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Nonlinear Schrodinger equation for optical media with quadratic nonlinearity
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Wave propagation in optical media with strong dispersion and weak quadratic nonlinearity is
analyzed using the method of multiple scales. This method shows that the evolution of the envelope
for a single nondepleted pump wave is described by the nonlinear Schrodinger equation. Hence
various self-modulation effects, due to an effective intensity-dependent refractive index, are possible
to observe in materials with quadratic nonlinearity. That is, materials that are known to generate

wave processes may also support, for example, soliton propagation. Physical conditions and
numerical examples are given for observing solitons, self-defocusing, and spectral broadening. Other
self-modulation effects are also discussed as well.

PACS number(s): 42.65.—k, 02.90.+p

I. INTRODUCTION

In nonlinear optics, for waves propagating in a strongly
dispersive dielectric with weak quadratic nonlinearity,
it has been generally accepted that various three-wave-
mixing processes are obtained, such as second-harmonic
generation. Intensity-dependent effects are usually ex-
pected in cubic nonlinear materials but not in purely
quadratic nonlinear materials. The conventional rea-
son that intensity-dependent refraction eKects are not
expected in quadratically nonlinear materials is that
the phase of the fundamental harmonic cannot be
phase aligned with the higher harmonics within the
slowly-varying-envelope approximation (SVEA) frame-
work [1—3]. The SVEA is a conventional first-order [O(e))
perturbation method used in optics to derive simplified
evolution equations for the slowly modulated envelopes
of the propagating waves. However, due to recent de-
velopments using unconventional methods (in nonlinear
optics), it has been shown that intensity-dependent ef-
fects occur for at least two distinct boundary-value prob-
lems in quadratically nonlinear materials. It is possible
with the appropriate boundary value problem to derive
the nonlinear Schrodinger equation [4, 5] with an effective
intensity-dependent refactive index.

In one-boundary-value problem, two time-independent
envelopes [with efFicient O(e) phase matching], propagat-
ing at the carrier frequency and second harmonic in a
lossless medium, are studied by the standard SVEA [6,7].
By utilizing the Manley-Rowe relations, the problem is
reduced to a DuKng-type nonlinear oscillator with a cu-
bic nonlinearity that describes the spatial dependence of
the fundamental harmonic envelope. Here the specific na-
ture of the boundary-value problem does not permit the
derivation of the nonlinear Schrodinger equation. The
theory in [6, 7] does not apply for two waves propagating
at diferent group velocities nor two waves with ine%-
cient O(1) phase matching nor waves in a lossy material.

Also the problem is truncated at first-order perturbation
theory with only two spatial scales since it is analyzed
within the SVEA framework.

The SVEA is a useful method as long as the phys-
ical problem may be truncated at first-order perturba-
tion theory and only two time or distance scales are as-
sumed. However, some problems may require proceeding
to higher-order perturbation theory and may require sev-
eral time and distance scales. It is convenient to utilize
a perturbation method that is self-consistent to any per-
turbation order. One such method devised by Cole [8],
Sturrock [9], and Sandri [10] is the method of multiple
scales (MMS). We will use MMS to derive the nonlin-
ear Schrodinger equation for quadratic nonlinear optical
materials. MMS and several other equivalent methods
have been used to analyze weakly nonlinear physical sys-
tems to extract the dominant canonical equations arising
from various asymptotic limits. It must be noted that if
MMS is restricted to only two time scales, it reproduces
the first-order perturbation theory results obtained by
SVEA.

The nonlinear Schrodinger equation is canonical in the
sense that it is obtained as the asymptotic far field in the
strongly dispersive, weakly nonlinear limit and describes
the evolution of envelope wave packets over long times
and distances [11,12]. If, on the other hand, another limit
is applied, a diferent dominant canonical equation can be
derived. For example, one usually obtains the Korteweg-
deVries equation in the weakly dispersive, weakly nonlin-
ear limit. The nonlinear Schrodinger equation arises in
many physical systems such as water waves [13], plas-
mas [14—16], and fiber optics [17, 18]. It is also one of
the equations that can be solved exactly by the inverse
scattering transform [19,20]. The idea behind MMS and
other equivalent methods is to systematically eliminate
artificially growing forced terms by imposing secularity
conditions that, in turn, lead to the asymptotic far fields.
The generalized Krylov-Bogoliubov-Mitropolsky method
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[21], Taniuti's reductive perturbation method for wave

propagation [22], and a version of Whitham's averaged
Lagrangian method [23] are equivalent to MMS because
the same secularity conditions are obtained. In this paper
we prefer MMS because it has the advantage of deriving
the secularity conditions in a clear and explicit manner
requiring the least amount of algebra and the fewest as-
sumptions.

In this paper, we choose to illustrate in detail the
mathematical machinery of MMS applied to the sim-
plest signaling (boundary-value) problem, that of a single
time-dependent input wave incident upon a lossy, disper-
sive quadratically nonlinear material. Assuming three
time and distance scales, and proceeding to second-order
[O(e2)] perturbation theory, the nonlinear Schrodinger
equation is derived for the fundamental harmonic in the
nondepleted pump approximation. The phase mismatch
is O(1), so that all higher harmonics that are generated
remain small [O(e) or smaller]. Many self-modulation
properties of quadratic nonlinear materials are analogous
to those found in optical fibers made from low attenua-
tion glasses. However, the effective intensity-dependent
refractive index derived here is different &om the intrinsic
refractive index of cubic materials (and is different from

[6]). The solutions of the nonlinear Schrodinger equa-
tion for cubic media such as optical fibers [24, 25] may
be used for quadratic nonlinear materials by replacing
the intrinsic re&active index by the effective index. For
example, under appropriate conditions, temporal optical
envelope solitons may be launched in quadratic nonlinear
materials. Other self-phase modulation effects may also
be observed.

We now summarize what is done in the following sec-
tions of this paper. In Sec. II, we state the mathematical
problem and nondimensionalize the governing equations.
The equations for the optical material are analogous to
the Boussinesq equation that arises in water wave the-
ory [23] and plasmas [26]. The optical medium equations
are slightly more complicated, but under the appropriate
asymptotic limit they may be reduced to the Boussinesq
equation. Since we are solving a signaling problem, the
time and spatial derivatives are interchanged from the
water wave boundary-value problem.

