entropy II(A)
is least, is an orthogonal measurement along the eigen-
states of the density matrix. For that particular measure-
ment, the outcome entropy is S(p). (If the state happens
to be pure, then the outcome entropy for this measure-
ment is zero. ) On the other hand, suppose one does not
consider this "most predictable" measurement but con-
siders instead a complete orthogonal measurement cho-
sen at random. The outcome entropy, averaged over all
such measurements, is typically rather large if the state
space is large —nearly inn —and it is slightly larger for
a mixed state than for a pure state. The amount by
which it is larger, for a given mixed state p, turns out
to be Q(p) [17, 18]. Thus both S and Q quantify the
loss of predictability of the outcome of a measurement
owing to the fact that the system in question may be
in a mixed state rather than a pure state. S applies to
the case where the measurement being made is the most
predictable measurement, while Q applies to a randomly
chosen measurement.

Evidently there are a number of parallels between
S and Q, and this fact raises an interesting question.
The von Neumann entropy S, in addition to having the
information-theoretic interpretations mentioned above,
has an additional and more famous significance: it is
the entropy of thermodynamics. As such it plays a role
in such practical matters as the determination of the
amount of work that can be extracted from a thermody-
namic system. One wonders whether Q, the subentropy,
has a significance that is at all parallel to this meaning of
S. One context where Q might conceivably have such a
role —but this is only speculation —is in quantum chaos,
since that is an area where the dynamics can effect a kind
of average over the set of pure states [19]. Are there, for
example, common situations in which the time-averaged
density matrix of a "chaotic" quantum system maximizes
the subentropy (subject to certain constraints), just as a
system in thermodynamic equilibrium maximizes the von
Neumann entropy? We offer no answer here but only
raise the question as something that might be interesting
to consider.

It is worth noting in this context that every thermody-
namic system has a subentropy as well as a von Neumann
entropy, but for ordinary objects the former is miniscule
compared to the latter. For example, the von Neumann
entropy of a glass of water at room temperature is around
10 bits, whereas the subentropy of the same system is
just over half a bit.

The formula (8) for Q may in fact be written down for
any probability distribution, even in a classical setting.
However, we have not been able to find an interpretation
of this expression in classical information theory. It may
be that Q is an essentially quantum mechanical quantity,
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APPENDIX A: EVALUATING
THE AVERAGE MUTUAL INFORMATION

The integrals in Eq. (13) have been evaluated by Jones
using Riemann-Liouville fractional integration [18]. Here
we present an alternative method that may be valuable
in its own right.

The first term in (13), which we have called G, can be
written more fully as follows:

[s(x) lns(x)]b
~

1 —) x,

xdxy ---dx (A1)

where s(x) = Aqxq + . . + A x„. The factor n! comes
from combining the n that appears in Eq. (13) with the
factor (n —1)! that normalizes the measure:

b 1 —) x, dxg. . . dx„= 1.

Our strategy for evaluating the integral G is first to re-

place the quantity s(x) lns(x) by s(x)~. We will later
take the derivative with respect to t and evaluate it at
t = 1 to recover the original integral.

Thus we need to evaluate the integral

like the correspondingly small nonzero ground state en-

ergy of a harmonic oscillator. Indeed, the problem we

have addressed in this paper appears to have no inter-
esting classical analog, in that it depends in an essential
way on two features peculiar to quantum mechanics: (i)
the existence of incompatible measurements and (ii) the
fact that even a complete measurement generally yields
only partial information about the identity of the input
state. In contrast, the state of a classical system can
in principle be exactly determined by measurement, and
thus the classical analog of the Scrooge distribution —if
one thinks of it as a distribution on probability space-
is simply a 8-function from which no information could
be extracted. The "classical subentropy" is in this sense
always zero.

A point we particularly want to emphasize is that the
von Neumann entropy is not the only interesting entropy-
like quantity that one can associate with a quantum sys-
tem in an unknown state. The subentropy of a system,
small though it may be by macroscopic standards, plays
a role in quantum information theory that is quite par-
allel to that of the von Neumann entropy. It remains to
be seen what significance, if any, the subentropy has for
the rest of physics.
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1 1

F(t)—: . " s(x)'b 1 —) z, d*, . . . dx„.
0 0

We now make the following two substitutions:

(
b 1 —) x, = — exp ia 1 —) x;

) ' --
k * )

(A2)

(A3)

(A4)

With these substitutions, the integrals over the x s fac-
torize and can thus be done separately. Once those inte-
grals are done, one is left with the following integral over
o. and u:

1 -- (1 — '~ ""*) d
F(t) =

i
.

~

e* dn
2vrl'( —t) o

.--. ( ia + uA, ) u'+' (A5)

Consider now the numerator of the product in square
brackets, that is,

(1
—'Ecx —1lAe

)

and imagine expanding it in a power series in the quan-
tity e ' . For the first term in this series, the integral
over n can be made into a contour integral by closing it
in the upper half plane. For all the other terms in the
series, the contour can be closed in the lower half plane.
Now the integrand has poles only at o. = iuAi, which lie
in the upper half plane, so the only term in the series
that gives a nonzero contribution to the integral is the
first one. In other words, the numerator in the product
can be replaced by the number 1. We now perform the
contour integral over 0, , under the assumption that the
A's are all distinct. [When two or more of the A's are
equal, one can evaluate G by taking the limit as they
become equal. This follows from the continuity of the in-

tegrand in Eq. (Al) and the fact that the integral itself is
a bounded function of the A' s.] The result of the contour
integration is

I

Finally, we note that the first sum over i appearing in

Eq. (AS) has the value unity, so that we have obtained
the expression given in Eq. (14).

