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Measurement of phase differences between two partially coherent fields

A. Fougeres, J. W. Noh, T. P. Grayson, and L. Mandel
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(Received 10 June 1993)

Although the operational approach to the quantum-phase problem developed earlier by us [Phys. Rev.
A 45, 424 (1992)] has now been confirmed experimentally for several different states of the electromag-
netic field, so far no measurements have been reported with partially coherent light beams. This situa-
tion is remedied in the present work, where we report the results of measurements on light obeying
thermal statistics with a variable degree of mutual coherence. Once again, we find agreement between

experiment and our theoretical approach.

PACS number(s): 42.50.Wm, 03.65.Bz

I. INTRODUCTION

Although there exists a very large literature on the
mathematical problem of identifying the phase of a quan-
tized electromagnetic field and/or its probability density
[1], relatively few phase measurements have been report-
ed [2—6]. We have recently introduced an operational
approach to the phase problem [7], based on an examina-
tion of what is typically measured, rather than on any
abstract criterion for a phase operator. This leads to the
conclusion that phase differences between two fields are
more fundamental than the absolute phase of either one,
and that different measurement schemes lead to different
operators. In other words, the dynamical variables asso-
ciated with the measured cosine and sine of the phase
difference cannot be divorced from the detailed process of
measurement.

We have tested our theoretical approach experimental-

ly, and obtained good agreement between theory and ex-
periment [5],[6] in all cases, which included measure-
ments of some higher moments. We have also extended
the range of average photon numbers by more than two
orders of magnitude below previous measurements. Nev-
ertheless, experimental tests of the theory have so far
been limited to states that are close to pure coherent
states or photon number states of the field. In the follow-

ing we present experimental results for electromagnetic
fields obeying thermal statistics, for which the degree of
coherence between the two interferometer inputs varies
between 0 and 1. Once again we obtain agreement be-
tween experiment and our theoretical approach to the
phase problem.
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beams are then mixed in various different proportions
with the help of beam splitters BS3 and BS5 and filters
F4,F6,F8, as shown. The emerging light has been shown
to obey approximately thermal statistics [8—10], so that it
can be described classically in terms of Auctuating Gauss-
ian waves. It was pointed out in Ref. [7] that when phase
Auctuations are accompanied by correlated intensity fluc-
tuations, then our phase measurement technique is un-
able to separate the latter contribution, except in the
strong-field case (8', ), (fi' ) &&1.

II. THEORY OF THE MEASUREMENT
c) c)

Let us consider the experimental arrangement shown
in Fig. l, in which the sine and cosine of the phase
difference SM, C'I between two input fields a i,a2 is mea-

sured by the arrangement we have labeled scheme 2

[5—7]. The two inputs are derived by splitting the light
from a highly stable single-mode He:Ne laser into two
parts with the beam splitter BS7 and passing these
through a rotating ground glass. The two emerging light
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FIG. 1. Outline of the setup of the phase measurement.
Above mirrors MI1,MI2 the apparatus is similar to that de-

scribed in Refs. [5] and [7].
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Let 8z, 8~ be the non-Hermitian quantum-field mode

amplitudes immediately after the rotating ground glass.
We shall treat 8&,&s as mutually incoherent and statisti-

cally independent thermal mode amplitudes, and the in-

terferometer input mode amplitudes & &, &2 are related to

8g, &g by

0l =rs[t4(»3dtl+Q3Pt3)+d4P»4]+ts[tg g+ Q 6P)

83 [tg t3ds + r g&gP + tg» 3~3P ] (2)

Here r, t and r', t' are the reflectivity and transmissivity
of the beam splitter j (j=3,5) from one side and from
the other side. t4, t6, and tg are the transmissivities of
the neutral-density filters F4,F6 Fg which are also
modeled as beam splitters, and 830,84O, &6O, &go are vacu-
um mode amplitudes associated with BS3,F4,F6,Fg, re-
spectively. From Eqs. (1) and (2) we obtain

2lrsr3t3t4l'g I (its )

(I» I'l»31'lt41'+ lt3f'ltg I') &+s &+ lts I'its l'& +~ &

(6)

(8 P3 ) +C. C.
C

2((tt, &+&it, &)
'

l( (&t&2 ) +C.C. )

2(&e, &+(e, &)

(7)

The calculation involves a renormalization to correct for
discarded data, as described in Ref. [7]. Hence we obtain

Expressions for the expectation of the measured cosine
and sine of the phase difference for different optical fields
of any quantum state have been given in Ref. [7]. Be-
cause the general expressions are complicated we will
focus on the special case (tt, ), (tt2) «1 for simplicity,
for which [7]

& itl &
= lrsl'lrsl'It41'& tl's & + ltsl'lt61'& &~ &

&n, ) = its l'ltgl'&&t &

(&]u2 ) »5 »3 t4t3tg(ns )

(4)

(5)

(C' ) =
—,'icos(8, —8 ), (S ) =

—,'csin(8, —8 ),
where 8, —82 is the phase difference between the two in-
terferometer inputs, and

&(ac' )'&+((as )')

=&c" &+&s' ) —&c' &' —&s„&'

It follows that if modes 1 and 2 are allowed to come to-
gether and interfere, then the visibility 0 of the resulting
interference pattern is given by

&e, &+&a, )
'

or, when expressed in terms of modes A and B,

=1——'8
4 (10)

A pi«of (C'M )/cos(8l —82) versus the visibility 0 of
the interference pattern should be a straight line of slope
—,', while a plot of ((b,CM ) )+ ((b,SM ) ) versus 8 should
yield a parabola (when (&, ), (h2) «1).

