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Induced transitions and energy of a damped oscillator
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Damped harmonic-oscillator pseudostationary-state wave functions are used to calculate transitions

probabilities for a simple harmonic oscillator (SHO) subjected to damping from time t=0. The mean

and variance of the energy operator are obtained in the state which was initially an SHO stationary state.
This state is an instantaneous eigenstate of the energy at times when sin(~t) =0, co being the reduced fre-

quency.

PACS number(s): 03.65.Ge

Several authors have treated the damped harmonic os-
cillator (DHO) as a closed system by the Kanai-Caldirola
Hamiltonian [1—5]. On the other hand, a large volume of
literature has been devoted to the open-system, second-
quantization approach, from which we select a few pa-
pers [6—11]. In this Brief Report the author would like
to take the former method further by answering two im-

portant questions concerning the imposition of linear
damping on a simple harmonic oscillator (SHO). The
first question relates to transitions from one stationary
state of the SHO to another owing to the perturbative
effect of damping (however, perturbation theory will not
be used). The other question concerns the possible result
of an energy measurement while the SHO is still damped.

It is well known that a canonical treatment of the
DHO, with damping constant y, in either classical or
quantum mechanics yields the (classical) energy, or the
(quantum-mechanical} energy operator [5]

E(q,P, t)=e r'Htcc(q, P, t) .

(x, t)=N (co/coo)' exp[ —,'yt —I(co+iy)/(2coo)]e r'x

i ( m—+ ( ,' ) )cot ]—

X% (x(co/coo)' er'), (Sa)

where co is given by Eq. (3), and N is the normalization
factor,

(
1/22 m ))

—1/2 (5b)

ae„(x, t)
ifi =H ic4c„( xt) (t ~ 0),

Bt

e„(x,o) =es„"o(x) .

We note the correspondence

(6a)

(6b)

and & is the Hermite polynomial of degree m.
A particular solution of Eq. (4) describes the evolution

of the state 4„(x) (at time t=0) after damping is

switched in. We denote this state by 4„(x,t} Thus.

We shall find it convenient to use the Schrodinger
representation with the dimensionless coordinate
x =(mocoolf't)'/ q, and momentum, p = —ic}/Bx. Then

but as t~0
(7a)

2

Hzc(x, p, t) =
—,'ficoo —e

c}x
+e2y~&2

where coo is the SHO frequency. We shall need also the
DHO frequency given by

CO
—

COO (3)

(4)

With solutions corresponding to pseudostationary states
fcf. Ref. [2], Eq. (3.5)]

From a practical point of view, a DHO has only a finite

effective lifetime. Damping must be switched in at a cer-
tain tixne. Let us take this as t =0, and suppose that at
times t &0 the system was an SHO in its nth eigenstate

l coot
(x)e . At times t )0 the system is a DHO with

Hamiltonian H~c as in Eq. (2), and is described by the
Schrodinger wave equation

ifi =Htccitt .
at

(x)Af (x,O) . (7b)

The initial SHO eigenfunction may be expanded in terms
of the complete set of orthonormal functions g (x,O):

(x)= g c"P (x,O) .
m=0

(&a)

At a later time, since both 4„(x,t) and P (x, t) satisfy

Eq. (6a),

N„(x,t}= g c"P (x, t) .
m=0

The coefficients are given by

c" =I P* (x,O}@„(x}dx. (9)

Since the Hermite polynomials in N„and g have
di6'erent arguments the general evaluation of c" is not
easy. However, for specific n the evaluation is always
possible. For simplicity we restrict ourselves to n =0 and
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and use the recurrence relations

JV~ =2m&~ ), 2u&~ =Sf~+)+2m JV~

then we can determine c from the relations

c =NDN (co&/co)' I~,

(lob)

(1 la)

I +2=(m+1)AI, A =2iy(co+iy )/[co()(coo+co)],

write c as c . If we define

—auI = e '" % (u)du, a =(co+coo —iy)/co, (loa)

Times at which sincot=o(e' '=1} are significant, be-
cause then, as we shall see, 4„(x,t) is an eigenfunction of
the energy with eigenvalue given by Eq. (27) below. At
these times we find

Prob(0~0) =C i [(1+e r')coo

+2coe ') /[(1+ e ')

+iy'(1 —e r')]i,
(17a)

where
lib

I()= (2m /a ) '/, I )
=0 . (1 lc)

y'=y/(co+coo), C=4cool(co ~ctb i), (17b)

We can now answer our first question: if damping acts
during the interval (O,t), what is the probability that a
transition from the ground state to the nth exited state of
the SHO can be observed after time t?