There is yet another way in which we could have eval-

uated the integral G, based on a theorem used in numer-

ical analysis [20]. If f(A) is a function whose value is
known at only n points A1, . . . , A„, then there is a unique

polynomial of degree n —1, the Lagrange interpolating
polynomial, that agrees with the function at those points.
The coeKcient of A" in this polynomial is called the
Newton divided difference and one can show that this
quantity is equal to the integral over the probability sim-

plex of f(" l(Aqxq + + A„x„), where f!" ~l is the

(n —1)th derivative of f (This is .the Hermite-Gennochi
theorem. ) If we take f (A) to be —A" ln A, then this inte-

gral is essentially the one we wanted. One can then use
the standard explicit form of the Lagrange polynomial in
terms of A, and f (A, ) to arrive immediately at Eq. (A8).

The second term in Eq. (13) is

1 1

n! [zg ln xg] b 1 —) z, dz~ dz„. (A9)
0 0

F(t)= f ) e "e'

2

-.-. A, —A, u'+"
jgi 2

(A6)

This integral can be evaluated by elementary methods

(e.g. , by parts), and one obtains the result given in

Eq. (15). Alternatively, once one has obtained the for-

mula for G, one can take the limit of this formula as all
but one of the A's approach zero.

We can do the integral over u to obtain

t!
F(t) = ) A'+"-'

(t+ n —1)! ~ .-- A —A-
jgi ' 2

(A7)

dF (t)
dt i t=l

It is now a straightforward matter to take the derivative
of F(t) with respect to t and to set t equal to 1. We thus
obtain

APPENDIX B: DERIVING
THE SCROOGE DISTRIBUTION FORMULA

For any density matrix p with eigenvalues A1, . . . , A

let (zq, . . . , x„)be the coordinates on the probability sim-

plex induced by an orthonormal basis of eigenstates of p
in the state space. We use (zq, . . . , x„q) as indepen-
dent variables setting x„= 1 —x1 — ~ ~ —x„1. The
p-distortion map on normalized states is given by

x1 7
0 ~ ~ 7 x'Q

(1= —
i

-+-+ "+—i)l2 3 n)

+) A;lnA,
2 jgi

~ 4 e

jgi

A-
2

(A8)

m (QA~x~, . . . , QA„x„)/QAgxg + . + A„x„,
inducing a map on the probability simplex

l Aixi
xi =

7 Z 1 7 ~ ~ ~
7
n e

A1x1 + . - - A„x„
The inverse map is
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x',- A,-

(x', /Ag + . . + x'„/A„)

To evaluate the Jacobian g(xq, . . . , x„~/xl~, . . . , z„' ~)

introduce

~=(z', /A&+ "+z„'/A„), a; =1/A; —1/A„.

Then direct calculation of the partial derivatives gives

I IA —tIyXg —Q2&~
—ayX2 A —Q2X2 .

I—+n-X&q
I—tIn —X &2

I—G1+n g
—G2&n ] ' ' ' A n —1+n—1

The remaining determinant can be evaluated by factor-
ing z~, . . . , x'„z out of the rows and multiplying them
back into the columns. Then subtracting the last row
from each of rows 1 to n —2 followed by addition of
each column to the last column results in the form
diag(A, . . . , A, 1/A„). Hence J(z/z') = I/(Aq A„A").
Substituting into Eq. (22) with p(z) = k and

(zlplz) = Agxg + + A„x„= I/(z', /Ag + + x„'/A„)

gives the stated formula (23) for the Scrooge distribution.

1(L:A) = —f p' »p' dT' (C1)

(C2)

lz') p'(z') (z'I dz' = ~nplx) p(z) (z]~np dz

where p(x)dz = k dzq .dz„q is the uniform distribu-

tion. With IP~), IP~), b~ as before,

APPENDIX C: PROOF OF
THE A-INDEPENDENCE OF

I(f:A) FOR THE SCROOGE DISTRIBUTION

Suppose that F is the continuously distributed ensem-
ble of states Iz') with probability density p'(z')dx'. Then
for the POM (24) the mutual information is

+) f l(s, l*&I'»IZ(*/*')l(s~l*&l'I&*
2

Writing

B= ~z dz,

(C3)

I(E': A) = — p' ln p' dz'

-)
I

which is now exactly independent of lpI), the terms (C2)
and (C3) become

8lnB —B)—b ln(b ).
r

x ln
I

l(cr lz')I p'dx'
I

+ ) 1(~~ lz') I'p' » (l(~, I*') I'p') d*'.

and

B) 6 in(b )

Suppose now that 8 is a Scrooge ensemble obtained from
the uniform distribution by p distortion. Let x repre-
sent the coordinates (zq, . . . , x„ t) on the probability
simplex. Then from Eqs. (20) and (21) we have

+ ) ~,' f I (s, I*)I' » I&(*/*') l (s, I*) I I ~*
2

The integral in the final term is independent of lps) so
that ahogether I(E:A) is independent of the POM &.
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