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We analyze the dynamics of sum-frequency generation (SFG) and difference-frequency generation

(DFG) for broadband input fields. We demonstrate that amplitude modulation of the input fields

significantly affects conversion efficiency of SFG and DFG, but frequency modulation does not affect

conversion efficiency. Analytic results for SFG and DFG output-field intensities are thereby available

for arbitrary fields. Self- and cross-phase modulation can affect the dynamics in the limit of very high

field strengths, but these effects are of higher nonlinearity and therefore usually negligible. The quantum

efficiency of DFG is shown to be generally higher than SFG, but the energy efficiency is much lower if
the difference frequency is significantly less than the input frequencies. Optimal SFG quantum conver-

sion efficiency for such systems approaches that of second-harmonic generation only if the quantum

fluence (total number of photons) in the two input beams are equal. Optimal DFG quantum conversion

efficiency occurs when the number of photons of frequency co2 is small yet sufficient for significant stimu-

lation. A recently developed method for obtaining efficient SFG for multimode input fields is theoreti-

cally analyzed. The method involves using an arrangement with two or more nonlinear mixing crystals

with a time-delay line situated between the crystals that delays one of the fundamental fields relative to
the other. The efficiency in the second crystal depends on the cross-correlation function of the two fun-

damental fields upon leaving the first nonlinear crystal. The time-delay method is not effective for mul-

timode DFG.

PACS number(s): 42.65.Ky

I. INTRODUCTION

In this paper we analyze and compare sum-frequency
generation (SFG) and difference-frequency generation
(DFG) for broadband input fields using the formulation
of SFG and DFG for time-dependent input fields [1,2] (as

opposed to cw single-frequency time-independent input
fields). We analyze the efficiencies for these processes for
arbitrary amplitude- and phase-modulated input fields
and demonstrate that amplitude modulation of the fields
significantly affects the conversion efficiency of SFG,
DFG, and second-harmonic generation (SHG) but fre-
quency modulation of the input fields does not affect the
conversion efficiency. Nevertheless, self- and cross-phase
modulation can affect the dynamics in the limit of very
high field strengths, but these effects are of higher-order
nonlinearity and therefore usually negligible. The
description of SFG, DFG, and SHG for broadband input
fields in Refs. [1,2] generalize the treatment of three-wave
mixing for single-mode fields that was formulated in a
classic paper by Armstrong et al. over 25 years ago [3]
and is discussed in textbooks on nonlinear optics and
quantum electronics [4—6]. In Refs. [1,2], analytic solu-
tions were developed for the time-dependent intensities of
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the output fields for SFG and SHG when the input fields
are amplitude modulated. These solutions differ dramati-
cally from those for single-mode cw fields. New frequen-
cies in the sum-frequency output spectra and the second-
harmonic output spectrum, as well as in the output spec-
trum of the fundamental fields, are created and grow in
magnitude as the input intensities are increased and/or
the nonlinear susceptibility is increased. The applications
of these ideas to intracavity SFG and SHG were also in-
vestigated [7]. Here we present the analytic description
for DFG for amplitude-modulated input fields.

We have recently experimentally demonstrated [8] a
scheme for improving the efficiency of SFG for broad-
band input fields based upon an approach first presented
in Ref. [1]. The scheme involves using an arrangement
with two or more nonlinear mixing crystals with a time-
delay line for one of the fundamental fields, situated be-
tween the crystals. The delay line temporally shifts the
fundamental fields one relative to another before they
enter the next nonlinear crystal. The improvement in
efficiency for SFG using the method is substantial while
for DFG it is minimal, and might even be deleterious.
Here, we analyze this method for improving SF6
efficiencies and relate the efficiency with the cross-
correlation function of the two fundamental fields after
passing through the nonlinear crystal and before entering
the next crystal, with and without the time-delay line.

