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A simple scheme is presented that allows the generation and detection of nonclassical states of the

electromagnetic (em) field with controllable (predetermined) photon-number and phase distributions. It
is based on the two-photon resonant interaction of a single em field mode in a high-Q cavity with initially

excited atoms crossing the cavity sequentially (one at a time). The sequence duration should be much

shorter than the cavity-mode lifetime. Nonclassical states of the field are generated conditionally, by

selecting only those sequences wherein each atom is measured to be in the excited state after the interac-

tion. The field distribution resulting from a sequence of X such measurements is peaked about 2X posi-

tions in the phase plane, which evolve sinusoidally as a function of the atomic transit times and are

therefore simply controlled. %hen these peaks are chosen not to overlap, the field state constitutes a

generalized Schrodinger cat. By choosing them to overlap, we can make parts of the field distribution

strongly interfere, giving rise to decimation of the photon-number distribution. In particular, this pro-

cess can prepare Fock states with controlled photon numbers. The generated phase distribution can be

detected by monitoring the pattern of revivals in the excitation of a "probe" atom.

PACS number(s): 42.50.—p, 42.52.+x

I. INTRODUCTION

A major effort has been directed towards the genera-
tion of nonclassical states of the electromagnetic (em}
field, in which certain observables exhibit less fluctuations
(or noise) than in a coherent state, whose noise is referred
to as the standard quantum limit (SQL). Nonclassical
states that have attracted the greatest interest in recent
years include (a) macroscopic quantum superpositions
(MQS) of quasiclassical coherent states with different
mean phases or amplitudes, nicknamed "Schrodinger
cats" [1—3], (b) squeezed states [4,5], whose fiuctuations
in one of the quadratures or the amplitude are reduced
below the SQL, and (c) the particularly important limit of
extreme amplitude squeezing, namely, Fock (photon-
number) states [6].

The interaction of one atom (at a time} with a single
mode of a high-Q cavity yields a variety of spectacular
nonclassical field effects, among them sub-Poissonian
photon statistics (intensity noise reduction below the
SQL) that have been demonstrated experimentally [7].
By contrast, neither Schrodinger cats nor Fock states
have been observed as yet. Most theoretical schemes that
have been suggested for the realization of these "fragile"
states are based on the fundamental Jaynes-Cummings
model (JCM}, which pertains to a two-level atom, in-
teracting with a single quantized field mode [8—12]. This
class of schemes includes (a) generation of Schrodinger
cats by many atoms initially prepared (by a n /2 pulse) in
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a polarized state whose sequential transit through the
cavity gradually builds up an approximate trapping state
of the field, described by a superposition of the vacuum
and a number state [12]; (b) generation of a Schrodinger
cat with a ~ phase difference, via the remarkable disen-
tanglement of the atomic and field states, for an atomic
transit time that is exactly half the time period between
collapse and revival of the oscillations of atomic popula-
tion inversion [13,14]; (c) generation of a Fock state by
sending a sequence of excited atoms into the cavity and
counting the number of atoms that have emerged in the
excited state [6]. The limitation of this method is that it
does not predict the eventual Fock state, but only the
probability of its occurrence.

A recent approach, capable of yielding both
Schrodinger cats and Fock states, is based on the detec-
tion of the dispersive field-induced phase shift acquired
by the initially polarized state of nonresonant atoms in
the cavity [15]. The random variation of these phase
shifts with the atomic transit time (velocity) in a sequence
of such measurements results in repeated splitting of the
phase-space field distribution and interference between
the split parts. The first step in the sequence yields a
phase-difference Schrodinger cat, while subsequent steps
gradually lead to phase diffusion and decimation (through
interference) of the photon-number distribution, converg-
ing to a Fock state. Like the method of excited-atom
counting described above [6], the random-phase-shift
method cannot determine in advance the eventual Fock
state.

In this paper we propose a scheme that allows the gen-
eration of a variety of nonclassical field states with con-
trollable (predetermined) photon-number and phase dis-
tributions. It is based on the generalization of a recently
proposed generation of Schrodinger cats with contro11-
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able phase difference, by a conditional measurement of
the atomic excitation (i.e., selection of excited-state out-
comes), following its two-photon resonant interaction
with the cavity field [16]. This generation is a result of
the correlation between the selected atomic state and the
cosinusoidally evolving Fock-state components of the
Geld. The linear n dependence of the n-photon nutation
frequency between the lower and the upper atomic states
is responsible for the periodic, regular field evolution in
the two-photon resonant model. Here we consider se-
quences of such measurements. Each measurement splits
the phase-space field distribution created by the previous
measurement into two identical parts whose mean phase
difference is controlled by the atomic transit time. The
Geld distribution, resulting from a sequence of N such
measurements, is peaked about 2N positions in the phase
plane, which evolve periodically as a function of the
atomic transit times, and are therefore simply controlled.
When these peaks are chosen not to overlap, the field
state constitutes a 2N-component generalized
Schrodinger cat. Alternatively, by choosing them to
overlap, we can make parts of the field distribution
strongly interfere, giving nse to decimation of the
photon-number distribution. One of the main achieve-
ments of this method is the efficient generation (by rather
short atomic sequences} of preselected Fock states. It
should be noted that nonclassical field generation by mea-
surements of an atomic state has been considered by
Agarwal et al. in a very recent work [17] concerning
three-level atoms interacting with two fields, and result-
ing in a phase-squeezed state.