In Sec. III, we apply MMS to the governing equations
in the strongly dispersive and weakly nonlinear asymp-
totic limit and proceed to third-order perturbation the-
ory. The signaling problem is solved to O(e), but secu-
larity conditions are imposed up to O(es). In Sec. III C,
we derive the nondimensionalized nonlinear Schrodinger
equation f'rom second-order O(e2) perturbation secular-
ity conditions. This is the main result of this paper. We
then include a third-order [O(e )] correction to the effec-
tive intensity-dependent re&active index that arises from
secularity conditions from a small rectified electric field.

In Sec. IV, the coefIicients of the nonlinear Schrodinger
equation that were derived in Sec. III are related to phys-
ical parameters. It is then shown by numerical example
that the third-order perturbation correction to the ef-
fective index may be neglected. Therefore, second-order
perturbation theory (of Sec. IIIC) provides the essen-
tial results for the dynamics of the slowly modulated

envelope. In Sec. V, new experiments to perform for
quadratically nonlinear materials that demonstrate self-
modulation are suggested. For example, conditions for
soliton propagation and self-defocusing are given.

We conlude the paper in Sec. VI and briefly discuss
other pertinent boundary-value problems for quadrati-
cally nonlinear materials that may be analyzed using
MMS. We would like to mention that for readers who
readily accept the idea that the nonlinear Schrodinger
equation exists for quadratic media due to second-order
perturbation theory, and would like to dismiss the mathe-
matical details, may skip Sec. III. That is, one may read
Sec. II and proceed to Secs. IV and V to concentrate on
the physical effects and experimental conditions.

II. FORMULATION
OF THE SIGNALING PROBLEM

ggg2P +
gag P + o P +

Ne

The electric field being modified by the medium is de-
scribed by Maxwell's wave equation

02 02 , 1 02

Oz* Ot' E Ot* (2)

Here p* denotes polarization, E' the electric field in
medium, I'* the damping coefIicient, uo the resonant &e-
quency, c* the speed of light, d the nonlinear restoring
force coefFicient, N the number of atoms per unit vol-
ume, e the electron charge, m the electron mass, and

A single slowly modulated input wave of arbitrary
shape propagating in free space at carrier frequency ~
encounters a semi-infinite y~ ~ material at z = 0. We
assume normal incidence at the boundary and the direc-
tion of propagation is in the z direction, with the elec-
tric field in the x direction and the magnetic field in the

y direction. The electric and magnetic fields are trans-
verse to the direction of propagation and to each other,
but they are tangential to the boundary. Therefore, we

impose boundary conditions that the tangential electric
and magnetic fields be continuous across the boundary at
z = 0. We also impose a radiation condition so that there
are no incoming waves from infinity in the y~ ~ material.
The boundary conditions imply a signaling problem in-
stead of an initial-value problem.

We consider nonlinear materials that can be described
by an ensemble of identical classical anharmonic oscilla-
tors with small quadratic restoring forces and a resonant
frequency uo far from u. From the ensemble we obtain a
macroscopic polarization p that is coupled to the electric
field E. In the medium, we also assume that we are in
the nondepleted pump approximation so that there is no
phase matching. That is, all harmonics that are gener-
ated are small compared to the input beam because the
phase mismatch between harmonics and fundamental is
O(1).

The quadratic medium is described by the following
anharmonic-oscillator equation that relates the induced
polarization to the applied electric field [27]:
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ep the permittivity of free space. The variables with an
asterisk are notations devised to refer to the fact that
the variables do have physical dimensions. These will

be normalized later to make all variables dirnensionless.
The electric field in free space E* is described by the
homogeneous wave equation

c
t9Z

The boundary conditions which must be satisfied at the
interface are that both the tangential electric fields and
the tangential magnetic fields be continuous. This means

E*(t*,o)
free

space

= E'(t', o)
medium

B'(t', o)

Pp free

B"(t*, o)
)

medium

0, OB*
t9z* Ot* (6)

In order to perform perturbation expansions, the above
equations must be at first cast into dimensionless vari-
ables. A perturbation parameter must be chosen from
a dimensionless ratio of physical variables. We define
the following dimensionless quantities: p = p*/po, E =
E'/E', t = t*/T, z = z'/Z, I' = I'*T, and wo ——~*T.
Here p, E, t, z, I', and ~p are, respectively, the dirnen-
sionless polarization, electric field, time, spatial variable,
damping coefFicient, and resonant frequency. The dirnen-
sionless frequency is chosen to be one so that T is defined
as (ufo) . We let po

——eoEo and choose the dimension-
less speed of light c = c*T/Z. We let c = 1, which defines
Z. Thus, in the quadratic medium, Eqs. (1) and (2) may
be rewritten as

/0' 8+I'—+~o ~p= fE —ep,iBtz Bt )
(7)

where B* and B* are, respectively the magnetic fields in
free space and the medium and p, p is the permeability of
free space. The magnetic fields may be eliminated from
the problem by using

H = H, H* = H we find that the boundary conditions
0 0

become

E(o, t) = E(o, t),

H(o, t) = H(o, t),

and Eq. (6) becomes

c—E(O, t) = ——H(O, t).
(9

Oz Ot

(12)

Since we are interested in solving a boundary-value
problem for the electric field, it is convenient to oper-
ate on Eq. (8) by (&, + as) to obtain a fourth-order
equation for the electric field that has weak polarization
sources. Here we assume that I = ~ p. Notice that the
polarizations come in at higher perturbation orders. We
replace Eq. (8) by the following:

g4
c2

Bt28z2

g4 g2 g2

Ot4
+ c (uo —(ufo + f) E

|9z Ot2

0 t9
p —c p p. (14)

Ot2 t9t3

Equation (14) is important because the dispersion prop-
erties of the medium are included and since the polariza-
tion terms come in at higher perturbation orders, they
behave as known source terms. More important, all sec-
ularity conditions on the shortest and fastest scales for
MMS are determined from the ~ independent left-hand
side.

We will solve Eq. (14) in conjunction with Eqs. (7)
and (10) and boundary conditions (11) and (12) us-

ing MMS [4]. The nonlinear Schrodinger equation for
the medium will be derived from Eqs. (7) and (14) at
second-order perturbation theory. We will also show that
at third-order perturbation, a small correction term to
the effective intensity-dependent refractive index of the
Schrodinger equation will be added. However, for most
cases of physical interest, this third-order correction term
may be neglected. Therefore, second-order perturbation
theory using MMS provides the main results of this pa-
per, as shown in the next section. Afterwards, in Sec. IV,
coefIicients of the nonlinear Schrodinger equation will be
related to well-tabulated physical parameters.