Sum- and difference-frequency-generation conversion
efficiencies are typically significantly less than the
efficiency of SHG. For high SFG and DFG conversion
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efficiency, the two input beams must be spatially and tem-
porally matched. Spatial overlap is achieved by aligning
the centers of the two input beams and using beams with
the same beam diameter, divergence, and spatial mode
structure. Temporal overlap is automatic for single lon-
gitudinal mode beams, and can be achieved for pulsed
beams by overlapping the peaks of the pulses and assur-
ing identical temporal profiles and pulse durations for
both fields. For broadband fields with (central) frequen-
cies ~, and co2, efficient SFG or DFG is difficult to
achieve because mode-beating effects in each input field
make it improbable that the instantaneous intensity of
both fields is simultaneously high, and this is crucial for
high conversion efficiency. Hence, when the intensity of
both fields is low, the output power is low but the overall
efficiency is not greatly affected, but when the intensity of
one field is high and the other field is low, the photons in
the intense field are wasted as far as frequency conversion
is concerned. Highest SFG efficiencies are achieved when
the number of photons in the two input fields are nearly
equal. For SHG with a multimode laser source, when the
instantaneous intensity of the fundamental frequency
field is high, the intensity of the "other" field is also high
by definition. In contrast to both SFG and SHG, DFG
corresponds to the destruction of a photon at the high-
frequency input field, say co&, and the simultaneous gen-
eration of a photon at idler frequency co2 as well as at the
difference-frequency co3=co& —co2. Hence the number of
photons at the idler frequency need not be very plentiful,
since they build up along with those at frequency co3, but
their initial presence enhances the conversion process.
The quantum efficiency of DFG is shown to generally be
higher than SFG. The quantum efficiency of SFG ap-
proaches that of second-harmonic generation only if the
quantum fiuence (total number of photons) in the two in-

put beams are equal, whereas the quantum efficiency of
DFG is highest for the smallest number of photons of fre-
quency co2, where the difference frequency equals co, —co2,

provided a sufficient number of photons of frequency co2

are present to initiate DFG. The energy efficiency of
DFG is, however, much less than SFG and SHG if the
difference frequency is much less than the input frequen-
cies.

The analysis here neglects group-velocity dispersion,
self- and cross-phase modulation, and the spatial profile
of the laser beams (i.e., a plane-wave assumption for the
incident fields is made). Numerical calculations including
these effects can be carried out to model particular exper-
iments, but here we present the simplest picture in order
to point out the essential physics of the SFG, DFG, and
SHG processes and their differences.

In Sec. II we develop and compare the theoretical
framework for treating SFG, DFG, and SHG for broad-
band input fields. Section III presents numerical studies
of SFG and DFG for broadband input fields. Section IV
contains the analysis of the method for obtaining im-
proved efficiency of SFG for broadband input fields and
correlates the improved efficiency to the cross-correlation
function of the two fundamental fields upon leaving the
first nonlinear crystal. In Sec. V we present a summary
and conclusion.

II. THEORETICAL FRAMEWORK

c)Ei (z, ~) co,

Bz n,
= —i yE E*,

c)E2(z, ~) co2= —i yE3E )Bz n
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where E„E2,and E3 are the complex interacting electric
field envelopes, ~, , co&, and co3=co&+~2 are their frequen-
cies, n, is the index of refraction of the medium at this
frequency, ~=t —x/c is the local pulse time, z =x is the
distance in the medium, and y is the nonlinear polariza-
tion coefficient for the three-wave mixing. The field en-

velopes satisfy the conservation equation:
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This equation can be written in terms of the photon
fiuxes, 4, =cn, ~E; ~

/fico; (in units of number of photons
per unit area per unit second), in the form

(4, +42+243) =0 .
az

The interpretation of this equation is that for every pho-
ton of frequency co3 that is created, two photons, one of
frequency co, and another at frequency co2, are destroyed.
Equation (l) can be written in more symmetric form by
defining the complex quantities P;=+en; I%co;E;, and
takes the form
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(4)

where g' is related to the SFG susceptibility g by the

equation y'=+A co&c02co3/c n &nzn3y. The magnitude
of P,- is the square root of the photon fiux for field i, and
its phase is the phase of the electric field.

The analytic solution for the intensity or the photon
Aux of these fields, for real y and real slowly varying en-
velopes (i.e., amplitude-modulated fields), and the initial
condition 43(0,r) =0, is

We shall write the electric fields F, (x., t) in terms of a
slowly varying envelope E, (x, t) and a phase given in
terms of the central frequency m; and wave number k, of
field i,

F, (x, t)=exp[i(co, t k. , x—) ]E;(x,t) .