Another problem addressed by the present treatment is
the detection of the nonclassical states described above.
The detection scheme of Schrodinger cats in a cavity that
has been previously proposed [15] is rather involved.
Here we extend to many-atom sequences the suggestion
of Refs. [16] and [18] for a one-atom Schrodinger cat
detection. It is shown that the lumpiness of the generat-
ed rnultipeak phase distribution can be detected by moni-
toring the time dependence of the revivals in the excita-
tion of an additional N+1 "probe" atom, following the
sequence of N atoms that have generated the field state.

In Sec. II we review the results for "cats" created by
one and two atoms, and then calculate their photon-
number and phase distributions. In Sec. III we consider
the generation of various nonclassical states by two types
of conditional measurement sequences, namely, fixed
interaction-time sequences, and sequences of decreasing
interaction times. We then study the detection of the
phase distribution by a "probe" atom. Finally, we con-
sider the unavoidable effects of atomic velocity spread,
thermal noise, and detection efficiency. Section IV sum-
marizes the conclusions.

at a time inside the cavity, and that the Q factor of the
cavity is sufficiently high so as to neglect dissipative
effects. Since our aim is to generate nonclassical field
states (such as Schrodinger eats) that have n photons on
the average, the effective relaxation time is the cavity life-
time reduced by a factor of n [11,19,20]. Hence, dissipa-
tion will be negligible for a sequence of atomic interaction
times whose total duration is considerably shorter than
this effective relaxation time. These requirements have
been met in experimental situations realized in Ref. [7].
We consider two-photon resonant transitions in a cascade
between atomic levels ~e )~ ~i ) ~ ~g ) (Fig. 1) such that
the photon frequency co satisfies co, =2~, whereas the in-

termediate transition frequencies co„and co; are strongly
detuned from co by b, /2=co co„=co—; —co. An impor-
tant feature of these transitions is that the respective
Rabi frequencies (per photon} Q„and Q, give rise to the
Stark shifts (n+1)Q„/b, (for the first transition) and
(n +2)Q,z/b, (for the subsequent one). These Stark shifts
can effectively counter the detunings +6/2. Neverthe-
less, the intermediate state ~i ) can remain unpopulated
during the interaction times t, , and therefore be eliminat-
ed, provided that [21]

((m, j=1,2, 3, . . . , K . (2.1)

Here Q„ is the frequency [22] of the two-photon Rabi nu-

tation corresponding to an n-photon Fock state between
the ground ( ~g ) ) and excited ( ~

e ) ) states:

0„=A +nB,
where

A =(Q„+2Q~~s)/b„B =(Q„.+Q;g)/b .

(2.2)

(2.3)

~%(0))=~e) g c (n)~n) .
n=0

(2.4)

We then perform a conditional measurement of the
atomic excitation on the final entangled state of the sys-
tern after the interaction. The particular conditional
measurement chosen here consists of selecting a sequence

The elimination of the intermediate state ~i ) makes it
possible to consider our atom as an effective two-level
system and use the solutions of the Jaynes-Cummings
model on substituting Q„[given by Eq. (2.2)] instead of
the ordinary Fock-state Rabi frequency, which scales as
(n+ I)'~ . Starting with an excited atom and an arbi-
trary state of the field, the initial wave function of the
system can be written as

II. GENERATION OF SUPERPOSITION STATES
BY INTERACTION WITH ONE AND TWO ATOMS

A. The model

The present model pertains to the interaction of an
atomic beam with a single mode of an electromagnetic
field in a cavity. %'e assume that there is only one atom

FIG. 1. Diagram of a two-photon transition via a cascade
("ladder" ) of two off-resonant dipole transitions.
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of atoms, all of which emerge in their upper state. Each
measurement in such a sequence is realizable with a high
efficiency by the field ionization technique [7]. As shown
in Ref. [16], the conditional measurement of the first
atom projects the entangled state of the system onto a
macroscopic quantum superposition state of the field (op-
tical Schrodinger cat).

B. Single-atom "cat"state

by a measurement of the atomic excitation results in a su-

perposition of coherent states with a phase controllable
by t, . This remarkable feature of the two-photon
Jaynes-Cummings model provides a rather simple scheme
for the preparation of macroscopic quantum superposi-
tions by measurements on a single atom.