Bz Btz ) Bt (8) III. THE METHOD OF MULTIPLE SCALES

In free space, Eq. (3) is nondimensionalized as

02
c2

Oz

t9 E=0, (10)

with E = &. . Defining H* =,H* =, and
0 Po Po

NLet f = .' EoT = cu„T, where ~f is the dimension-
less plasma frequency. The perturbation parameter e is
chosen to be

dT2~pEp

Ne

We choose to utilize the derivative expansion version
of MMS [10]. The derivative expansion method suggests
to us to extend the two independent variables z, t to the
sets of independent variables

Zp, Zi) Z2, . . . ) Z~ ) tp, ti) t2) ~-

where z = zp, t = tp and z, = e'z, t, = c't. There are
2n independent variables. However, since we shall pro-
ceed to only second-order perturbation theory, we will
have three spatial scales (zo, zq, z2) and three time scales
(to, tq, t2). Thus there are six independent variables with
zp the shortest distance scale and tp the fastest time scale.
The other variables are longer distance or slower time
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scales. Accordingly, the dependent variables are regarded
as functions of the six independent variables. For exam-
ple, p = p(zp, zi z2'tp ti t2). Similar expressions exist
for E and E. The derivative operators and , are
expanded as

0 0 +E' +E +'''
OZ OZO 19Zy OZ2

(is)

It is assumed further that the p, E,E dependent vari-
ables have an asymptotic representation of the following
form: for instance,

P(Zp, Zy, Z2', tp, t], t2) = Pp(Zp, Zi, Z2', tp, ti, t2)

+ep& (Zp) Zi ~ Z2) tp, ti, t2)

+e PZ(zp) Zr ) Z2) tp) ti ) t2) + ' '

(i7)

bp that depends on (ti + ~). The functional form of bp

will be determined by applying the boundary conditions.
The O(e) electric Beld in free space Ei consists of un-

known reflected waves bz(z~, bz(2~ at the fundamental and
second harmonics. Notice that the first subscript denotes
perturbation order and the second one denotes harmonic
component. The functional form of the Eq reflected
waves must be found f'rom the O(e) boundary conditions.
One may verify that the free-space solutions of Ep and Ei
in (19) and (20) do indeed satisfy the sequence of pertur-
bation wave equations obtained from MMS by expanding
Eq. (10). We proceed to examine the medium.

A. The O(1) problem

The lowest-order perturbation problem corresponds to
having set e = 0 after expansions (15)—(17) are substi-
tuted into Eqs. (14) and (7) and the boundary condi-
tions. For the nonlinear medium we have

Representations similar to (17) exist for E and E. We
substitute expansions such as (1S)—(17) into Eqs. (14),
(7), and (10) and boundary conditions (11) and (12) and
then collect orders of (e).

The idea behind MMS is to seek uniform perturba-
tion expansions by the systematic elimination of secularly
growing forcing terms which enter at higher perturbation
orders. Such elimination of secular terms will also show
how the dependent variables p, E, E vary with respect to
the slow distance and slow time scales (zi, z2', ti, t2).

We are primarily interested in what happens in the
semi-infinite y( ~ material, once a slowly modulated elec-
tric Geld in free space encounters the medium at z = 0.
We shall solve for the reflection and transmission coef-
Bcients to O(e). The following form is assumed for the
electric Geld in free space:

E = Ep(zp, zi,. tp, ti) + eEi(zo, zi., tp, ti) + .

with

E, = a, S, ——' e' ( - -"~ + c.c.
C

—i~( ~+tp) +
C

a2—(~p+ f) 2 Ep ——0
c)tp

(21)

and

(8'
I ~ 2 +~o I po = fEo.
(~to )

(22)

The electric Geld Eo has an unknown slowly varying
amplitude ap(zi, z2,'ti, t2) that depends on the slower
scales and the amplitude is multiplied by an exponen-
tial phase factor. The functional form of Eo is assumed
to be

Ep ——ap(z2, zi', t2, ti)e'

+az(ZZ t t )e1(Izzo4Ito)'(23)

with u the known carrier frequency.
Note that the radiation condition was used to elim-

inate backward traveling waves in the medium. The
(zi, z2, ti, t2) scales enter this O(1) problem as param-
eters. The wave vector I(. is unknown and must be de-
termined by substituting (23) into (21). We then obtain
the dispersion relation that shows how I(: depends on u,

and
D (k, ~):—c k u)

z —c ~p k —(u4 + (~o2 + f)~2 = 0 .

Ei —— bi(i)(ti + zi)e ' ~ + ' + c.c.

b, ( ) (t, + z, )e ' ~ +" + c.c. (20)

From the O(l) electric Beld in free space Ep, we see from
Eq. (19) that ap (ti ——") is the given slowly modulated
amplitude of arbitrary shape that depends on only the
(zi, ti) scales. It is multiplied by an exponential phase
factor that depends on the (zp, tp) scales and the carrier
&equency u. Since there is a material discontinuity at
z = 0, we have a reflected wave with unknown function

i(kzp —~tp) +
fE fg,

PO e + c.c.—(d 4) —Cd
2 2 2
0 0

(2s)

It can easily be shown that for k2 to be an O(1) quantity,
the difference (~p —ur) O(1). This implies that the
applied &equency ~ is far from the resonant frequency
uo, which in turn ensures that the MMS expansion is
valid. The polarization po may be found since the electric
Geld Ep has been determined. Substituting (23) into (22)
the polarization response is
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2(d
ap(ti) = ap(ti),

td + ck td
(26)

The polarization pp will enter as a source term for the
electric field for the O(e) calculation.

The electric fields in free space and the nonlinear
medium must now be matched at the interface at zp

zi ——z2 ——0. From the boundary conditions (11) and
(12) we respectively obtain the transmission and reflec-
tion coe%cients

P 1 ap+ = 0.
c)zi V (td) c)t,

Vg(td) is the group velocity and is related to derivatives of
the dispersion relation (24): &" ———

& j sk ——1/Vg (td).
Solving Eq. (32) shows that the envelope ap propagates
with the group velocity on the (zi, ti) scales and the en-
velope energy IapI is conserved. We have ap(zi, ti, z2) =
ap(si, z2), with the retarded time si.

td —ck(td)
bp(ti) = ap(ti).td+ck td

(27)

1
si = ti — z~.