The dynamical equations governing SFG of phase-
matched plane waves are given in the slowly varying en-
velope approximation by
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Here sn(, ) is the doubly periodic Jacobi elliptic function
[9], 4;„(O,r} and 4,„(O,r) are the smaller and the
larger input fields, 4, (O, r) and @2(0,r), incident upon
the sample at time ~. These solutions are appropriate
even when fields 1 and 2 are multifrequency beams. The
solution, Eq. (5), is valid provided the spectrum of the
fields 1 and 2 remain within the phase-matching band-
width throughout propagation in the crystal, and the in-

put fields are not phase modulated. An analytic solution
is not known for phase-modulated input fields. However,
we show below that SFG and DFG for input fields with
the same amplitude modulation, but with no phase modu-
lation, have the same output intensities as the amplitude-
and phase-modulated fields. That is, the output intensi-
ties of the fields are independent of the phase modulation
of the input fields.

The dynamical equations governing DFG of phase-
rnatched plane waves are given in the slowly-varying-
envelope approximation by

where E, , E2, and E3 are the complex interacting electric
fields, co, , co2, co3 =co, —co2. The conservation equation
satisfied by the field envelopes is
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The analytic solutions for the intensity or the photon
flux of these fields for real y and real slowly varying en-
velopes when the initial condition 43(0,r) =0 is imposed
are

Written in terms of the photon fluxes, this equation takes
the form

B (24|+43+43)=0 .
az

The interpretation of this equation is that for every pho-
ton of frequency co& that is destroyed, two photons, one at
frequency co2 and another at frequency co3, are created.
In terms of P;, Eq. (6) can be written as

4&;„(0,r)
4)(z, r) =4)(0,&)cn +4,„(O,r)y'z,

@max 0& r

@2(z,r)=42(O, r)+[4&(0,r) —4&(z,r)], and 43(z, r)=4, (0,r) —4&(z, r) .
(10)

Let us begin our study of the dynamics of SFG and
DFG by reviewing the nature of the propagation through
the nonlinear crystal. We integrate the first-order
differential equations (1) and (6) [or (4) and (9)] from z =0
given initial conditions E;(0,r) [or P, (0, r) ], with r held
constant. We first present the results for SFG. Figure 1

shows the photon fluxes at frequencies cu, , co2,

co3 co $
+co2, C, , +2, and C 3 versus propagation distance

in the nonlinear crystal for two di8'erent initial ratios of
@,(z =0) and @z(z =0), with the fields taken to be real,

3(z =0 ) =0, and y' = 1.0. In Fig. 1(a) the initial photon
flux at frequency co2 is one-tenth of the flux at frequency
co~, @2(0)=@&(0)/10. The largest number of photons at
frequency co&+co& that can be created (obtained at
z-0.35) equals the number of photons at frequency co2

(the number of photons in the smallest input field). At
x -0.35, all the photons at frequency co2 have been used
up and subsequently reconversion of co, +cuz photons to
photons of frequency co& and m2 begins to take place. The
reconversion continues until all the photons at frequency
co&+co2 are depleted. For x & 0.65, the process of conver-
sion and then reconversion cycles, i.e., the results are
periodic with distance since sn(, ) is periodic in its first
argument. In Fig. 1(b) the initial photon fiux at frequen-
cies co& and co2 are taken equal, @&(0)=@3(0). This case
is similar (but not identical [6]}to the case of SHG, where
the number of photons of frequency co, equals the number
of photons of frequency coz( =co, ). In this case, no recon-
version of photons of frequency co, +co2 to photons of fre-
quency co, and co2 is possible because, in order for the
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reconversion to take place, photons at one of the initial
frequencies must be present. Here, they have all been
converted. The solution then degenerates into the famil-
iar tanh solution, i.e., sn(, 1)=tanh( ). We should point
out, however, that the description of SFG is not
equivalent to that of SHG even if the number of photons
at frequencies co, and co2 are equal [2]. This is due to the
fact that the SFG formalism describes exclusively the in-
teraction of photons from two different beams, and in-
teraction of photons from the same bean is not present.
In the degenerate SFG case, where co&=~2, any pair of
photons, independent of their origin, can interact to gen-
erate the second harmonic.

