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Modified shifted-large-N approach to an exponential potential
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The modified shifted-large-N approach proposed by Bag et al. [Phys. Rev. A 46, 6059 (1992)] for the
Morse potential is applied to the exponential (6) [exp(6)] potential, i.e., a potential with an exponential
repulsion and an attraction in » "%, Although the method does not provide the exact analytic expressions
of the vibrational eigenvalues and eigenfunctions as in the Morse case, it is shown to predict quite accu-
rate results for both the energy eigenvalues and eigenfunctions for the vibrational and rovibrational
states of the exp(6) potential. In particular, the wave functions are much more accurate than those pro-
vided by the usual shifted-1/N method, which fails to yield their correct behavior. Moreover, in the
modified approach, the exp(6) eigenfunctions are given in the same analytical form as the Morse ones.

PACS number(s): 32.70.Cs, 33.10.Cs, 03.65.Ge, 03.65.Sq

Recently, Bag et al. [1] have pointed out that, while
producing accurate eigenvalues, the well-known shifted-
large-N technique (SLNT) proposed by Imbo, Pagnamen-
ta, and Sukhatme [2] failed to yield the correct behavior
of the bound-state wave function for the Morse oscillator.
To remedy this drawback, they have proposed a modified
SLNT, which leads first to the exact eigenvalues and
eigenfunctions of the Morse potential, and second to ac-
curate results for both the rovibrational eigenenergies
and wave functions without invoking the rearrangement
of the centrifugal barrier by an expansion about the equi-
librium distance, r,, or some other values of r [3].

This difficulty is likely to be encountered for other real-
istic diatomic potentials of similar shape. Thus it is
worthwhile to investigate if this modified SLNT can be
applied to other usual potential forms. In this Brief Re-
port, we show that this modified scheme can also be ap-
plied to the exponential (6) [exp(6)] potential, i.e., a po-
tential with an exponential repulsion and an attraction in
r % Although in this case, we do not obtain exact ex-
pressions for the nonrotating oscillator, we shall see that
the method provides quite accurate results for the vibra-
tional and rovibrational eigenenergies and eigenfunctions
in comparison to the exact numerical or WKB values.

The modified SLNT consists in using the usual large-N
expansion to a transformed Schrodinger equation in a
new variable. We start from the usual radial Schrodinger
equation for the rotating exp(6) oscillator
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in which

y?=2mDr2/#? B*=—2mE, r}/%*,
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x=(r—r,)/r, ,

where v and j are the vibrational and rotational quantum
numbers, respectively, m is the reduced mass, D is the
dissociation energy, 7, is the equilibrium internuclear dis-
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tance, and a is a parameter that measures the steepness
of the repulsive potential energy chosen to reproduce the
Morse repulsion term. We now perform the same change
of variable and function as in [1]

y=Qy/a)e "%, ¢(y)=y"*x(), 3)

which leads to the transformed Schrodinger equation

2
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Equation (4) is the starting equation for the modified
SLNT as applied to the exp(6) potential. It has the same
structure as the one obtained for the Morse potential
with a different constant value for 7 and a different ex-
pression for the first term of ¥ (y), which comes from the
r ¢ dependence of the exp(6) potential. However, this
term has the same form as the centrifugal term [second
term of ¥ (y)]; it can thus be treated in the same way.

We now apply the usual SLNT to Eq. (4), in which the
energy of the original problem is contained in the vari-
able angular momentum L. As this procedure has al-
ready been described in Ref. [1], we omit the intermediate
steps and indicate here only the expressions useful for the
calculations of the eigenvalues and eigenfunctions. To
apply the SLNT, Eq. (4) is written
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d d’—H?z 1 |- (lta) - (3ta)
dy? 4y? k k
14
+ X2 =) | ®)
Q
where
k=K—a=N+2L —a . 9)

N is the number of spatial dirr_nensions, Q is a rescaling
constant, which is set equal to k 2 at the end of the calcu-
lation, and a is the shift parameter given by

a=2—(2v+1)o, (10)
0= {3+[p V" o)/ V' (p) 1} 72 (an

Yo is the position of the minimum of the effective poten-
tial

Veey)=(1/4p2)+V(»)/Q . (12)