Vs (td)
(33)

Since ap(ti) was choseii to depend oil oilly ti, theil at
the boundary, aQ must depend on only t z. Away from the
boundary, ap may also depend on zq, z2, but cannot de-
pend on t2. The transmission and reflection coefficients
(26,27) appear to be the standard linear results for har-
monic waves. However, they have been generalized to
include arbitrary slowly varying pulse shapes that are
parametrized by the ti scale. The (zi, ti) scales will not
enter only as parameters in the O(e) calculation. There
they will have to be treated as independent variables that
will help eliminate secular behavior.

B. The O(e) problem

The electric field and polarization in the medium sat-
isfy the following O(e) perturbation equations:

The O(e) problem in the medium with bounded peri-
odic terms becomes

LO(@ )
2 0 2i(k((u)zp —~to)

g2 4 2f2 2

Bt' ' (td' —cd' )'
(34)

The pp source term remains bounded because the expo-
nential phase factor with 2k(td) zp —2tdtp dependence does
not give the dispersion relation (24) when td is replaced
by 2td. This is because 2k(td) g k(2td). The polarization
source pp excites a second harmonic in the medium. The
electric field E~ is composed of a homogeneous solution
and a particular solution at the second harmonic. The
electric field Eq also has a source term at the interface
at the fundamental harmonic. This will be shown when
the boundary conditions will be applied. We let Ez in
the medium consist of

82

tp
(28) Eg ——EgH + Egp) (35)

I g2+tdo lpi= i@i Po
q c)tp2 ) c)t i c)to

(29)

The operator L( ) was defined in Eq. (21) and L( ) is
defined as

( . t ) i(k(2')zp —2')tp)
jH —ai(2) (zy Z2I ])e

)
i(k(ur)zp —~to) + (36)

with EqH ——unknown homogeneous solution and Eqz ——

known particular solution,

g4 g4 404L('):— —2e2 —2C 2 +
BZP t9zy Otp OtP BZQ sty t9t() Ot y

0( i) i(2k(~)zo 2~to) +-
3td' (id 2 —td')

(37)
2 2 02—2c + 2(tdp + f)

BZQOZy Otp

Otal

(30)

The L( )Ep term in Eq. (28) acts as a forced source
term which satisfies the I ( ) operator. It will grow as Oe'

with () = k(td)zp —tdto unless it is eliminated. Therefore
set

I Ep ——(~) QD ap BD Oap . z(kQp ~t 0se ' +c.c. = 0.
Bk Oz, 0~ 0t&

(31)

After substituting the form (23) for Fp into (31) we then
differentiate out the known (zp, tp) behavior given by the
exponential phase factor. The coef%cients of every expo-
nential phase factor must be set to zero. Therefore Eq.
(31) becomes an envelope equation so that ap obeys the
following first-order linear partial difFerential equation on
the (zi, ti) slow scales:

i2c[k(td) —tdk'(td)] c)ap(t )i
1(1) tl —ai(i)

[cd + ck(td)]2 c)t,
(38

Similarly for the second harmonics we have

—8fao(ti)
3[2td + ck(2cd)][id + ck(td))(tdp2 —td2)

' (39)

In Eq. (36) the envelopes ai(2), ai(i) are unknown. The

exponential phase factors satisfy L( )E~H ——0. In Eq.
(37), ap is already known from O(1) theory.

We finally match the electric fields in free space and
the quadratic medium at the boundary z = 0 to find the
above unknown envelopes. The boundary conditions (11)
and (12) are expanded to O(e). Applying the boundary
conditions for the fundamental harmonics in (Ei, Ei), we

find
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4 c[2k(~) —k(2~)]fap(ti)
b12 tl

3 [2~ + ck(2~)] [a) + ck(cu)]2(~2 —~') (40)

Now both Ei given by (20) and Ei given by (35) are

completely specified by the given incident field ap(ti).
The polarization pq must be determined since it will enter
as a source term at O(e ). From Eq. (29) we find that
pq is the sum of the following terms:

pi (~2 ~2) 2 ~2 4~2 ~2 ~2 4~2 ((g) —(gj ) l9ti c)tl

f '[k(2 )zp —2~tp] +
2 4 2 al(2)e ~2 ~2 ) 3~2(~2 ~2) (~2 4~2)
p

—i8 f2f z —i[&(2w)zp —2utp] + ( ) +
4 2 ~(2) 2 2 3~2(~2 ~2) (~2 4~2)

p

(41)

C. The O(e2) problem

We need to determine the secularity conditions for each harmonic of the following equation:

82 c)3 82 2

L("&2 = L"Ei + L("&o —2 2 (pipo) —p 3po —2
Btp Btp Btp ti

(42)

We do not need to expand the oscillator equations or boundary conditions since they will not be used. Here L(o) and
I(i) were defined respectively by (21) and (30). The operator L(2) is given as

L(2) = g4 g2 g4 40 02
—2c —2c UJp

—2c' , + 3 + 2(~p y f)
(]9tp BZPOZ2 t9ZP ([9Z2 OtP t9Zp Bt2 Btp Ot2 t9tP t9t2

g4

Ot20Z2

(43)

The terms that are secular in the medium have to be set
to zero. This means from Eq. (42) that

0 03
L( )E + L( )Eo —2 ( ) — = 0 (44)

t9tp2 Otp3

for second harmonics with e'I"~ ~)" ~ 'j phase factors
and fundamental harmonics with e'I"~~)" ~"j phase fac-
tors. It is easily shown that the secularity condition gives
the result that aq~2) propagates at the group velocity of
the second harmonic. However, the secularity condition
for the fundamental harmonic will provide the most inter-
esting result. We have a little work to do in simplifying
Eq. (44). First of all, in the pipp term we are inter-
ested in only terms with proper phase. We multiply pz,
as shown by Eq. (41), by po given by Eq. (25). We
keep terms with phase 8 = k(w)zp —Ldtp. We find from
Eq. (41) that only the two e ' terms and the dc term
in pq will contribute to the pqpp product that has the
proper phase. Note that pq contains terms from Eq and

po, as seen by Eq. (29). Ei itself has terms proportional
82to ~, pp, so only contributes second harmonics. The pp0