Figure 2 is similar to Fig. 1, except here we consider
DFG. From Fig. 2(a), which shows the case with initial
fiux ratio given by @2(0)=4, (0)/10, it is clear that as co,
photons are destroyed, co2 photons and ~, —co2 photons
are simultaneously created. Once cu, photons are deplet-
ed (x -0.5), reconversion of co& and co, —co2 photons be-
gins. At propagation distances larger than 1.0, the
behavior is periodic and reproduces the results in the re-
gion [0,1]. In Fig. 2(b), the case with initial fiuxes
&b, (0)=+2(0) is shown. At x -0.25, all the co& photons
are used up and the photons at frequencies co, —co& and co2

reconvert to form photons at frequency co, . Beyond
x =0.5, the dynamics are periodic and reproduce the re-
sults shown in the region [0,0.5].

III. NUMERICAL STUDIES OF SFG AND DFG
FOR BROADBAND INPUT FIELDS

%e now consider time-dependent input fields. Propa-
gation of multimode fields having both amplitude and
phase modulation must be numerically treated. In what
follows we consider the case where each input field (1 and
2) originates from a laser emitting at frequencies close to
several cavity mode frequencies. The temporal depen-
dence of the input electric fields can then be written as

F;(O, r)= g E;,e xp[i(co; r+8, ~)]

=exp[iso, r] g E; exp[i(j b;r+8; )]

for i =1,2, (11)

where co, . =co;+jA;, ~, is the central frequency of the
ith field, 5, is the mode frequency spacing of cavity i
( =c/L;, where L, is the round-trip optical length of the
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FIG. 1. Photon cruxes 41, 42, and 43 at frequencies col, ~2,
and m3=~1+co2 vs propagation distance in the nonlinear crystal
for SFG. The input fields taken to be real, 43(z =0)=0, and
the effective nonlinear susceptibility is g'=1.0 (see text). (a)
42(z =0)=+i(z =0)/10. (b) 4z(z =0)=@I(z=0).

FIG. 2. Photon fluxes 4&, 4&, and 43 at frequencies co&, co&,

and co, =co, —~2 vs propagation distance in the nonlinear crystal
for DFG. The input fields taken to be real, 43{z=0)=0, and
the effective nonlinear susceptibility is g'=1.0 (see text). (a)
42{z=0)=4,(z =0)/10. {b)42(z =0)=4, (z =0}.
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ith cavity), and 8;J are arbitrary phase shifts for the
different modes. Hence the slowly varying envelope of
the input field is given by

n

E;(O,r)= g E; exp[i (j 6,r+.8, )] for i =1,2 .

for one particular realization of the phases 8, and 82
IIII(t) is cyclic with period 1X10 s, and ItIz(t) is cyclic
with period 1.2X10 s. Hence the dynamics is cyclic
with period 6X 10 s due to the commensurability of the
mode spacing of the two fields. The time dependence of
the flux is representative of mode-beating effects present
in multimode lasers that are not mode locked. We calcu-
late SFG and DFG using these input fields for low-,
medium-, and high-frequency conversion, where low,
medium, and high are defined by the effective parameters
y'L =0.001, 0.1, and 1.0, respectively.

We first consider the temporal dependence of SFG.
Figure 3 shows the output of the nonlinear crystal at fre-
quencies co&, co2, and co3=co&+co2 versus time for low con-
version. The output at frequencies co& and co2 are virtual-
ly indistinguishable from the input fields at these frequen-
cies because the conversion is so low. The temporal
profile of the output at the sum frequency is indistin-
guishable from the product of the photon fluxes at fre-
quencies co& and co2. When the intensity of one of the
fields is low, the output at the sum frequency is also low,
even if the intensity of the other input field is high, since
significant intensity at both input fields is necessary for
effective conversion. Hence the output I(co3) at
t =3.5X10 s is small, despite the intensity at co& being
maximum, and output at co3 for t =8.0X10 s is large
because the intensity at both co& and co2 is high. The
medium-conversion results are nearly identical to those
in Fig. 3, except that the scale of the output at frequency
co3 is about four orders of magnitude larger [ = 100, since
the SFG flux is proportional to (@ICIz)' y'L in the low
conversion regime], because in the middle-conversion
case, as in the low-conversion case, little depletion of the
fundamental fields occurs. The high-conversion SFG
presented in Fig. 4 is very different from the low- and

J= n

As we shall see, the output spectrum can be much wider
than the set of frequencies co3 - '=co& - co2 '=co&+co2
+b,