We find it convenient to use bra and ket notation.
Then the answer to our question is

and ct and b are to be found in Eqs. (10a) and (13}. It is
readily verified that Prob(0~0)~1 as y~o. We may
subject our results to two further tests.

(a) y «coo so that co=coo. Let us wait for a long time
until, with sincot=0, e r'=e (0&a «1). Then Eqs.
(17a) and (17b) give

Prob(0~ n ) = i ( cI)0(x, t) icI)„(x,t) ) i

Prob(0~0}=2s . (18a)

g c~|i'~(x, t)
m=0

(b) Again y «coo, but we wait only until cot =n. Then
e r'=1 —

rt (0&rl «1). In this case, working to second
order in g, Eqs. (17a) and (17b) yield the very credible re-
sult

SHO
—i[ n+((/2)]ruat 2

xe Prob(0~0) = 1 —
—,
'

rt (18b)

(13}

The difi'erence between a, in Eq. (10a), and b in Eq. (13) is
due to the occurrence of g (x,o) in Eq. (9) and f (x, t)
in Eq. (12). Corresponding to Eqs. (llc) and (lid) we
have

J~+2=(m +1)BJ
(14a)

B =2[(co+iy )2 —(cooe 2r')2]/[coo[(1+e 4r')coo

+2coe r')

J =(2~/b)'/2 J, =O.

The probability of no transition is found to be

Prob(0~0) =Nz(coo/co)e r'iSi

(14b)

(lsa)

~2 +imcotie Jme m m (15b)

(12)

Substituting 4„o(x)=N„exp[ —(x /2))&„(x), we need
to evaluate

(x)
b 2J = e "& (u)du, b=(co+cooe r' iy)/co —.

These together with further numerical tests convince us
of the reliability of our calculation.

Turning our attention to Prob(0~1) we note that an
extra factor of u occurs in the integral of Eq. (13). Let us
call this integral J'; then using the second of Eqs. (10b) it
follows that J' =0 for m even and the summation for S
in Eq. (15b) vanishes. Thus

Prob(0~1) =0 .

Prob(0~2) can be calculated using 82(x)=4x 2 The- .
second relation of Eqs. (10b) is used twice to treat the 4x
part. The result is too unwieldy to display.

We can continue this process substituting into Eq. (12)
the appropriate Hermite polynomials. There is no
difficulty in principle in calculating Prob(n ~n') for any
n or n' As state. d in Ref. [5], and as we have seen for
Prob(0~1), damping can induce transitions only between
states of like parity. Unfortunately, the transition proba-
bilities given in Ref. [5] are incorrect.

Digressing slightly before answering our second ques-
tion, we calculate the mean and variance of the energy in
the pseudostationary state tj) (x, t) These fo.llow easily
from Eqs. (1), (2), and (5) and using

m(even) =0

where the fact that only even values of m contribute fol-
lows from Eqs. (11)and (14). It may be shown that

2 (E2) (E)2

for the variance. We find for m =0, 1,2, . . . ,

(19)

$—2~1/2(g «b )
—1/2[1 (

) )e2imtA «B ]
—1/2 (16)

(Q (x, t)i(E(t)if (x, t)) =[m+( —,')](A'co()/co)e

Equations (15a) and (15b) then yield a lengthy result for
Prob(0 ~0). o =

—,'(m +m+1)(fiycoo/co) e

(2Oa)

