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We present correlated-wave-function characteristics, energies, and partial widths with interchannel

coupling to all orders, for the H two-electron ionization ladder resonances of D symmetry for n =3, 4,
and 5. Our computations took into account the interaction of up to 19 open channels. The resulting en-

ergies and total widths are compared to earlier computations and with the experimental energy for n =3.

7l 3 n —1

4o('D)= g a&y(nl, nl+2 D)+ g b&qr(nl;'D) .
1=0 1=1

TABLE I. Mixing coefficients of the 40 of the H 'D TEIL
resonances, corresponding energies (co), and total energies (Eo),
in a.u. , obtained by including additional localized correlation.
Note that for n =5, the aI coefficients are larger than the bI ones

[Eq. (1)]. In particular, the main configuration is sd rather than

PACS number(s): 32.70.Jz, 32.80.Dz

Over the past few years, publications from this insti-
tute have dealt with the theory and ab initio computation
of a number of properties of special classes of doubly and
triply excited states whose wave functions exhibit locali-
zation at specific geometries [1—7]. Among these proper-
ties are the autoionization partial widths, which are cal-
culated by a method incorporating the e6'ect of inter-
channel coupling to all orders [3,6,7].

In this Brief Report we present our predictions for the
partial widths of the H two-electron ionization ladder
(TEIL) of 'D symmetry. Previous such calculations dealt
with the 'S and 'P' TEIL's [3,6]. The 'D TEIL states
could be reached by one-photon absorption from the 'I"
TEIL states, which already have been detected experi-
mentally [8,9], or in one-photon transitions from the 'S
ground state in the presence of a static electric field.

We have studied the 'D TEIL resonances with n =3, 4,
and 5. The numbers of the open channels are 4, 10, and
19, respectively, while interelectronic correlations are
strong. Following the published theory [1—7] we write,
for the zeroth-order multiconfigurational representation
for each hydrogenic manifold n,

X,",, = g c" ''u(n'l', El;'D) .
n'

n &n

(2)

The continuum orbitals were represented by complex
STO's, which were kept orthogonal to each other but not

The radial parts of the orbitals were optimized self-

consistently while they were kept orthogonal to the hy-
drogenic radials of the lower-lying open channels. The
mixing coeScients a& and b& and the energies co are given
in Table I. Whereas for low energies (n =3,4) the dom-
inant configuration is p, for n =5 the sd configuration
takes over. This dependence of the principal
configurational description of the TEIL states on excita-
tion energy has also been seen in our earlier work [3,6,7].
This is why more basic criteria for computing a priori a
Wannier TEIL state have been proposed [1], these being
the self-consistent optimization within each manifold and
the choice of the lowest-energy state, and the emergence
of equal average radii and strong localization toward
0= 180' as revealed by conditional probability plots.

The remaining localized single and pair electron corre-
lations, X,"„,are added in terms of Slater-type occupied
and core orthogonalized virtual orbitals, whose nonlinear
parameters are optimized variationally. Tw'o sets of vir-
tual orbitals [two Slater-type orbitals (STO's) per orbital
angular momentum i] were used for the state with n =3
and one set for the states n =4, 5. The corresponding en-

ergies are in Table I.
Having thus obtained the localized part of the TEIL

resonances, %0=40+X&"„,the open-channel asymptotic
part X,", is added in the form

n =3

0.574 3s3d
0.797 3p
0.188 3d~

n=4

0.646 4s4d
0.659 4p
0.262 4p4f
0.277 4d
0.056 4f

n=5

0.623 Ss5d
0.590 Sp
0.380 Sp5f
0.306 5d
0.114 5d5g
0.109 5f'
0.019 5g~

Xi"„ X,",

Number of
STO's per

open channel +opt 0, (rad)

TABLE II. Number of configurations used to describe the
function spaces +o, Xl"„, X,"„number of complexified STO's
used per open channel, and optimum values of the nonlinear pa-
rameters a and 0.

c,o
= —0.064 618

Eo = —0.065 949
E.o

= —0.038 819
Eo = —0.039 044

Eo= 0.025 566 6
Eo = —0.025 631

31
15
20

36
80

114

0.55
0.25
0.20

0.48
0.43
0.40

1050-2947/94/49(1)/596(3)/$06. 00 49 596 1994 The American Physical Society



49 BRIEF REPORTS 597

TABLE III. Energies from threshold (including the shift due to the mixing with the continuum), and
total widths (in a.u. ) for the n =3,4, 5 D TEIL states of H . Comparison is made with other theoreti-
cal results and experimental data.