&j+62j', where j,j' =0, . . . , n. Moreover, the funda-
mental fields develop additional frequency components
resulting from the depletion of photons when the photon
flux of both input fundamental fields are simultaneously
large, in a fashion similar to two-photon absorption [10].
This, of course, gives rise to additional frequency com-
ponents of the output field. We take input fields each
containing 11 equally spaced modes, with the slowly
varying envelopes of the form

5

EI(0 r)= g EI exp[i(bIr+HI )], (12)
J= 5

5

E2(0,r)= g E2 exp[i(b, zr+Hz )] . (13)
j=—5

In our example, co, & co2 and the mode spacings of the two
fields are taken to be 100 and 120 MHz, respectively
(5I=2m X100X10 rad/s, b, I=2m. X120X10 rad/s).
The amplitudes of the 11 modes E, are taken to be
equal and the phases 8, to be random in the interval

[0,2m. ] (generated by a random-nutnber generator). The
11 modes E2 J are also taken to be equal and the phases
Hz to be random in the interval [0,2m]. Moreover, we
take CII J =42 k (i.e., n, E, /coI=n2Ez k/co2, the num-2 = 2

ber of photons in each of the modes in both lasers are
equal). Figure 3(a) shows the photon fluxes versus time
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FIG. 3. Output of the nonlinear crystal at frequencies co1, co2,
and co& =col+co2 vs time for low SFG conversion.

FIG. 4. Output of the nonlinear crystal at frequencies col, co&,

and co3=col+co& vs time for high SFG conversion.
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high conversion. This result is dramatically different
from the low- and medium-conversion regimes, and is
also radically different from the high-conversion SFG re-
sult. The different nature of the dynamics of SFG and
DFG is thereby underscored. We conclude that in DFG,
the input flux 4,(0,r) and the output fluxes 4T(L, r),
@z(L,r), and 43(L,r) are related in the following ways:
(a) The output photon flux at r is bounded by the smaller
of 4,(0,r) and @z(L,r). (b) Only when both 4,(0,r) and

@z(L,r) (the flux of photons at frequency coz at the end of
the nonlinear medium) are large can 43(L, r) be large
(this is a necessary but not a sufficient condition). (d) The
maxima of the output flux 43(L,r) occur when
cIt, (0,r) —4,(L, r) is maximum [but this is obvious since
this difference equals 43(L,r)].

The quantum efficiencies for SFG and DFG, defined as
r) „,„,= [N(c03),„, „tl[N(co, )+N(coz)];„„tj,where N(cu; )

indicates the number of photons at frequencies co;, calcu-
lated using the input fields used to obtain Figs. 1-6, are
presented in Table I. At low conversion, the quantum
efficiencies of SFG and DFG are nearly equal (provided
the nonlinear susceptibilities for SFG and DFG are
equal). However, the DFG quantum efficiency is higher
than that of SFG for significant conversion. When a
small number of photons at frequency co2 is initially
presented and a significant number of co& photons is
present, DFG generates additional coz photons (at the
same rate as production of photons of frequency co3)

necessary to further catalyze the DFG process. Howev-
er, for SFG, co2 photons are removed. Hence the increase
in the number of co2 photons for DFG increase the quan-
tum efficiency whereas the decrease of the number of co&

photons decreases the quantum efficiency.
The energy efficiency for the three-wave-mixing

process, defined as z),„„z„=I W(co3),„tp„t/[ W(ctti )

+ W(coz)];„„tJ, where W(co;)=TTico;N(co;) indicates the
energy of the photon field at the central frequency co;, is
related to the N(co; ) through the equation
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We now present SFG and DFG results for mode-
locked pulses. Figure 8 shows the input pulses at co& and
coz for and the sum-frequency output at co, +coz for low
conversion. Again, the DFG at low conversion is almost
identical to the SFG results. Figures 9 and 10 show out-
put pulses at co&, co2, and co&+co2 at medium and high con-
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DFG energy efficiencies are adversely affected when the
difference frequency co3=co, —co& is small. Hence, even if
the quantum efficiency of DFG is high, the energy
efficiency is very low if the input frequencies are in the
visible and the difference frequency is in the infrared.