The degree of mutual coherence between the two inter-
ferometer inputs is given by

(&e, &&a, ))'~'
lrsrst4tstgl& ill &

[lrs »3t4I'& tta & + (ltstgl')& 4 ) ]'"I:(its )ltstgf']'"

and when (8'z ) =(8's ) and Irsl =
—,'=Irs f2=Its

f
= ftsl=

I tg I, this reduces to

1

[1+2lt I /It I
]' (12)

lyl21 = lt4l =& . (14)

We have recently described a procedure for obtaining

The ratio lt6I /lt4I therefore determines the degree of
coherence lyl21, which can range between 0 and 1. Iy, 2I
coincides with the visibility 8 of the interference pattern
when (ttl ) = (tl2 ). In practice it is convenient to make
(tl l ) = (8'3), and, from Eqs. (3) and (4), this is achieved
by making

lt, I'=(1—lt, I')/2= l»4l'/2 .

In that case ( tt l ) = ( tl2 ) = ( n z ) /4, and

the probability density p($2 —P, ) of the phase difference

p2
—

pl between the two interferometer inputs [11]. For
this purpose the input to channel 2 is phase shifted by
some angle 8, which can be varied in small steps between
—~ and ~, and phase measurements are made in each
case separately. As explained in Ref. [11], if C(xl8) is
the characteristic function of the phase difference $3

—
iI),

conditioned on the shift 0, then, by analogy with

exp[i($2 —Pl)]= cos($2 —P, )+i sin($2 —Pl), we write

c( I8) ( ie((g))x) ~

where

e' ' " '=CM+iSM

it4 —&3+i(tl6 —hs)

[(h4 —8'3) +(n6 —hs) ]'~
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p($2 —P, l8)= f C(xl8)e ' ' dx, (17)

and ( )' denotes the quantum expectation in the phase-
shifted state. The R'3, &4, R'5, R'6 refer to the photon num-
bers counted by the four photodetectors and these are ex-
pressible in terms of the input modes to the interferome-
ter [5—7]. Because experimental outcomes with n4=n3
and n6 =n~ do not give meaningful values of C~ or S~
we discard these outcomes and renormalize the results.
This procedure has been criticized recently [12], but the
suggested alternatives can lead to even more meaningless
consequences [13]. By Fourier inversion of C (x l 8} we
obtain the probability density p(Pz —$&l8) conditioned
on 8,

whose average over all 0 yields the corrected probability
distribution p, ($2 —P, ),

p, (P P—, )= f d8p(P p—, l8) .

We now apply the formalism to the experiment illus-
trated in Fig. l. As the light emerging from the rotating
ground glass has been shown to obey Gaussian statistics
[g —10], the input modes 1 and 2 must be Gaussian also.
On using the procedure given in Ref. [7] for expressing
expectations of the form (f (h3, &4, R5, R6'}) 'in terms of
normally ordered operators, and then using the so-called
optical equivalence theorem [14,15,16] for calculating the
normally ordered expectation as a c-number average, we
obtain for the phase-shifted characteristic function
C(xl8)

(n4 n3)—+i (n6 —n5 )
C(xl8)= g

[(n~ n3)—+(n6 n5) ]'—

n +n +n +n (19)

Here u, , v2 are c-numbers corresponding to 8, , &z,
and the expectation ( ) is to be calculated by taking
the phase-space density of v, , U2 to be a bivariate
Gaussian distribution with ( l v, ) ) = ( n, ) = ( I

v q I ) and

( v
& v2 ) =y, 2( n

~
). From Eq. (19) the probability density

p, (Pz —P, ) then follows with the help of Eqs. (17) and
(18). These equations are applicable to the experiment so
long as the measurement or photon counting time T is
much shorter than the coherence time T„sothat $2

—P,
has no time to change during the measurement.

In practice it is often convenient to increment 0 in

steps of equal width B and to present the results of the
phase measurement as a histogram with bins of width

h(P2 —P, }=B Then th. e theoretically expected values of
the probability distribution PN (N =0,+1,+2, . . . ,
+m/B) are given by [11]

(20)

The averages in Eq. (19) have been evaluated numerically
for two Gaussian variates v„v2 with (lv, l ) =(lv2l )
and normalized cross correlation y, 2.