]

term contributes second harmonics and a dc polarization.
After some algebra and collecting terms with e'g phase,
we are able to show that

0 2f (ur —6~ )
2(pipo) =, , '

2, 3 2~ao~'ape*'
t9t~p

The p~ term has quadratic polarization effects as solu-

tions, so that when pq is multiplied by pp, we End that

pqpp can align itself with e' phase.
Determining L(2) Ep also requires work. Using (43), we

at first differentiate out the (zp, tp) dependences, trans-
form from (zi, ti) to gi coordinates, and after extensive
algebra the result is

(45)

(2) zg . (OD C)ao OD C)ao ) zge'
I, Bk Bz2 B(d Bt2 j
1OD c)2k i' o)2 l,g

2 Bk 0~2 I, Bgi

The (zp, tp) behavior can easily be difFerentiated out of
the L(i)Ei and damping terms in Eq. (44). Therefore,
Eq. (44) reduces to the following envelope equation:

OD 0
Z

Bk OZy

0D 0 . OD 0
~(~)

OD 0 1I9D 02k 02

Ba Ot2 2 Ok Ou2 082

2 ~f (~o 6~ )~ 2 &~'Vfap+—
3 ]ap~ ap — = 0. (47)

((ur —u) ) w )
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2f ((dp —6pl )
4 ap ap

6c k (pi —pi )

ippi fap =0
2czk (~2 —iv2)

Here ap was assumed indePendent of t2. If ap did dePend
on tz, Eq. (48) can be transformed to coordinates mov-

ing with the group velocity so that t2 drops out. From
this multiple scale derivation, we find that the applied
single input wave [with O(1) phase matching require-
ments for inefficient harmonic generation] propagating in
a quadratic nonlinear material exhibits self-modulation.

This result in quadratically nonlinear dielectric mate-
rials may also be used for pulse shaping and compression
as it has been used for the usual cubic materials; this
is discussed in Sec. V. The SVEA never obtained this
result because it is restricted to only O(e) perturbation
theory whereas MMS may be computed to any-order per-
turbation in a self-consistent manner. Here we proceeded
to second-order perturbation theory to obtain the domi-
nant asymptotic far field evolution equation, which is the
nonlinear Schrodinger equation represented by Eq. (48).
This is the main result of this paper. The quadratic
nonlinearity forces us to examine secularity conditions
at O(es) which in turn forces us to consider the possi-
bility of a propagating "rectified" electric field that will

constitute a small correction to the intensity-dependent
refractive index of Eq. (48). We will show that this cor-
rection term may be neglected for most cases of physical
interest in optics.

D. The dc electric Beld boundary value problem

At third-order perturbation theory we have 2&,, I»I
1

as a dc polarization source term. If we allow the O(e) field
E1 to have a dc component in addition to the fundamen-
tal and second harmonics, we can balance the polariza-
tion term to obtain the following secularity condition:

L"'Eia. = 2, I»I'
1

(49)

This will ensure that the O(e ) field will remain bounded.
The Ei~, term is independent of the (tp, zp) scales so

that only part of the Ll2l operator defined in (43) with

We notice that the O(1) field ap is also a solution of Eq.
(32), which contains the same operator ( && &

—
& &~ )

that is in front of the O(e) field ailil term. Thus, in Eq.
(47) we can consider terms in ap as a resonant forcing
term. In the medium at O(e2) we have a secularity where
ap acts like a source term for ailil on the (zi, ti) scales.
For a1~1~ to be bounded, the "coeKcients" in front of ap
should vanish. Otherwise, a1~1~ grows as z1ap. Eliminat-
ing secularity on the (zi, ti) scales, we find that ap obeys
the nonlinear Schrodinger equation [4], which we define

by the operator S+(ap):

. ( 0 1 0 l 1 8'k 0'

derivatives depending on only (zi, ti) is used. The secu-

larity condition may be rewritten as

and

BZ1

1 0
V t1

1dc—
2 t9

, , ~, I»(»)I'
e2wp Ot1

(50)

2 2e (dp
v ~o+f (51)

We notice that the left-hand side of Eq. (50) for the

E1d, field is a dispersionless wave equation in the limit
as pi —i 0. The speed of propagation v given in (51) is

independent of u and is equal to the phase velocity

and group velocity
&&

in the limit as ~ m 0.
We have to be careful in applying the limit as w ~ 0

in Eqs. (50) and (51). Remember that (50) was ob-

tained from the fourth-order equation (II), which in turn
was constructed in part from the oscillator equation (7),
which is inherently restricted to the visible frequencies.
The dielectric medium has several resonance bands which

may be represented by a set of oscillators with each os-

cillator corresponding to a region near a particular reso-
nance band. The physical mechanism responsible for the
resonance depends on the frequency range. For exam-

ple, infrared resonances are due to molecular vibrations
whereas optical resonances occur because of electronic
displacement. As the frequency decreases, the refractive
index increases and so does 1/v across a resonance band

[28]. This is quite different from the dispersion mecha-

nisms arising from water wave theory. Even though v in

(51) was derived from parameters in the visible regime,
we allow the parameters to change depending on what
frequency regime we are in. We define v such that

1 n(pi)
v e

(52)

and n(pi) is the refractive index at pi. Here we pick pi

corresponding to the inverse of the input signal pulse
width. That is, w is the bandwidth of the pulse. There
is no well defined carrier frequency for the rectified elec-
tric field so that u is an upper bound for the frequency
components which in turn gives a lower bound on the in-

verse of v. If the spectral distribution of the electric Geld

is known, then a frequency corresponding to the centroid
of the wave packet may be used in place of the carrier fre-
quency, and the value of this &equency should be smaller
than the total bandwidth. Thus the limit u —+ 0 actually
means u —+ u, where w « u. For example, if we have a
1-ps pulse, then ~ ~ 10 Hz, which is about three or-
ders of magnitude smaller than the carrier frequency in
the visible regime.

The general solution of (50) will consist of a forced field

propagating at Vg(w) and a homogeneous term propagat-
ing at v. The homogeneous terms must be determined
from the boundary conditions that come in at different
perturbation orders.