TABLE I. Quantum efficiency for SFG and DFG. Equal
numbers of photons in both input fields, and random phases for
the 11 modes in each input beam, are selected.
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version, respectively. At medium conversion, the de-

p etion of the peaks of the input pulses is apparent. At
high conversion, the pulse depletion and the reconversion
process are dramatic. Figures 11 and 12 show output
pulses at co&, co2, and co, —cu2 at medium and high conver-
sion, respectively, for DFG. At medium conversion, the
depletion of the peak of the co& pulse and the correspond-

ing buildup of the co2 and co3 pulses is evident. At high
conversion, the pulse depletion of the co& pulse, buildup of
the co& and co& pulses, and the reconversion processes are
significantly different in character than for SFG.

It is interesting to compare the results of SFG and
DFG for input fields that are amplitude and phase modu-
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lated with those for input fields with the same amplitude
modulation but incorporate no phase modulation. To
second order in the nonlinear interaction, phase modula-
tion does not affect the SFG and DFG dynamics. To
prove this, we develop the perturbation theory for SFG
and DFG. We write the incident fields [see Eq. (4)] as

P, (o, r) = IP, (o, r)lexp[i8, (o,r)],
Pz(0, r) =1/2(0, r) I exp [i82(0, r) ] .

(15)

Using Eq. (4) for SFG [Eq. (11) for DFG], we find the
first-order perturbation theory result,

y3(z, r) = —ix'I yg(0, r) I I y2(0, r) I

Xexp[i[8, (o,r)+82(o, r)] jz for SFG,

P (z, r) = —iX'1$,(o, r)l lg (O, r)1
(16)

X exp[i[8, (o,r) —82(o, r)] j
—z for DFG .

Upon substituting these expressions back into Eq. (4)
[(11)],we obtain the second-order interaction expressions
for the fundamental fields for SFG (DFG),

P, (z, r) =exp[i8, (o, r) ]1$,(o, r)l

x [I—x'Iy, (o,r)lip, (o, r)lz'&2],

$2(z, r ) =exp [i 82(0, r ) ] I gz(0, r ) I

x [1—x' IP, (o, r)l lgz(o, r)lz /2] .

Hence, to first order, the magnitude of the field and fre-
quency co3 does not depend upon the phases of the input
fields [as is clear from Eq. (16)] and, to second order, the
phases of the input fields remain unchanged upon propa-
gation through the crystal [Eq. (17)]. This result holds to
arbitrary order. To demonstrate that the amplitude of
the field and frequency co3 does not depend upon the
phases of the input fields to higher order, we calculate
SFG and DFG for (a) input fields that are amplitude and
phase modulated and (b) input fields with the same ampli-
tude modulation but incorporate no phase modulation.
We use the slowly varying envelopes of the input fields of
Eqs. (12) and (13) and compare the results with those ob-
tained using the absolute values of the input fields in Eqs.
(12) and (13). The latter input fields are only amplitude
modulated, yet have an identical intensity to previous in-
put fields. For low, medium, and high conversion, the re-
sults for both SFG and DFG intensities were indistin-
guishable from each other. The practical application of
this is that, for arbitrary input field modulation, one can
remove the phase modulation of the fields, compute the
output intensities of the purely amplitude-modulated
fields using the analytic formulas presented in Sec. II, and
thereby obtain correct output-field intensities for the
original input fields with arbitrary modulation.

Given that phase modulation of the input fields has no
effect on the output intensities for the SFG and DFG
conversion processes, it is of interest to determine the
effect of self- and cross-phase modulation upon these pro-
cesses. The set of dynamical equations governing SFG
including self- and cross-phase-modulation terms are as
follows:

BP)(z,r)
az

BP2(z, r)
Bz

ix'$3pz —i [x,m( ~&,~~, —~&,~~)lp~l'+2x, m(
—~~,'~z, —roz, ~&)1021'+2xp ( —~i, ~3& ~3i~l)I@I']p),

= —~x'y3P) —
~ [xpm(

—~z, ~2, —~z, ~2) 1&21 +2xpm( —~z, ~), —~),~2) lg) I'+2xpm( —~2, ~3, —~3,~2) &31']Pz,

(18)