Our particular scheme of conditional measurements is
used here only for convenience. Indeed, if the outgoing
atom were found to be in its ground state, then the state
of the field would have the form

The first atom evolves with the field for a time t, to a
state %(t, ), and we observe the excited state with proba-
bility [16]

00

l!(f(ti ) & g co(n)sin
QP( .=o

ln +2 & , (2.9)
2

Qn+2t,
P, =l&elqt(t, )&l'= g lc,(n)l'cos' (2.5)

lyf(t))&= g c, (n)ln &,
n=0

where

(2.6a}

1 n+2t1
c, (n) = co(n)cos

Pi
(2.6b)

are new coefficients for the field distribution. This
photon-number distribution lc, (n)l is normalized to uni-

ty, because the measurement is conditional on an excited
atom being observed. For the case of an initial coherent
state la &

co(n) =exp a a"
2 en! (2.7)

If we observe the state le &, then the corresponding field

state is determined by the normalized projection
&el'(t, )&,

pf(0)= f d a'P(a')la'&&a'l, (2.10)

has a distribution P(a') that is localized around the
coherent state la& with small normalized variances in
phase and amplitude. A laser (or maser) well above
threshold (yet well below the saturation limit) is a suitable
example. It is easily checked that the Q function

Qi(P, P') =—
& Plpf (t ) IP &

1

1
&yf(p, t, )lp—f(0)le(p t) ) &, (2.11)

where P, is the appropriate normalization for this case.
The field state (2.9) corresponds to a superposition analo-
gous to (2.8}. Hence, we only need to measure the atomic
excitation to obtain a Schrodinger cat.

In order to prepare a macroscopic superposition, we
can start at t =0 even from a mixed state of the field (see
Ref. [16]), as long as it is characterized by a narrow
quasiclassical distribution in phase and amplitude. This
means that the initial density operator of the field, when
written in the basis of coherent states la' &,

evolving from pf(0) of (2.10), consists of two diagonal
parts peaked around the states laexp(iBt, /2)& and

la exp( —iBt, /2) &. Each part is described by the initial

Q function rotated either clockwise or counterclockwise
by the phase Bt, /2.

The photon-number and phase distribution of a given
(instantaneous) superposition of the type (2.8) were inves-
tigated by Schleich, Pernigo, and Kien and Buick,
Uidiella-Barranco, and Knight [3]. Here we study the
dynamical evolution of these properties for our two-
photon resonant conditional "cat" state.

One manifestation of the nonclassical properties of our
cat state can be seen in its photon statistics: The mean
values & tt & and & it & are given by

i( A +2B)tt /2i iBt(/2
&

1 ~ae 1

2+P,
i ( A +2B—)t ) /2, iBt ) /2, —

+e ~ae

(2.8)

The ket vector
l ff (a, t, ) & is a quantum superposition

of two coherent states with a relative phase Bt&, and con-
stitutes an optical Schrodinger cat [3]. Thus the evolu-
tion of the system from an initial coherent state followed

when we choose a to be real. The expression (2.6a} can
then be rewritten as [using (2.2)]

a2

(1+exp[a [cos(Bt, ) —1]]cos[a sin(Bt, )+( A +3B)t, ]),
1

(2.12}

(nt, )'&=& ( i)t& +ip&f( t)l(a') a22lfli(t, ) &

a4=
& &(t, ) &

— (1+exp[a [cos(Bt, ) —1]]cos[a sin(Bt, )+( A +4B)t, ]) .
1

(2.13)
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(2.14)

It was shown for the single-photon JCM [9] that the nor-
malized uncertainty of the photon number

«') —«&' '"
(e&

1.4

1.2—

rapidly oscillates as a function of t&. In fact, as we now
know, this occurs whenever the coherent states of the su-
perposition overlap in phase space. Similar behavior is
exhibited by Eq. (2.13) for the two-photon JCM in the vi-

cinity of Bt, =2m. [Fig. 2(a)]. Values of cr below unity in

Fig. 2(a) correspond to the state having sub-Poissonian
photon statistics. The region of squeezing coincides with
that of sub-Poissonian statistics. As implied by Eq.
(2.13), these nonclassical properties result from the over-
lap and interference of the superposition parts.

2We note that in general (8'(t, )) is not equal to a .
Thus after a conditional measurement the mean energy of
the field may be changed, even though the measured
atom enters and leaves the cavity in the same (excited)
state. This is not surprising if we bear in mind that there
is no conservation of the mean energy. The initial state is
not a number state with definite energy but a photon-
number distribution. The observation of an excited out-
going atom selects certain components of the distribution
by virtue of their correlation (at time t&) to the atomic
state e ). If n, and ns are the mean photon numbers for
the excited and ground states, respectively, then we have
a =P&n, +(1 P, )n—, with P, given by Eq. (2.5).

The phase distribution of the field is described in the
Pegg-Barnett formalism [23] by the function

1.0—

0.9—

0.8—

0.7—

0.6

(b)

2
Bt,/7T

F, (8)= g c, (n)e
277

O

(2.15)
0
—1.0 —0.5 0.5 1.0

The phase distribution of
~ 1(»(a, t

&
) ) and the correspond-

ing Q function [Eq. (2.11)] are given in Figs. 2(b) and 2(c).
Here and hereafter we set A =B in all our plots. The
two peaks of our quantum superposition are observed
very clearly. The relative phase between the superposi-
tion parts Bt, is linear in the interaction time and is in-
dependent of the field intensity, due to the two-photon
character of the transitions.