With #=2m =1, Eq. (8) is the same as the one used by
Imbo, Pagnamenta, and Sukhatme to implement the usu-
al SLNT, which leads here in the modified scheme to an
analytic expression for 7 in terms of y,. In order to
derive conveniently this expression for the exp(6) poten-
tial, we can take advantage of the fact that the usual
SLNT has already been used to obtain analytic expres-
sions of €,=E, /D for the LJ(n,6) (LJ denotes
Lennard-Jones) [4] and Varshni [5] potentials. The for-
mulas derived for these two similar diatomic potentials
are almost identical. Their differences stem only from a
small number of terms, which depend on the specific
form of V(r). Here we want to use the expressions given
in Refs. [4,5] suitably modified to take into account the
fact that we are working with the transformed
Schrodinger Egs. (4) or (8) with the exp(6) potential. For
this purpose, we shall give the general expressions of
these few potential dependent terms. Following Ref. [2],
we can express 77 as a sum of three terms

3
at which the particle is trapped in the limit N — oo} it is n=n"+xqV+y?=— Ha—3) (14)
given by
k2=23V"(y,) . (13)  where
J
n(O):%yOV'(y0)+ V(yO) s (15)
—4 |(1=a)B3=a)  32=a)1+2v) 31+ +20%) (2—a)?
2 16 8o o B
6(2—a)(1+2v) 4(11430v +3002) ,
- o &1~ o g (16)

Before giving information on 1'*', we note that 7'*’ and g;
are the terms mentioned above, which specifically depend
on V(y). If one is working on the usual Schrodinger
equation, n'” is replaced by E.}'=€.)D and V(y) by V(7).
The expression of 7'!) is the one given in Refs. [4,5] for
€,)=E\]'/D with the overall multiplicative factor
2#%/(mrdD) replaced by 4/y}, since #i=2m =1. The
terms g; can be calculated from Refs. [1,2] in terms of
V(y)as

6+4V(1 +2)(

i3 Y Yo)

, a7
16 8(i +2)y iV ()

where the superscripts on V indicate the order of deriva-
tion with respect to y. According to this prescription, the
term 7'?) is given by the formula of Refs. [4,5] with g3
and g, expressed by (17) and an overall multiplicative
factor 4 /(y3k) instead of 2#%/(mr3Dk). For brevity we
do not reproduce it here. Equations (15) and (17) with
V() and n'" replaced, respectively, by ¥ (r) and E} are
also convenient to calculate the energy eigenvalues of the
exp(6) potential or any other potential V' (r) of similar
shape using the usual SLNT. In this case the formulas of
Refs. [4,5] can be used directly. This calculation will also

be done here to compare the usual and modified SLNT
eigenenergies.

Now through a, 0, V(y,) and its derivatives at y,, 7 is
a rather complicated function of v, j, and y,. However, it
is easy to determine for a given v and j the value of y,
which gives n=—3/[4(a—3)]. The corresponding
values of @, w, and k are determined from (10), (11), and
(13), respectively. The energy eigenvalues are then ob-
tained from (2), (5), and (9) with N =3 as [1]

E,;=—(#%?/8mr})k—(2—a)). (18)

We now focus our attention on the radial wave func-
tion y(r). For any spherically symmetric potential, the
leading-order usual SLNT wave function is given by [6]

X(r):Nr(Kﬂ)/ze*(k/za))u/,o)w

, (19)

where r,, k, @, etc., are defined in Ref. [6], and F is the
confluent hypergeometric function. The modified SLNT
wave function is then written [1]
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TABLE 1. Reduced energy eigenvalues (—¢,;=—E,;/D) of the exp(6) potential with y =50,
a=6.886, j =0 and 25. Entries in columns (a) and (b) correspond to the modified and usual SLNT re-
sults, respectively. The exact results are from Ref. [7].

1046, — €ex)

j v (a) (b) —€wWkKB  €exact (a) (b)
0 0 0.8841 0.8840 0.8840 0.884 095 0 1
1 0.6773 0.6765 0.6772 0.677 375 1
2 0.5021 0.5004 0.5026 0.502 845 7 24
3 0.3566 0.3545 0.3588 0.359075 25 46
4 0.2384 0.2374 0.2442 0.244 255 59 69
5 0.1456 0.1474 0.1560 0.156 065 105 87
6 0.0765 0.0831 0.0916 0.091 705 152 86
25 0 0.6337 0.6337 0.6336 —1 —1
1 0.4431 0.4430 0.4429 —2 —1
2 0.2868 0.2859 0.2858 —10 —1
3 0.1642 0.1615 0.1612 —30 -3
4 0.0755 0.0692 0.0677 —78 —15
A (K=2)72. —(k20)(p /py)® more convenient form, which is similar to the one usually
X(y)=Ny € given for the Morse potential, we carry out the change of
— © .
¥F|—v, K—2 +1,£ v , 20 variable i
@ Yo =(k /o)y /yy)”, @21