Three difI'erent perturbation orders were utilized to ex-
tract the signaling problem for the rectified electric field.
For Vg(~) g v, the solution to Eq. (50) and boundary
conditions imply that the electric field in the medium is
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Eid. =
—2 V

Vg (u
lpo(») I'—

V~(~) v2

c -t Vg(~) f 1
PQ ti Zlv+c ( v )

(53)

with si defined by Eq. (33).
The corresponding reflected field in free space is then

1
E~~

V~(~) v

2 5 c(v —Vg(~)) Z$X~-, 2
'

P() t+-
(c2(do2) Vg((u)(v+ c) c

(54)

For many materials the v, ( )
——, factor will be

a large quantity since n{u) increases as (d crosses lower

frequency resonance bands and we are far away from op-
tical resonances; in fact —,&& v, ( )

. This means that the

Eqg, and Eqg, fields are small when compared to other
O(e) terms and may be neglected.

The Eis, terms given by (53) imply extra terms will

have to be included at O(e ) for the product pipo since it
will now have terms proportional to Eyd pp. This means
that at O(e ), the nonlinear Schrodinger equation (48)
defined as S+(ao) is corrected to

(oo) + 4 4 2 2 4
. lao(si)l ao(si)

lCC Q)0 (d0 —(d 1 1
V2(~) v~

= O. (55)

Note also that the Eqg, Geld helps drive the Eq field at
the fundamental harmonic so that ai(i) given in Eq. (38)
is corrected to

2j ~'v(c+ Vg(~)]ao(a, ) J*' ~a, (s, + ~ ( )) ('dz
Qi(i) = Qi(i) (si) +

~"~D~(~o —~')' (» '~.
~

—+) & (~)("+ ')
(56)

where the variable si is defined in Eq. (33). The ai(i)
term is the uncorrected homogeneous solution. The sec-
ond term in (56) is the corrected forced term and it is
small compared to the other boundary terms at the inter-
face for the fundamental harmonic of the Eq field. Note
that the forced term in Eq. (56) was neglected when
obtaining Eq. (38) &om O(e) boundary conditions.

We will examine under what conditions the O(es) cor-
rections can be neglected after we convert the dimension-
less Schrodinger Eq. (55) back to physical variables.

IV. THE NONLINEAR SCHRODINGER
EQUATION AND PHYSICAL PARAMETERS

I

that Eq. (55) may be rewritten as

(57)

+3/)fi

c'2I(."(ur' —u) '2) 2 (58)

and has units of m i. The parameters p and g are re-

spectively defined as

Each variable in Eq. (57) now has the appropriate phys-
ical dimensions. The electric field E' has units of V/m.
The absorption coefficient 0 is defined as

Second-order perturbation theory was used to derive
the nonlinear Schrodinger equation, Equation (48), which
is the main result of this paper. A small correction term
due to third-order perturbation theory was then added
to the Schrodinger equation that resulted in Eq. (55).
Equation (54) difFers slightly &om Eq. (48) only in the
intensity-dependent re&active index. We will show Eq.
(55) reduces to Eq. (48) for most cases of physical in-
terest by changing &om dimensionless units to physical
variables. The dimensionless coefficients of the nonlinear
Schrodinger Eq. (55) may be dimensionalized and trans-
formed to characteristic physical parameters that de-
scribe the medium. At first substitute the variables (de-
fined in Sec. II) z2 ——e z'/Z, 8i = eT /T, a() ——E'/Ee,
and (d = ~'T back into Eq. (55). Then multiply by e
(also defined in Sec. II) and perform some algebra so

p d(2~) 04 - 2 (
42 4~'k2)2(~42 6~+2)

3 ~* ~*'k*c*'
p 0

(59)

6u p 0

((us —6(u* )c' 1
v~2( «)

(60)

(2 )
dNe3

2rri2(~+2 ~+2)2(~+2 4ld» )Es
(6I)

The parameter g denotes the third-order perturbation
correction to the effective refractive index coefficient P.
The parameter P was obtained &om second-order per-
turbation theory and has in it, the coefficient of second
harmonic generation d( ) "squared. " We used the result
&om Ref. [27]:
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We would like to examine the size of g (due to third-order
perturbation efFects) for a typical nonlinear material such
as potassium titanyl phosphate (KTP). We use the fol-
lowing material parameters [29,30]: ~„' = urs = 7.9 x 10
Hz and v* = c' /15. 4 (at iv 10 Hz). Here we assume
that the value of cu does not change much from the gi-
gahertz to the far infrared regime because there are no
resonance bands in between.

The given carrier frequency ~* = 1.78 x 10' Hz so
that V2(~') = c* /3. 486. We find the value of g in Eq.
(57) to be g = 0.037. Thus g « 1 so that for the given
operating frequency, we can neglect this term. We expect
that [,—&, l „l] will remain large for cases away from

material resonances.
It turns out that the Big, Beld obtained from third-

order perturbation theory is a small effect. Therefore,
second-order perturbation theory is suKcient enough to
capture the essential nonlinear behavior of the system
away from any material resonances. We will ignore the
effect of g as we did in Ref. [5] and design experiments
to test for self-modulation effects due to the P E[ term.

In order to observe self-modulation effects from the
material s quadratic nonlinearity, we are interested in
y~ ~ media where

n2k*p»
n

(62)

That is, we are interested in materials where the "'" fac-
tor arising from the materials intrinsic cubic nonlinearity
is negligible compared to the effective index coefficient P
arising from the quadratic nonlinearity. The "'" term is
derived from a cubic polarization instead of a quadratic
one in Eq. (7) or (14). Replacing ep2 by e2p in Eqs. (7)
and (14) and performing the same multiple scale analysis
as before, we find that the intrinsic nonlinear refractive
index coeScient is

3 ( e,'b & ~„* (u)*'l
n2

2 (&'e') (~o' —~")' (c*"*)

This nonlinearity usually arises in centrosymmetric ma-
terials such as optical fibers. Here eo is the permitivity
of free space and b is the cubic nonlinear restoring force.