Throughout this paper we illustrate the field state by
the Q (or Husimi) probability distribution function. Of
course, we could have used other quasiprobability func-
tions. The Wigner function, for example, would clearly
show the presence of a superposition by exhibiting in-

terference fringes between the peaks of the distribution.

C. Second-atom cat-state production: satellite revivals

We have seen that the first atom splits a coherent-state

Q function into two identical parts with shifted phases.
"Revivals" in the oscillation pattern of the atomic popu-
lation occur every time the ratio g/2m. attains integer
values, corresponding to complete overlap of the Q-
function parts. The second atom is expected to split each
of the new coherent-state parts into two identical parts
again, yielding a four-peaked Q function.

The second atom enters the cavity after the first one
leaves, and interacts with the field for time t2. The

FIG. 2. (a) Normalized photon-number uncertainty o as a
function of the dimensionless atomic transit time. Collapses
and revivals of Rabi oscillations occur in the vicinity of
Bt, =2Nm. (b) Phase distribution .and (c) corresponding Q func-

tion of a quantum superposition (optical Schrodinger cat) gen-

erated from an initially coherent state by a conditional measure-

ment on the emerging atom for Bt I =m/2.
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n+2 2P2=P, g ~c, (n)( cos
2n=0

Qn+2t1
co 8 cos

n=0 2

Qn+2t2
cos (2.16)

overall probability of having two consecutive excited
atoms is, using (2.6b),

If again we assume the field at t =0 to be in a coherent
state, the probability P2 displays novel dynamics as a
function of t2, namely, pairs of "satellite" revivals appear
in addition to the regular ones [16] (compare with Ref.
[18]) [Fig. 3(a)]. This can be seen if we substitute the
co(n) from Eq. (2.7) into Eq. (2.16), and rewrite the cosine
factors on the right-hand side of Eq. (2.16) in the form

Qn+2t,
COS

Qn+2t2
cos

=1 1 1

4
1+cos(Q„+2t, )+cos(Q„+2t2)+—cos[Q„+2(t2 t, )]+ co—s[Qn+2(t2+t1 }]n n 2 n (2.17)

Each of the four cosine terms in Eq. (2.17) produces a distinct set of revivals in (2.16). This means that revivals in P2
appear at the times

Bt„B(t2+t,)=2~N, (2.18)

where N is an integer. The amplitude of each satellite revival is half of the regular one. These satellite revivals are
shifted by +Bt, from the regular revivals. The same features are revealed by the closed form of P2,

a2P2(t2)= —+ g N '(t&)e exp[a cos[B(t2+jt&)]]
j=0,+1

X cos[( A +2B)(t2+jt, )+a sin[B (t2+j t, )]), (2.19)

where

N (t)=2+2cos[a sin(Bt}]exp[ —2a sin (Bt/2)] .

(2.20)

Thus we have a straightforward method for the detection
of the cat phase in the same setup that serves for its gen-
eration, by monitoring the excitation probability of the
second atom as a function of its interaction time (or ve-
locity).

I.et us examine the field state after the conditional
measurement on the second atom. This state, which
must be normalized by the probability P2, has the form

duced by a second observation of an excited atom in the
special case Bt, =m (maximal separation of superposition
components). In Fig. 4 the evolution of this cat is plotted
at Bt2=0 (original state), Bt2=m/2 (four peaks), and
Bt2 =m (the same state, rotated by m /2). We can see
from Eq. (2.18}that for Bt, =n. the satellite revivals over-
lap completely, resulting in a double rate of revivals with
equal amplitudes.

III. GENERATION AND DETECTION
OF NONCLASSICAL STATES

BYMANY-ATOM SEQUENCES

A. Motivation

~yf(t], t2)&= y c2(n}~n &

n=0

co(n}
cos.=o v'P2

Qn+2t1

2
~Pf(t(, . . . , tx)&= g cx(n)~n &,

n=0
(3.1)

It is easy to generalize the foregoing treatment to con-
ditional excitation measurements on K atoms. The re-
sulting state of the field is

Q„+2t2
Xcos ~n & . (2.21) where

If the initial field is coherent, then, as we have mentioned
already, the resulting distribution in the phase plane has
in general four peaks (if t2 does not coincide with
the periods of t, revivals, otherwise some of the
peaks overlap). The phase distribution F2(8) =(1/
2m)~g„" oc2(n)e '"

~
and the Q function Q2(p, p') are

shown in Figs. 3(b) and 3(c). Let us consider a cat, pro-

co(n)
cx(n)= Q cos

QP~, =o

Q„+2tj
2

(3.2)

and the probability to have K excited atoms is

Qn+2tPz= g ~co(n)( g cos
n =0 j=1

(3.3)

The coe%cients of the distribution satisfy the normaliza-
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exhibits sub-Poissonian photon statistics when two or
more peaks overlap. One may ask whether a longer se-
quence of excited-atom observations can generate qualita-
tively different distributions, whose structure yields con-
trolled values of photon number or phases. The
effectiveness of such generation is measured by the length
(duration) as well as by the joint probability of the re-
quired sequence Pz.