III. EXPERIMENT AND RESULTS

An outline of the experiment is shown in Fig. 1. The
light beam from a stable, single-mode He:Ne laser is di-
vided into two equal parts by the 50%:50%beam splitter
BS7 and the two resulting beams pass through a ground
glass plate rotating at 10 revolutions/sec at a distance of
6 cm from the wheel center. The rotating plane imposes
an approximately Gaussian random modulation on the
two light beams, which emerge uncorrelated and with

near thermal statistics [8—10] with a coherence time T,
determined by the ratio of grain size to grain velocity,
which is of order 3X10 sec. By making the rotating
ground glass the focal plane of the lenses I. shown in Fig.
1, we ensure that each emerging beam is close to being
spatially coherent. Beam splitters BS3 and BS5 and neu-
tral density filters F4 and I'6 mix the two thermal beams,
so that the fields a „a2at the two interferometer inputs
are partially coherent, with controllable degree of coher-
ence ly, zl. The 50% attenuator Fs placed in the a~ input
arm helps to balance the two inputs ( 8

&
), (6'z ). In prac-

tice the parameters lt4l, lt6l are adjusted so as to satisfy
Eq. (13) and keep the two average photon numbers
(8', ), (6'2) equal as ly&2l is varied. However, the degree
of coherence determined from the visibility of the in-
terference pattern turns out to be about 10% smaller
than that given by Eqs. (12) or (14), possibly because of
imperfections in the overlap and alignment of the light
emerging from the ground glass. This explanation is
reinforced by the fact that there are also variations of a
few percent in the visibility seen by the four different
photodetectors.

From the mirrors MI1,MI2 on, the interferometer is
essentially identical to that described previously [5],[6].
Four output beams fall on four photon counting photo-
detectors D3, D4, D5, D6, whose quantum e%ciencies are
carefully balanced, and the numbers of photons
n3, n4, n~, n6 registered in each counting interval T by
each detector are recorded. From a large number of data
sets n3, n4, n~, n6, the average measured cosine and sine of
the phase difference, and the corresponding dispersions
are determined by the procedure described previously
[5—7]. The visibility or the degree of coherence is ex-
tracted from the maximum and minimum values of
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peaked for two mutually coherent light beams, but be-
comes flat over the range —m. as m for two mutually in-
coherent beams. There appears to be a small discrepancy
between the experimental data and the theory that may
be concerned with departures from Gaussian statistics of
the light scattered from the rotating ground glass. Such
departures have been observed before [8—10], and we
have some evidence that the rotating scatterer imposes
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FIG. 2. Results of measurements of ( C'I ) as function of the

degree of coherence Iy, 2I. Each data point is the average of 24
different, equally spaced values of the phase difference. The er-
ror bars correspond to one standard deviation. The full curve is

theoretical.
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( Csr ) as the optical path diff'erence is varied by
piezoelectric displacement of one of the interferometer
mirrors. We chose the counting interval T to be 0.5 )usec,
which makes (nt ) =1=(nz), and also ensures that Tis
several times shorter than T, .

Figures 2 and 3 show experimental results for
(CM)/cos(82 —8&) and ((b,CM) )+((ASM) ) for vari-

ous values of the visibility 8 or the degree of coherence

Iy&2I and of 82 —8&. The full lines correspond to the
theoretical predictions given by the theory of Ref. [7],
which is based on Eq. (16), when (lt& ) =1=(R'2), but

they have the approximate general form given by Eqs. (9)
and (10) for the case (lt, ), (8'2) ((1.

Figure 4 gives experimental results for the derived
probability distribution of the phase difference with bins
of width B = 15' for three different values of the degree of
coherence ly&zl determined from Eq. (14). Also shown
are the theoretically computed values of p, ($2 —(t, ) from
Eqs. (15)—(20). The probability distribution is strongly
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F&G. 3. Results of measurements of ((5C~)~)+ ((ggM )~)
as a function of the degree of coherence Iy&2I. Each data point
is the average of 24 different, equally spaced values of the phase
difference. The error bars correspond to one standard devia-
tion. The full curve is theoretical.

FIG. 4. Histogram of the experimentally derived probability
distribution of the phase difference with bins of width 15 for
several different values of the degree of coherence Iy, 2I. The
"T"above each rectangle represents one statistical standard de-

viation. The diamonds give the corresponding theoretical
val«s«r(a) Ir»1=1; (b) Irl21=0. 5; (c) Irl2I=O14
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some vibration and a small periodic modulation on the
light. In the absence of more detailed information on the
statistics of the scattered field we cannot improve the fit,
but the general form of p($2 —P, ) and its variation with

~y&2~ are well confirmed. It should be noted that two
quite different mechanisms are responsible for the spread
of the observed phase difference. When ~7'&z~ =1 and the
two inputs are mutually coherent, the spread of b,P is
connected only with the quantum-mechanical uncertain-
ties of the phase measurement. When y, 2~ falls below
zero, there is an additional phase spread due to lack of

coherence between the two sources.
The results of these measurements of the phase

difference under conditions of partial coherence, general-
ly lend additional credence to our approach to the prob-
lem of identifying the measured quantum phase operator.
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