En

n =3
I n En

n=4
pn En

n=5
I n

State-specific
complex eigenvalue
theory (this work)

0.065 436 0.001 28 0.038 708 0.000 96 0.025 372 0.000 68

0.065 95'
0.065 955

0.001 6
0.001 635

Other
theoretical

methods

0.065 975
0.065 951'
0.065 953'

0.001 57
0.001 658

0.038 750'
0.038 936
0.038 754'

0.038 70g

0.000 95

0.001 26

0.001 25

0.025 375' 0.000 650

0.065 807'

'Reference [11].
bReference [12].
'Reference [13].
~Reference [14].
'Reference [15].

Experiment"

'Reference [16].
'Reference [17].
"We used 1 a.u. =27.211 396 eV.
'Reference [18].

to the radials present in the localized part of the wave
function. By combining the two function spaces, a com-
plex non-Hermitian, nonorthonormal Hamiltonian ma-
trix is constructed (e.g., [3,6,7]). Its solution is carried
out for different values of the rotation angle 8, and of the
nonlinear parameter in the complex STO's, a, until the
complex eigenvalue of the resonance state at each n is
stabilized (see Table II). The corresponding root Sxes the
coefBcients c" '' of the channels within X,",. Then, the
partial widths including the interactions to all orders are
given by [3,6,7, 10]

3

(%)
4

(%)
5

(%)

1s6d
2$6d
&P6P

2pef

1.0
14.7

'

82.0 99.0
2.3 .

0.0
0.1 4. 1

3.8
0.2,

0.0
0.4
0.0 0.6
0.2

TABLE IV. Breakdown, percentagewise, of the total width
of the n =3,4, 5 'D TEIL states of H to partial widths calculat-
ed to all orders.

c n'I'I

y„.&.z
= —2 Im ~'BOIH 1 u(n'!', eE ) )

Co
(3)

a simple relationship between the observable partial
width and the corresponding configuration-interaction
(CI) coeScient of the open channel.

Our results for the energies and the total widths are
presented in Table III, which also includes results ob-
tained with other theoretical methods [11—17] which,
however, are aimed at the calculation of resonances
without identifying them as Wannier TEIL states. There
is also an experimental energy for n =3 [18]. The previ-
ous calculations were performed by applying Feshbach's
projection-operator formalism [14], the close-coupling
theory [12,17], and R-matrix theory [15) and the conven-
tional complex-coordinate rotation [11,13,16]. For

3$6d
3p 6p
3pef
3d6$
3d 6d
3d 6g

4s6d
4p6p
4pef
4d6s
4d6d
4d6g
4fep
4fef
4feh

16.5
51.0
2.5 95.9

21.2
4.4
0.3

1.0 l

5.4
0.5 8.5
1.2
0.3
0.1 .

14.8
45.8

1.3
15.6
6.8 ' 90.9
1.8
4.7
0.1

0.0
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n =4, 5 there is excellent agreement with the results pro-
duced by the large-scale computations of Ho, Callaway,
and Bhatia [11,13,16]. For n =3, there is a small
discrepancy. Scattering theories [12,15,17] have pro-
duced slightly diferent widths than the ones obtained by
considering resonances as complex eigenvalues of a non-
Hermitian Hamiltonian.

Our partial widths, the main goal of this work, are
presented in Table EV. Here, there are no previous
theoretical or experimental values.

From Tables III and IV, the following characteristics

can be recognized immediately. As in the case of the 'S
and 'P' TEIL resonances [3,6], the lifetime of the 'D res-
onances increases with increasing energy. This fact can
be understood in terms of the reduction of bound-
continuum wave-function overlap and of (1/r, 2) [19],as
the electrons move apart with increasing principal quan-
tum number n. Also as before, the closest threshold con-
tributes the most to the decay probability. This fact,
which was predicted in [3], is also seen in the experimen-
tal data of Halka et al. [20] for 'P' states. Finally, we
note that the p-wave continua have the largest width.
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