First we look at what happens if the interaction times
are constant. A real atomic beam is never perfectly
monochromatic, so that the scheme of fixed interaction
times can be considered as a first approximation to the
problem. We then discuss the case of decreasing interac-
tion times, corresponding to a sequence in which every
atom passes the cavity faster than the previous one. We
choose a particular case where successive interaction
times are halved, so that the initial coherent state is rap-
idly redistributed over a ring in the phase plane. By this
means we hope to simulate the phase-space distribution

of a Fock state. Finally we consider the smearing of in-
teraction times by a Gaussian distribution of velocities.

B. Fixed interaction times

In Fig. 5 we see the photon numbers and phase distri-
butions, when interaction times are Bt-=0.3~ for all
t - = t &, tz, . . . , tz up to E =24 atoms. There is a suppres-
sion of part of the number distribution corresponding to
the vanishing of the product of cosines in Eq. (3.3) at par-
ticular values of n. After E =100 atoms the number dis-
tribution is close to a number state. However, the phase
distribution still remains lumpy, because each coherent
state splits by the angle 0.3m., which results in repetition
of the pattern after approximately % =40 atoms (or
"split tings").

If we wish to obtain a uniform phase distribution as in
a genuine Fock state, it is best to choose a smaller split-
ting angle Btj «1, so that the parts of the distribution

(a)
1.5

(b)

1.0—

0.5—

.0
0 20 40 60 80

0.0
—1.0 —0.5 0.5 1.0

1.0 1.5

0.6—

—0.4—D

1.0—

0.5—

0.2—

0.0
20 40 60 80

0.0
—1.0

I—0.5 0.5 1.0

FIG. 5. The photon-number and phase distributions of the field following sequences of excited-atom conditional measurements for
large fixed interaction times Btj- =0.3a. (a) Solid line —the photon-number distribution after K =24 excited atoms. Dashed line-
the initial Poissonian distribution with a=6. (b) The phase distribution after K =24 excited atoms. (c) The photon-number distribu-
tion after K = 100 atoms. (d) The phase distribution after K = 100 atoms.
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1.0—

0.0--

0.6

— 0.4

0.2—

0.0 +-
0

(a)

20 40 60 BO

overlap in the phase plane after each splitting. As an ex-
ample, we have set Bt =0.05m. . After 100 atoms the
number distribution is confined to a narrow range and
the phase distribution contains a broad peak. As the
number of atoms increases, the phase distribution diffuses
and the number distribution sharpens up. In Fig. 6 we
have an almost pure Fock state and a nearly flat phase
distribution, after 500 atoms.

It is quite relevant to ask how likely we are to observe
such long sequences of excited atoms. The sequence
probability Pz [Eq. (3.3)] is an infinite sum of products.
Nevertheless, we can carry out the infinite sum in the
case of fixed times for an initial coherent state ~a). As
shown in the Appendix, we may also derive the following
estimate for large K:

1.5
(b)

P ( ~ l+ 2 a [cos(Br)—1]2E!& 2

22K(1( l)2

Xcos[a sin(B~)+( A +2B)~]

1.0 x K+1 (3.5)

0.5—

0.0
—1.0

1.0

0.8—

0.7—

P o.5—
k

0.4

03

0.2—

0.1

—0.5 0.0
e/n

0.5 1.0

We have plotted both the exact and estimated expres-
sions for Pz in the case Btj=0 05m .[Fig. 6(c)]. We can
see that as the number of atoms E increases there is a
rapid initial fall in probability, which flattens out eventu-
ally. After 100 atoms we obtain a value of Pz=0. 1,
which is very slowly decreasing with E. Hence, as the
number of atoms increases we are more likely to observe
an excited atom at each step. This comes about because
the K-fold product of the cosine factors in Eq. (3.3) di-
minishes the contributions from each n value at different
rates. As the number of atoms E becomes large, the rap-
idly diminishing terms die out, leaving only a single
long-lived n-state contribution to Pz. This n state corre-
sponds to the value of cos (Q„t/2) nearest to l. Thus we
have a rather reliable method for producing a number
state, which will succeed for about one in ten experimen-
tal runs.

C. Decreasing interaction times

In order to reduce the length of the sequence that
yields a number state of the field, and thereby avoid the
need for a very-high-Q value, we suggest the scheme of
decreasing interaction times. Let us define the time se-
quence as

0.0
0 100 200 300 400 500 600 700 800 900 1000 Btj

&
J 1 K

2~
(3.6)

FIG. 6. Results for sequences of excited-atom conditional
measurements with short fixed interaction times Btj =0.05m. (a)
Photon-number distribution showing Fock-state generation for
K =500 excited atoms from a coherent initial state with a=6
(shown dashed). (b) The phase distribution of the generated
field for the same parameters. (c) The probability P& of finding
a sequence of excited atoms as a function of their number K, for
the same parameters. Dashed curve —our approximation [Eq.
(A5)]; solid curve —numerical evaluation without approxima-
tion.

so that the passage time is reduced by one-half after each
pass.