V. PROPOSED EXPERIMENTS

We present a small list of experiments that can be per-

formed to demonstrate self-modulation in y~ ~ materials
for propagating single input waves that are not phase
matched. The experiments and solutions already devel-

oped for optical fibers [24, 25] may now be applied to y~ l

materials.
One experiment that may be performed is to determine

under what conditions spectral broadening may occur.
If the input pulse is wide and depends on the t2 scale
instead of t~, so that the group velocity dispersion term
is neglected, we find that instead of Eq. (57) we have

The solution to (63) is given in Ref. [25] and will not
be presented here. We keep in mind that Agrawal used

arising from y~sl materials instead of P. In order
n

to utilize his solution, we replace " with P. The so-
lution to (63) gives rise to an intensity-dependent phase
shift. Spectral broadening is a consequence of the time
dependence of the phase shift.

Experiments for demonstrating the existence of bright
soliton and dark soliton envelope propagation may be
performed for suKciently narrow input pulses that de-

pend on the ti scale. Here we must take into considera-

tion whether the product (— ", ) and (—P) in Eq. (57) is

greater than or less than zero. For a product greater than
zero we have bright soliton propagation. For a product
less than zero we have dark soliton propagation. Soliton
solutions to Eq. (57) are presented in Ref. [24]. In order
to utilize them, we replace "'" by P.

Self-steepening and pulse peak flattening may be ob-
served for a bright pulse incident upon a medium where

the product of (— ", ) and (—P) is less than zero. This
effect deforms a Gaussian shaped pulse into a nearly
square pulse. The resulting square pulse can be passed
through a dispersive delay line to compress it.

Equation (57) was the result of an infinite plane wave

propagating in a dispersive nonlinear material. It is a
one-dimensional problem. However, if diffraction effects
are included to account for finite beam radius, we should
be able to observe self-focusing or self-defocusing of the
beam for input wave envelopes with a radial Gaussian
profile that is independent of time. Here group velocity
dispersion is neglected.

A study of how the combined effects of dispersion and
diffraction versus nonlinearity may be performed. Vari-

ous stability problems may be investigated. We expect
that for KTP, the dispersion and nonlinearity are nega-
tive with respect to the diffraction term. The possibility
of observing symmetric spatial-temporal collapse of the
pulse or "light bullets" (pulses that propagate without

change in temporal or spatial shape) as suggested in [31]
will not be possible unless u* ) uo. Then the disper-
sion, diffraction, and nonlinear terms are all positive so
that there is symmetry between the time and spatial vari-

ables. However, since u* is greater than the resonance

frequency, we are in the ultraviolet region and expect
a lot of absorption. The problems involved in the vis-

ible spectrum will always have positive diffraction and
negative dispersion. The nonlinearity may change sign

depending if w* is greater than or less than ~.
Out of this list of experiments to demonstrate self-

phase modulation in y~ ~ materials, we consider only two

experiments in more detail. We will provide conditions

for (temporal) bright soliton propagation in KTP and

calculate a soliton length. We then briefly show that for

the same carrier frequency used in the soliton problem,

a beam of finite aperture in KTP self-defocuses.

We decide to put Eq. (57) in standard normalized form

by de6ning the following variables:

(63)
[

E* —/3[E'/ E' = E*-
((9z* Vg((u) Bt') 2

9~k*
T z*, (64)
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T 7

q
—=T

t947

and substitute them into (57) to obtain

(65)

(66)

1.78 x 10 5 Hz. The absorption coefficient is given
as o = 0.6/m. at our chosen wavelength. The coef-
ficient of second-harmonic generation is also given as
d~ l = 13.7 x 10 m/V. In order to launch a soli-
ton, the nonlinear term in Eq. (57) must be greater than
the absorption coefficient. Thus, we have the condition

.Oq 1 k*"
2 ——
B( 2 ~k*"] B82 q —

~q~ q = —itrq,

with

OT

2ik*"]

(67)

(6S)

The variable T is the chosen pulse width. For bright soli-
yll

ton propagation, we must have (—~k„~)(
—1) ) 0. We also

assume that o (( 1, but o g 0. Under these conditions,
it is well known that a damped soliton solution may be
obtained using perturbation theory on the inverse scat-
tering transform [24]. However, for o = 0, the standard
undamped one-soliton solution

q = M sech (Ms). (69)

We now estimate a soliton length for the undamped soli-
ton. If the input pulse has M & 1, then the sech solution
of (57) is periodic in ( with period (8 ——2. Using this
fact, we rewrite (64) as

vr 2
Bk'

2 0(d
(70)

02k*T' = P-'E*
~2 0 (71)

To compute the soliton length, we substitute (71) into
(70), since P, Eo, and k*" are known. Note that

with zo the soliton period and efI'ective material length.
From (70) we see that ze depends on the pulse width T,
which is related to the peak amplitude as seen from (66).
We now let M = 1 and assume the fundamental solution

q = sech 8. The peak power of E' is Eo and from (66)
we find

2
(74)

g4 g4 g2 g2

B2B2 B4 B2 B2

Substituting in the material parameters given by the
absorption and the second-harmonic generation coefB-
cients at the applied frequency, we find that (74) becomes
(in MKS units) ~E'~20.694 x 10 ) 0.3; the electric field
must be at least 6.5 x 108 Vm i to satisfy this condition.
We choose the electric field E' to range &om 5 x 10 to
10 V m so that the absorption has negligible effects
on the soliton. We note that KTP can withstand 10
Vm i because the damage threshold is 30 GW/cm2 for
30-ps pulses at a 10-Hz repetition rate.

For KTP we find ' . = 1.83, k*" = 1.87 x 10
and P = 0.694 x 10 s. Thus for Eo ——5 x 10 V/m,
then T = 0.1 ps and the soliton period zo = 8.9 cm.
If Eo ——108 V/m, then T = 0.052 ps, and zo ——2.3
cm. These lengths are longer than that for eKcient
second-harmonic generation. Usually, harmonic gener-
ation lengths are about 5 mm. We should be able to ob-
serve self-modulation eEects in non-phase-matched y~ ~

materials that are several centimeters long. If lower in-
tensities are used, then we require a quadratic nonlinear
material with lower absorption. There is a great deal of
activity in developing materials, especially polymers that
have low absorption, high damage threshold and large
quadratic nonlinearity. Thus in the near future, y~ ~ ma-
terials may find other uses in optical signal processing
besides wave mixing.