(20b)
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where E (t) is given by Eqs. (1) and (2). Hence a pseudo-
stationary state is never an eigenfunction of the energy
(nor of the Hamiltonian). No special significance should
be attached to Eqs. (20a) and (20b) as it is not feasible to
prepare the system in the initial state g (x,0). However,
it is interesting to compare them with corresponding re-
sults for the evolved SHO state 4„(x,t). The Heisenberg
form of E (t) has been obtained in Eq. (22) of Ref. [5]:

E(t)=e r'[[1+2(y/co) sin cot]E(0)—(y/co)sin cotL(0)

+2y(coo/co) sin cotS(0)], (21)

where

E(0)=p /(2mo)+( —,
' )mocooq',

L(0)=p /2mo —( —,
' )mocooq

S(0)=(-,')(qp+pq) .

(22)

Let us take the expectation value of E(t) in the DHO
state 4„(x,t). We need only expectation values in the in-

itial SHO eigenstate 4„(x,0), i.e., we need

( n
~

E(0)
~
n }= iiicoo [n + ( —,

'
) ],

(n(L(0))n }= —
( —,')irido(n[a+ +a (n }=0,

(n[S(0)[n }=(—,')iiri(n[a+ —a [n }=0 .

The result is

(P„(x,t) ~
E(t) if„(x,t) )

=irtcoz[n+( —,
' )][I+2(y/co) sin cot ]e

(23)

(24)

The only nonvanishing mean values encountered when
we square the right-hand side of Eq. (21) to form (E )
are

(n ~E (0)~n ) =Pi coo[n+( —,')]

(n ~L (0)~n )( —,')fi coo(n +n+1),
(n ~S'(0) ~n & =(-,')e'(n'+n+1) .

Then from Eq. (19}[cf. Eq. (20b)],

0„(t)=2(n +n +1)(fi cyan c/o) sin cot

X [I+(y/co) sin cot]e

(25)

The uncertainty vanishes whenever sincot=0. Only at
these times does it make sense to speak of energy eigen-
values (cf. Ref. [5]):

E„(t=r~/co)=[n+( —,')]iricooe r', r=0, 1,2, . . . .

(27)

=2(y/cu) [n+( ,' )—]fuooe (28)

Equations (24) and (26) provide the answer to our second
question. However, an instantaneous measurement of en-

ergy contradicts the time-energy uncertainty principle
[12]. As damping increases, the period of oscillations
lengthens and there would be time to observe the energy
in the neighborhood of cot =re or of cot = [r+(—,

' )]it. To
take an extreme case, suppose y=coo(1 —s), 0(e((1.
Then co =2scoo. For t =re/co we should find

E = [n + ( —,
'

) ]iricooe ~' with certainty, whereas for
t =(r + 1 }m Ice we should expect to obtain
E =E '[n+( ,' )]A—cooe ~' with a large standard deviation

of E '[(n +n+1)/2)]' %oboe

Let us compare with the situation in classical mechan-
ics. In Eq. (21) we need to write

E(0)=(—,')mo[q (0)+cooq (0)],
L(0)=(—,')mo[q (0)—cooq (0)],

S(0)=moq(0)q(0) .

(29)

At times when singlet =0 or + l,

E„(t= rirlco) =E(0)e

E„[t=(r+ I )ir/co] = [ [(coo+y') lco']E(0)

+ [2mocooy lco'] q(0)q(0) ]e

(30a}

(30b)

At the times of Eq. (30b),

E,i [t =(r + 1)ir/co] —E(0)e

= [2y Ico }[E(0)+[mocooly jq(0)q(0)]e i&' . (31)

%e know that the second term in the square bracket cor-
responds to [coo/y)S(0) in quantum mechanics, with

vanishing expectation value in a stationary state. There-
fore we can drop this term in making a comparison with

Eq. (28). The agreement is then exact, as required by
Ehrenfest's theorem.
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At intermediate times when sin cot = l, we note that the
di6'er ence

(E I t = f r + ( —,
'

) ]m.
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] ) —[n + ( —,
'

) ]iricooe
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