The first atom creates a cat with two components
separated in phase by m.. The second atom creates four
components separated by m/2. The third atom pass will
result in eight evenly spaced components and so on.
When the number of atoms is only six, the phase distribu-
tion becomes smooth, indicating that we might have a
number state. In order to check this surmise, we examine
the photon-number distribution obtained from Eq. (3.3)
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(Fig. 7). As the number of atoms increases, the photon-
number distribution is decimated and a Fock state is
achieved at n =29 after five atoms for an initial ( n ) =36.
However, if we add a sixth atom, the number state jumps
from n =29 to 61.

The key to this process lies in the behavior of the
cosine factors in Eq. (3.3). For the nth component of the
distribution we have the product

the n components of the distribution which satisfy

n =21 'm —3, (3.10)

where the factor m is any odd number such that n ~0.
We lose n =0,2, 4, . . . for j =1, n =3,7, 11, . . . for j =2,
and n = 1,9, 17, . . . for j=3. Hence, the remaining corn-
ponents are

~co(n)
~ Q„+2t] Q„+2t2

~cx(n}~ = cos
"

cos
K

2 +n+ 21K
X cos (3.7)

n = 13,29,45, . . . for K =4,
n =29,61,93, . . . for K =5,
n =61,125, 189, . . . for K =6 .

(3.11)

after E atoms. If we take for the sake of simplicity
A =8, then

~n+2tj 2 (tt +3)
cos =cos

2 2J
(3.&)

This factor is zero if

(n +3)m/2J=n(l +1/2), (3.9)

where I is any integer. Thus after the jth atom we lose all

This explains the apparent "jump" in Fig. 7(d): n =29
dominates after five atoms, because of the ratios in the
original distribution with (n ) =36. Thus n =61 is not
seen until n =29 is removed with the sixth atom. This
"jump" to n =61 occurs with extremely low probability
(the contribution of the component ~cc(61)

~
to the initial

field distribution is very small), i.e., it is very unlikely to
find the sixth atom in its excited state.

This method is quite eScient at attaining a number
state. It very rapidly reduces the initial Poissonian distri-
bution to the final number state by decimating the
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FIG. 7. A sequence of excited-atom conditional measurements with successively halved interaction times, starting with Bt& =~
[Eq. (3.6)]. The field is initially coherent with a=6. (a) The photon-number distribution after three excited atoms (eight-component
Q function). (b) The same after four excited atoms —a coherent superposition (Schrodinger cat) of two different photon numbers
n =29 and 45. (c) The same after five excited atoms —an approximate Fock state with n =29 is generated. (d) The distribution after
six excited atoms, corresponding to a very unlikely jump of the number state from n =29 to 61.
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photon-number distribution. A specially designed veloci-
ty selector is needed to supply such a sequence. Howev-
er, it is not as diScult as the selector suggested by Krause
et al. [6] for the ordinary (one-photon) JCM, which re-
quires velocity increments by irrational factors (scaling as—I/2)

D. Superpositions of distinct number states

In Fig. 7(b) we see that after four atoms two main
peaks have survived in the number distribution. The re-
sulting state of the field is, in fact, a new example of a su-
perposition state, analogous to an optical Schrodinger
cat. In contrast to the usual phase-difference cats, this is
a coherent superposition of two states with different pho-
ton numbers n, and n2, which can be, in principle, mac-
roscopic.

through the cavity). For the fixed-times scheme the
thermal fluctuation exponentially reduces the probability
Pz, but the parameters of the resulting field are immune
to these fluctuations. The best results are obtained for a
small splitting angle (short interaction times). For exam-
ple, the field distribution in Fig. 6 does not change for
fluctuations of 1 —2%, but the probability drops from
7X10 down to 10

In Fig. 9(a) we show the probability of realizing 1000
measurements of ~e ) as a function of the mean interac-
tion time Bt. The velocity fluctuations are 1% of the
mean. We can see a window in the range of values of BF
in which there is a 1 —2% probability of obtaining the re-
quired sequence of excited atoms. Figure 9(b), which
shows the corresponding values of n, demonstrates that
there is quite a wide range of photon numbers n obtain-

K. Detection of the multipeak phase distribution 1.0
(a)

The lumpiness of the phase distribution in Fig. 5 can
be effectively detected using the same experimental setup
by monitoring the excitation probability of a "probe"
atom as a function of its interaction (transit) time. The
multipeak phase distribution (multiple Schrodinger cats)
in its interaction with such an atom produces partial re-
vivals in the oscillation pattern of the atom population in-
version. The pattern of inversion revivals contains all the
information necessary to reconstruct the field phase dis-
tribution. The ordinary two-photon revivals (the field be-
ing initially in coherent state) occur with the period
Ts = 2m /8. Interaction with a multiply peaked
Schrodinger cat leads to as many revivals over this inter-
val as the number of peaks in the field distribution [Fig.
8(a)]. The time interval between two neighboring revivals
corresponds to the mean phase difference between two
adjacent Q-function parts 8 (tz, ta2)—