BP3(z, r)
~x 0 f42 & [xpm( ~3i~3~ 3&~3)1&31 +2x ( —~3,~&, —~&,~3)1'(t'& I +2x m(

—~3,~2, —~2, ~3)1'((31 ]f3 ~

Bz

Self-phase modulation is a higher-order process than
SFG or DFG. Only when the electric fields are large and
the phase modulation susceptibilities y are suSciently
large does phase modulation play a significant role. Fig-
ure 13 shows the output of the nonlinear crystal at fre-
quency cu3=co, +cu2 for the medium-conversion SFG case
and at frequency co3=co, —co2 for medium-conversion
DFG, where the self-phase modulation susceptibility for
the field at frequency co, is taken to be nonzero and arbi-
trarily set equal to the SFG susceptibility,
Xp ( —co„'co„—co„co,)=X', and all the remaining third-
order nonlinear susceptibilities are made to vanish. Fig-
ure 14 shows the output of the nonlinear crystal at fre-

quency co3=co, +co2 for SFG and the nonlinear crystal at
frequency co3=co, —co2 for DFG for the high-conversion
case. The results including self-phase modulation are in-
dicated by dashed curves, and the solid curves are the re-
sults without phase modulation. There is clearly an effect
due to the self-phase modulation. In SFG, the self-phase
modulation reduces the output at the sum-frequency in-
tensity because the phase modulation serves to ruin the
phase matching of the fundamental fields in the crystal.
Inclusion of additional nonvanishing self- and cross-
phase modulation susceptibilities further reduces the
SFG. In DFG, the self-phase modulation can increase or
decrease the difference-frequency intensity. Details of
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from 15% to 1%, obtained by decreasing the input inten-
sity of the co, beam with neutral density filters. Clearly,

rlz increases with Ir~ for all curves. The width of the re-
gion of increase of the curves is comparable to the coher-
ence time of the laser beams. The efficiency g2 ap-
proaches a constant value independent of

I
r

~
for time de-

lay much longer than the coherence time, and the con-
stant value depends on the conversion efficiency g& of the
fist crystal, with larger g, yielding larger increase of g2.
In the experiment, at rl, = 15%, sufficiently large time de-

lay increased conversion efficiency of the second crystal
by 70% over the result with r=0, and F12 approaches the
conversion efficiency of the first crystal, g, , if ~ is large.
The DFG efficiency of the second nonlinear crystal, g2,
versus time delay ~ is flat within experimental error.
Hence no improvement of efficiency is obtained for the
DFG case.

These results can be understood in terms of the theory
of SFG and DFG presented in Secs. II and III. Since
both input laser beams have intensities fluctuating ran-
domly and independently, the temporal regions of over-
lapping high intensities in both beams are stochastic.
The first nonlinear crystal eliminates these mutually
correlated intensity fluctuations by converting them into
intensity at the sum frequency. As a result, the funda-
mental laser beams after the first crystal are temporally
anticorrelated. The anticorrelation of the laser beams
reduces conversion efficiency in the second crystal if no
time delay is between the fundamental beams is allowed
for, despite the fact that the average intensities are still
high. By introducing a time delay w longer than the
coherence time, the anticorrelation is destroyed and con-
version efficiency in the second crystal is restored. The
'g2 vs 7 dependence is a measure of the intensity cross-
correlation between the two laser beams. The experimen-
tal results presented in Fig. 16 indicate that, upon leaving
the first crystal, the laser beams are anticorrelated due to
the nonlinear wave mixing with anticorrelation more pro-
nounced for higher conversion efficiency. The lack of im-
provement of efficiency for DFG in our experiment is due
to two reasons. First, the calculated improvement of
efficiency for DFG is much smaller than for SFG because
the DFG process destroys co, photons but generates co&

photons so the product of co, and co2 photons is not as
dramatically affected (in the low-conversion efficiency re-
gime, DFG is proportional to the product). Second, the
DFG process does not require that the intensity of the co,
and co2 beams both be high for efficient conversion, and
the time-delay process is designed to increase the chance
that both beams simultaneously have high intensity.

