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In the present article we have found the complete energy spectrum and the corresponding eigen-

functions of the Dirac oscillator in two spatial dimensions.

depends on the spin of the Dirac particle.
PACS number(s): 03.65.—w, 11.10.Qr

Recently, Moshinsky and Szczepaniak [1] proposed a
new type of interaction in the Dirac equation which, be-
sides the momentum, is also linear in the coordinates.
They called the resulting Dirac equation the Dirac os-
cillator because in the nonrelativistic limit it becomes a
harmonic oscillator with a very strong spin-orbit coupling
term. Namely, the correction to the free Dirac equation

ov,
i%% — (5yp + Bm) V. (1)
reads
P — P — imwfr. (2)

After substituting (2) into (1) we get a Hermitian op-
erator such as linear in both p and r. Recently, the
Dirac oscillator has been studied in spherical coordinates
and its energy spectrum and the corresponding eigen-
functions have been obtained [2]. A generalization of
the one-dimensional version of the Dirac oscillator has
been proposed by Dominguez-Adame [3]. In this case,
the modification of the free Dirac equation, written in
Cartesian coordinates, is made by means of the substitu-
tion m — m—iy%yV (z,). Obviously, for V(z1) = mwz,
we have the standard Dirac oscillator. Here, as well as for
the three-dimensional Dirac oscillator [2], bound states
are present.

An interesting framework for discussing the Dirac oscil-
lator is a 241 space-time. The absence of a third spatial
coordinate permits a series of interesting physical and
mathematical phenomena such as fractional statistics [4]
and Chern-Simmons gauge fields among others. Since
we are interested in studying the Dirac oscillator in a
two-dimensional space, a suitable system of coordinates
for writing the harmonic interaction is the polar p and
¥ coordinates. In this case the radial component of the
modified linear momentum takes the form p, — imwBp.
It is the purpose of the present paper to analyze the solu-
tions and the energy spectrum of the 2+1 Dirac oscillator
expressed in polar coordinates.

One begins by writing the Dirac equation (1) in a given
representation of the v matrices. Since we are dealing
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with two component spinors it is convenient to introduce
the following representation in terms of the Pauli matri-
ces [5]:

B = o1, ﬂ’Y2=3027 B = o3, (3)

where the parameter s takes the values £1 (+1 for spin
up and —1 for spin down). Then, the Dirac equation (9)
written in polar coordinates reads

ik.,gs

iEV = [018,, +0? ( - mwp) + iaBm] T (4)
with
T = ‘I’O (p)ei(kol‘)—'Ei),

where the spinor ¥ is expressed in the (rotating) diagonal
gauge, related to the Cartesian (fixed) gauge by means
of the transformation S(p, ) [6]

V.= S(p,ﬂ)Ml\I’, (5)

where the matrix transformation S(p,?¥) can be written
as

S(p, ) = \% exp (-igaf") . (6)

Noticing that S(p,?) satisfies the relation
S(p, 9 +2m) = =S(p, V) (7)
we obtain
U(d + 2m) = —¥(¥), (8)

so we have ks = N +1/2, where N is an integer number.

Using the representation (3), the spinor equation (4)
can be written as system of two first-order coupled dif-
ferential equations

d k .
i(E—m)¥,; = (d_p + _z_s - zmwp) s, (9)
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d k,as .
i(E+m)¥ :(———+zmwp)\Il, 10
(B+m)¥s = (55—~ Lo (10)
where
v
@0=(‘1l:). (11)

Substituting (10) into (9) and vice versa we arrive at

+ mw(2kgs £ 1)

d®  (kes)(kss F 1)
dp? 02

—-m2w?p? + (E? — m?) (gl) =0. (12)
2
It is not difficult to see that the solution of the second-

order equation (12) for ¥; can be expressed in terms of
associated Laguerre polynomials L§(z) [7,8] as follows:

Uy = ¢; exp(—z/2)x? /2 LE(L), (13)
where we have made the change of variables
z = mwp?, (14)
where p satisfies the relation
p=x(kss—1/2) (15)
and the natural number n satisfies the relation

Ez_mz

——— + (1F1)(2kos — 1) = 4n. (16)

Since the function ¥; must be regular at the origin, we
obtain that the sign of p in (13) is determined by the
sign of s. In fact, for kys > 0 we have that ¥, reads

U, = c; exp(—z/2)zFoe/2Lkee=1/2(g), (17)
Substituting (17) into (10) we arrive at

(mw)1/?

. 8 kos+1/2
U, = 2zc1E—+T—n— ):L'(k" +1)/2Ln6_1+ / (.’E),

exp(—z/2
(18)

where c; is an arbitrary constant.
Analogously, we obtain that the regular solutions for,

kss < 0 are
U, = cyexp(—z/2)z R 2L 2 (e),  (19)
1/2
¥, = 2icy —(Zﬁ)m— exp(—z/2)z TR 2L 2Rt (3),

(20)
where c¢; is a normalization constant. The expression
(16) can be rewritten as follows:

E? —m? = 4[n— O(—kss)(kss — 1/2)]mw,  (21)

where O (z) is the Heaviside step function. Then from the
relation (21) it is clear that the energy spectrum of the
2+1 Dirac oscillator depends on the value of s. Notice
that for positive values of kys there is no degeneration
of the energy spectrum. For kys < 0 we observe that
all the states with (n 1, kgs — 1/2 £ 1), where ! is an
integer, have the same energy. In this direction there are
some differences with the spherical Dirac oscillator [2].
Despite the fact that in both cases bound states are ob-
tained, for the 2+1 Dirac oscillator the energy spectrum
is degenerate only for negative values of kgs. In order to
get a deeper understanding of the dependence of the en-
ergy spectrum on the spin we can take the nonrelativistic
limit of the Dirac equation (4). In order to do that, it is
advisable to work with Eq. (12). The Galilean limit is
obtained by setting £ = m + € and considering € <« m.
Taking into account that the first two terms in Eq. (12)
are associated with the operator P2, we obtain in the
nonrelativistic limit

p? 1 m2w?p?
— = —_— =c=¢. 2
om w(kgs:tz) + 2 3 ( 2)

Notice that Eq. (22) corresponds to the Schrodinger
Hamiltonian of a harmonic oscillator with an additional
spin dependent term given by —w(kss = %) This contri-
bution is proportional to the frequency of the oscillator.

It would be interesting to analyze the Dirac oscillator
in more complex configurations where electromagnetic
and gravitational interactions are present. Regretfully in
this direction the possibilities of finding exactly solvable
examples are limited to those where the Dirac equation
with an anomalous moment is soluble [9]. A detailed dis-
cussion of this problem will be the objective of a forth-
coming publication.
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