As the field distribution approaches a photon-number
state, the peaks in the phase distribution overlap, and so
do the revivals of the atomic inversion, thereby becoming
less pronounced [Fig. 8(b)]. In the case of a pure Fock
state of the field, the atomic inversion displays Rabi oscil-
lations at the frequency 0„=A +nB without any col-
lapses and revivals, as it should.

F. Effect of a spread of interaction times (or velocities)

The following question arises: how stable is the pro-
cedure described above against thermal fluctuations in
the atomic beam velocity? The Q-function splitting an-
gles are sensitive to such fluctuations, so that random de-
viations of the interaction times may change the process
dynamics in the following ways: (a) the phase "diffusion"
of the field state may become more effective; (b) the reali-
zation of a sequence of excited atoms may become less
probable. In order to investigate this problem we have
performed a computer simulation of a thermal beam of
atoms assuming a random Gaussian spread of interaction
times. The present performance of velocity selectors pro-
vides monochromatic atomic beams with an accuracy of
1%. We therefore choose the width of our distribution to
be l%%uo of the mean interaction time (the transit time
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FIG. 8. Detection of the multipeak phase distribution by
monitoring the excitation-probability revivals of a "probe"
atom. (a) Revivals of the excitation oscillation of a probe atom
for a field with the same parameters as in Figs. 5(a) and 5(b). (b)
Revivals of a probe atom in a field with the parameters of Figs.
5(c) and 5(d).
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able within this window (30 & n & 50). As the parameter
Bt is changed we step from one integer value of n to
another, indicating that we generate a Fock state at each
step. This is confirmed by Fig. 9(b), which shows that the
values of hn are exceedingly low in the stepping region,
i.e., the states are highly sub-Poissonian.

The value of n that dominates the field distribution in
Fig. 9(b) within the window discussed above is given by

1.0

0.8—

06

—0.4

~n +2r B(n +3)r
2 2

(3.12)
0 ')—

for which the E-fold cosine product in (3.3) is unity.
However, for very small Bt it is possible for low-n Fock
states to dominate, because ~co(0)~ cos (Q2t/2) can be
larger than ~co(n)~ cos (0„+zt/2) with n &&1. The
value of Bt below which Eq. (3.12) is only satisfied by n
far outside the original distribution corresponds to an in-
stability point, at the remarkable sharp edge of the n dis-
tribution in Fig. 9(b). Evidence of this sharp-edge insta-
bility is seen in Fig. 9(c) where b,n exhibits a super-
Poissonian upsurge, while being almost zero (strongly
sub-Poissonian) throughout the "window. " Note that
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FIG. 10. Effects of thermal velocity fluctuations on the field
in the successively halved interaction-times scheme. (a) The
photon-number distribution after four-excited atoms, for fluc-
tuations of 1%. All the parameters are as in Fig. 7. The se-
quence probability is Pz=6X10 . The dashed line indicates
the initial photon-number distribution. (b) The same, after
E =5 excited atoms [compare with Fig. 7(c}];the corresponding
value of Pz is 3.5X10
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these results are essentially independent of the size of ve-
locity fluctuations, as long as they do not exceed roughly
5%.

The decreasing interaction-times scheme is also quite
immune to fluctuations of this order. In Fig. 10(a) we can
see the inhuence of a thermal distribution on the resulting
field after a sequence of four atoms [compare with Fig. 7
(b)]. Figure 10 (b) demonstrates the possibility of Fock-
state generation in the presence of thermal fluctuations.
The field is still peaked at the same number state as
without fluctuations (n =29).

G. Detection ef5ciency

0
0.01 0.04 0.07 0.10

Bt/7T

FIG. 9. (a) Sequence probability Pz, (b) mean photon number
n, and (c) the photon-number uncertainty Ln, for K =500, as a
function of the mean (fixed) interaction time Bt/~, for 1% ve-
locity (interaction time) fluctuations.

Unwarranted field states can be obtained in the present
scheme only by failing to record the passage of one or
more atoms through the cavity, primarily due to imper-
fect detection efBciency in the field ionization scheme
[15,22,24]. Hence, high-efficiency detectors are needed to
keep the probability of Fock-state generation near the
level calculated above, without losing too many atomic
sequences due to detection imperfection. However, an
important merit of this scheme is that once a sequence is
recorded as successful (i.e., all atoms come out in the ex-
cited state), then its reliability can be tested by detecting
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several additional "probe" atoms. If indeed the Geld has
successfully converged to a Fock state, then all these
probe atoms should come out in the excited state, as dis-
cussed in Secs. III 8 and III C. Conversely, the sequence
should be discarded if some of the probe atoms are found
to be unexcited, in order to eliminate the corresponding
unwarranted field states.