where k and o are given by (13) and (11). For the Morse
potential with j =0, Eq. (20) yields the exact analytical
wave function, while Eq. (19) differs significantly from the
exact one [1]. If the modified SLNT restores the exact
wave function for the Morse potential, it is our hope that
it will considerably improve the usual SLNT wave func-
tion for other potential forms of similar shape as the
exp(6) potential, for which the change in variable and
function (3) is successful. In order to obtain (20) in a

0 |
0.8 1.0 1.2
r/r,
FIG. 1. Normalized exp(6) wave function for y =50,

a=6.886, and v =; =0: small dots, usual SLNT [Eq. (19)];
——, modified SLNT [Eq. (23)]; large dots on curve, uniform
WKB [8].

take N =3, and use (9), (2), (18), and (10) to express
2A=(K —2)/w as

2A=(K —2)/0=2B/(aw)=(k /0)—2v—1, (22)
so that (20) becomes
T T | I 1 | I I
2+ _
_ | _
1 -
-
_o L R S L L
0.8 1.0 1.2 1.4
r/r.

FIG. 2. Same as Fig. 1 for v =3 and j =25.
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awl'(2A+v +1) A —1/2

1/2 —
2 x ()=
e X vR2AT2(210)

XF(—v,2A+1,1) . (23)

This expression is valid for any v and j, since the quanti-
ties A, t, o are obtained for a given v, j, through Eq. (14)
when the modified SLNT eigenvalues are calculated.
Also, as in the Morse case, the centrifugal term is au-
tomatically taken care of without any expansion about a
value of r.

We now test the accuracy of the preceding equations
by presenting for ¥y =50 and a=6.886 the energy eigen-
values for j =0 and 25 (Table I) and the normalized wave
functions v =0, j =0 (Fig. 1) and v =3, j =25 (Fig. 2) ob-
tained from the usual and modified SLNT. The value of
a corresponding to an exp(6) potential, which has the
same curvature at the minimum as the LJ (12,6) potential
(71.

The eigenenergies are compared to the exact numerical
(7] or WKB eigenvalues. It appears that both methods
give results of comparable accuracy. However, it can be
noted that for j =0 the modified eigenvalues are more ac-
curate for small v with a positive deviation, while as j in-
creases they become less accurate with a negative devia-
tion than the usual SLNT results, which tend closely to
the WKB eigenvalues.

The eigenfunctions are compared to the accurate uni-
form WKB wave functions of Miller and Good [8]. It is
clear from the figures that the modified SLNT wave func-
tions are much better than those obtained from the usual
SLNT, which are shifted toward the origin with the

TABLE II. Values of o, k, and y, necessary to construct the
exp(6) wave functions v =0, j =0, and v =3, and j =25.

State o) k Yo
v=0, j=0 0.871 366 14.526 098 14.532 440
v=3, j=25 0.948 695 12.525 787 13.822 637

wrong sign for the state v =3, j =25. As additional in-
formation, we give in Table II the values of w, k, and Yo
necessary to calculate the modified SLNT wave func-
tions. It is instructive to compare them to the values that
we would obtain from a nonrotating Morse potential with
the same values of the parameters ¥ and ¢; in this case
w=1,k=y,=2y/a=100/6.886=14.522219 [1]. These
values are quite close to those shown in Table II, and
their differences could be considered as a measure of how
much the exp(6) potential differs from the Morse shape.

In conclusion, we find that the modified SLNT works
quite well for the exp(6) potential. This is due to the
presence of the exponential repulsive term, which upon
the transformation (3) turns out to be given by Eq. (7),
while the r ~¢ attraction gives a term similar to the cen-
trifugal one. This means that the modified SLNT is also
applicable to the Buckingham type of potentials
exp(m,n), which include attractive contributions propor-
tional to » ~™ and r . Also, the fact that the wave func-
tions are sufficiently accurate and in the Morse form
makes the modified scheme valuable for the calculation of
the matrix elements and Franck-Condon factors for these
potential forms.
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