We shall investigate under what conditions an incom-
ing cylindrical beam of finite aperture will self-focus
or self-defocus in KTP at the applied frequency ~'
1.78 x 10 5 Hz. The following dimensionless equation de-
scribes a beam of finite but large aperture propagating
in the medium:

k e/I
~e2~p [3~@2 + ~e2] (~@2 ~@2) c k ~e4~p3

Cy(~p2 ~g2)4 (c k
)

(72)

2 2 B 2 2 B 2~ 2
3p —«

I B 2+~8 I vi E.
Bt2 Bts (Bt2 )

(75)

nz
2

+2@42 —2.31 +
1 QJ

, =2.31+
(0 238) td 2 ~+2

A

(73)

From the refractive index, we see that the resonance fre-
quency and the plasma frequency are the same wo

7.9 x 10 Hz. The applied frequency su*

Material properties for KTP are obtained from Bierlein
[29]. We find that near the prescribed wavelength A =
1.064 pm, the linear refractive index in the z direction is
given as

82
Diffraction is now included by the g &E = ( &„, + —, &„)E
term in (V). The boundary-value problem and multiple
scales expansion is the same as before, but we assume
that the incoming wave is continuous and has a cylindri-
cally symmetric radial profile so that

g( )
x[k(ur)sp (utpj +— (76)

The slowly varying envelope is time independent but de-

pends on the slowly varying coordinate z2 ——e zo and2

radial coordinate r After applying .O(e2) multiple scale
theory and converting to dimensional coordinates, we

find
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By examining Eq. (77) we see that the nonlinearity and
diffraction terms have opposite signs. At the given fre-
quency, P ) 0 and the beam self-defocuses.

VI. SUMMARY AND DISCUSSION

MMS is a useful technique that can be applied to physi-
cal systems with weak nonlinearities to extract the dom-
inant asymptotic equations. One may proceed to any
perturbation order in a self-consistent manner. Using
MMS, we were able to derive the nonlinear Schrodinger
equation for a single input wave [with O(l) phase mis-
match] propagating in a dispersive quadratically nonlin-
ear optical material. We were able to solve the signaling
problem for any time-dependent input pulse shape. We
assumed three time and distance scales and proceeded to
second-order perturbation theory. This resulted in Eq.
(48). A correction term due to an O(e) rectified electric
field was shown to come in at third-order perturbation
theory, but the term was neglected because of its small
size. Therefore Eq. (55) reduced to Eq. (48).

Changing from dimensionless to physical variables,
it was shown that the nonlinear Schrodinger equation,
Eq. (57), has an effective nonlinear refractive index
that is proportional to the second-harmonic coefficient
d~ ~ squared. Therefore self-modulation effects may
be observed in materials that generate y~ ~ wave pro-
cesses. Conditions for soliton propagation in KTP, self-
defocusing, and spectral broadening were given.

Our results encourage new experiments to be per-
formed to test the validity of the theory developed
by MMS. New technological applications may arise for
quadratic nonlinear materials due to the existence of the
nonlinear Schrodinger equation. The same multiple scale
expansion just presented may be used to analyze multiple
input wave problems. If two O(1) input waves at difFerent
carrier frequencies and O(1) phase mismatch are propa-
gated in a quadratic material, then coupled nonlinear
Schrodinger equations, analogous to cross-phase modu-
lation equations of fiber optics, are obtained at second-
order perturbation theory [4].

For O(1) phase mismatch, cubic-type nonlinearities are
obtained. On the other hand, if the two O(1) waves
have O(e) phase mismatch, typical three-wave interaction
equations are obtained. However, depending on the pulse
width, at second-order perturbation theory, group veloc-
ity dispersion terms may be included. The equations then
take the appearance of coupled nonlinear Schrodinger
equations with quadratic nonlinearity which are difFerent
from the cross-phase modulation equations. For O(e)
phase mismatch, the quadratic nonlinearity dominates.
Thus, depending on the phase mismatch, two input waves
may behave as though they were propagating in a cubic
or quadratic nonlinear medium.

Under appropriate physical conditions, MMS may
be used to show that optical bistability may exist in

quadratic nonlinear materials. Second-order perturba-
tion theory shows that the polarization undergoes a hys-
teretic jump as the field is varied [4]. This problem is
analogous to the intrinsic optical bistability in cubic non-
linear materials studied by Haus et aL [32].

All problems considered so far assumed the electric
fields were far away from material resonances. As the
frequency of the electric field approaches a resonance,
the MMS expansion breaks down because the wave num-
ber k depends strongly on the field amplitude [4]. The
behavior is that of a saturation-type nonlinearity. In this
asymptotic limit, the nonlinearity is is used to limit the
growth of the resonance singularity. Damping is not re-
quired. The problem must be analyzed using Whitham's
averaged Lagrangian method [23] or Luke's method [33].
These techniques are useful for analyzing the slowly mod-
ulated envelopes of waves propagating in media with
strong nonlinearity.

MMS may also be used to derive the Boussinesq and
the Kortewig —deVries —Burger equation under the appro-
priate asymptotic limits [34]. Soliton solutions for these
equations are for the total fields and propagate at the
phase velocity. This is in contrast to the envelope solitons
propagating with the group velocity encountered with the
Schrodinger equation. It is interesting to note that Eqs.
(7) and (14) are analogous to the Boussinesq equation
and also have soliton solutions.

MMS is a very general technique that can be applied
to physical systems to extract the dominant asymptotic
equations for various asymptotic regimes. It provides
some alternative results when compared to the conven-
tional SVEA. The results obtained here should provide
impetus for further work, in optics, on MMS as a useful
and systematic method. The physical theory developed
from MMS suggests new signal processing applications of
quadratically nonlinear materials.

Note added. Since this article was submitted for pub-
lication several papers reporting phase modulation [35,
36] and lensing effects [37] have appeared. All the papers
that have appeared to date treat the steady-state situ-
ation. Our results cover the dynamic properties of y~ ~

materials using a systematic expansion procedure. The
steady-state experiments demonstrate that the effective
y~ ~ nonlinear response can be quite large for these ma-
terials. In the Introduction we discussed the works of
DeSalvo et al. [6] and Belashenkov et al. [7], which
consider boundary-value problems with the steady-state
lossless medium framework, whereas our problem is a
time-dependent process and has little in common with
the steady-state case with eKcient phase matching. The
outcome of our paper leads to physical phenomena differ-
ent from these papers, as explained in the Introduction.
These papers would more appropriately be discussed in
the context of two-wave problems [4]; this will be the
topic of a future publication.
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