IV. CONCLUSIONS

The present treatment has demonstrated the conceptu-
al and calculational simplicity and effectiveness of the
proposed conditional measurements of atomic excitation,
as a means of generating and detecting preselected
Schrodinger cats and Fock states. This simplicity stems
from the advantageous properties of the two-photon reso-
nant interaction, which results in splitting of the field Q
function into two identical parts by each measurement,
and their subsequent counter-rotation at a constant rate
(simple sinusoidal

evolution�}.

The measurement se-
quences that have been studied in this paper have re-
vealed that the transformation from a coherent state to a
number state does not proceed by the mean-phase dissi-
pation, but rather by decimation of photon-number com-
ponents in the repeatedly split phase distribution. The
phase distribution exhibits a regular structure during the
process, with mutual coherence among its multiple com-
ponents.

The specific features of the proposed measurement se-
quence are as follows.

(a) Fixed interaction-times sequences of —100 atoms
can yield a Fock state near the peak of the initia1 Pois-
sonian distribution. The rate of sequence realization is
—10%.

(b) Decreasing interaction-times sequences in which
the transit time is halved by each subsequent atom reduce
the field very rapidly (after approximately five atoms) to
the preselected Pock state. The controllable coherence
between the Fock-state components allows the generation
of distinct superpositions of Fock states by only four
atoms (compared with the large number of atoms re-
quired to produce a trapping state, which is a superposi-
tion of the vacuum and a number state [12]).

(c) The multipeak phase distribution of a generalized
Schrodinger cat created by K atoms may be detected by
the K+1 atom. The separation between adjacent satel-
lites in the "revivals" pattern of this atom may reveal the
mean-phase difference between neighboring peaks in the
distribution, and indicate the gradual approach towards a
Fock state.

(d) Our results are remarkably immune to thermal ve-
locity spread. Thermal fluctuations of 1 —2%%u& still allow
the selection of various quantum states of the field (Fock
states or Schrodinger eats) with predictable parameters.
The possibility of abrupt switching from a very low to a
very high Fock state by fine tuning of the interaction time
in the presence of of thermal fluctuations is particularly
intriguing.

(e) The main advantage of choosing conditional mea-
surements of atoms in the !e) state rather than the ~g )
state is that the results are not spoiled, but merely dis-
carded, if atoms decay to a lower state prior to detection.
The possibility to test the result of each sequence by
detecting additional "probe" atoms in the !e ) state (Sec.
III G) makes this scheme very reliable.

(f) Finally, we comment on the experimental conditions
for the implementation of our scheme. The main require-
ment for the generation of a Fock state ~n ) is that the
cavity lifetime t„„=Q/co, where Q is the quality factor,
be much longer than n times the sequence duration t„,
which can be estimated as t„&2m/B for both fixed-
times and halved-times sequences, as shown in Secs. III B
and III C (essentially, t„ is the time needed to redistri-
bute the multiply split Q function over a ring in
the phase plane). In micromasers [22,24] operating on
the two-photon rubidium transition ~40S )~ ~

39P )~
~
~39S )(co, /2n =68 415 . GHz) with b /2m. = —39

MHz in a cavity of volume V=70 rnm, we have
8 =4000 s ', and therefore t & 10 s. The require-
ment t„„»nt„q then amounts to Q »n X 10, which is
compatible for n ~50 with currently achievable quality
factors of 10' in superconducting microwave cavities [7].
The single-atom interaction times under the quoted con-
ditions are t 10 s in the fixed-times scheme
(K-100), corresponding to atoms with thermal veloci-
ties (u ~ 10 m/s) crossing a 1-cm-long cavity.
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This series can be summed, using the expansion

1 2E!
( sg)2K y 2ie(K —j)

22I( j f(2+ j)tj=0

and so, with 0=On+27/2,

e
—a oo 2n2

PK 22K n=0 j
22~~ . 2i g(I(.' —j)

0 j!(2K—j)! (A3)

We can now carry out the infinite sum

APPENDIX

The normalization constant Pz for fixed times tj=~
and initial coherent state ~a) is given by [see Eq. (3.3)]

' 2Jt

COSQn +p'7

X (A 1)
n=o n! 2

—a K —1

PK= + g '
. exp[a cos[Br(K —j}]]cosIasin[Br(K j)]+(A+2B}r(K——j)] . (A4)

22K(K () 22K —1 j!(2K—j)t
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We wish to examine the limit of Px for large K. The most significant terms in the sum (A4) appear to be those for
which j-K —1. The cosine term takes values in the range ( —1, 1), but the exponential term ensures that only the last
few terms in the sum are important if ~a~ is large. Thus we may take only the last term to give

Px = ' 1+2e ' ' ' '~cos[a sin(Bv)+( A +2B)r]a'(cosa. —i) E
2&&(K ()2 X+1 (A5)
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