Figure 17 shows the results of modeling the experiment
by passing the pulses used in Fig. 7 through two crystals.
We use the high-conversion efficiency parameters to ac-
centuate the differences with and without decay. The
figure shows the relative photon flux at various stages of
traversing a system containing two nonlinear crystals
separated by a delay line for one of the crystals. The first
two frames in the figure are identical to those of Fig. 7
and show the input at frequencies co& and co2 and the out-
put of the first crystal at frequency co3, respectively. The

third frame shows the output at the fundamental frequen-
cies m& and co2 upon emerging from the first crystal. The
fourth frame shows the resulting output at the sum fre-
quency co3 upon emerging from the second crystal. In
temporal regions where the fundamental fields are
significantly depleted, the sum-frequency output intensity
of the second is not large. The fifth frame shows the out-
put at co3 upon emerging from the second crystal if a time
delay of 1 ns of the beam at frequency is applied to the co2

beam. Clearly, the output intensity obtained upon tem-
porally delaying the co2 beam as shown in the fifth frame
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FIG. 18. Improvement of efficiency g& vs time delay ~ for
four difFerent values of ql.

is larger than without delay in the fourth frame. The
peaks of the input pulses impinging on the second crystal
now have a chance of overlapping well, and greater con-
version is obtainable from the second crystal than in the
case without time delay.

Figure 18 shows the improvement of efficiency versus
time delay for four different values of g= 4' y'L, —i.e.,
(=0.1, 0.12, 0.15, and 0.2, corresponding to efficiencies
of conversion in the first crystal of g&=0. 1 0.14 0.19,
and 0.29, respectively. In these calculations we took
4=4, =42, i.e., equal average photon flux in both input
beams [4, =cn; E; ~

/A'co;, g'=(R co&co2co3/c n, nzn, )'

is the modified nonlinear susceptibility, and L is the non-
linear crystal length]. We averaged over many random
choices of the phases L9& and 02 of the field modes to
collect the statistics shown in the numerical calculations.
The results in Fig. 18 are similar to those obtained exper-
imentally in that the efficiency increases with increasing
efficiency in the first crystal and increasing time delay up
to the coherence time of the laser field. However, here

the mode spacing in the numerical calculations is smaller
than for the experimental beams, hence the coherence
time is longer. Also, in these calculations, the average
flux in both input beams was taken to be equal, whereas
in the experiments, the average flux in one of the laser
beams was decreased. Hence we expect higher efficiency
in the theoretical calculations because the highest conver-
sion efficiency occurs when there are equal numbers of
photons of frequency ~, and cuz. Figure 19 shows the irn-

provement of efficiency in the second crystal versus
y'L for SFG and DFG. Clearly, there is substantial

improvement of the efficiency for SFG for sufficiently
large nonlinearity, however the DFG efficiency improve-
ment for realistic intensities is modest at best, as
confirmed by our experiment. For 4' y'L )0.3,
significant reconversion occurs in both crystals; hence the
dropoff of gz with increasing 4' y'L. Figure 20 plots g2
vs ri& (for sufficiently large time delay) obtained experi-
mentally and theoretically. The same general trend is ob-
tained in both the experiment and the numerical results.
It is somewhat surprising that the experimental results
have greater efficiency improvement than the theoretical
results, but one must keep in mind that the theoretical re-
sults are not an exact simulation of the experiment. De-
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FIG. 19. Improvement of efficiency in the second crystal vs
y'L for SFG and DFG.

FIG. 21. Simulation of g2 vs g& (for sufficiently large time de-

lay) obtained upon simulating a spatial Gaussian beam profile.
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tailed comparison with experiment mould require in-

clusion of spatial mode profiles of the beams and the
eff'ects of beam walkoff. To simulate the efFects of a spa-
tial Gaussian beam profile, we appropriately averaged
over intensity of the incident beam with Gaussian
weights to obtain the results shown in Fig. 21. This
figure demonstrates that the results for q2 vs q, is not
very sensitive to the Gaussian spatia1 average of the
beams unti1 g& exceeds about 0.2. %e have not tried to
simulate the effects of beam walkoff.

V. SUMMARY AND CONCLUSION

We presented the theoretical framework for the
analysis of sum- and difference-frequency generation of
broadband input fields. For SFG, the input fluxes
4i(O, r) and 4z(O, r) and the output fiux 43(L, r) versus
time are related as follows: (a) The output photon fiux at
r is bounded by @;„(O,r). (b) Only when both @i(0,r)
and @z(O,r) are large can 43(L,r) be large (c). When
both 4,(0,r) and @z(0,r) are large, reconversion of co&

photons with the photons of the greater of the two input
fields can occur, thereby reducing the output fiux. (d)
Some of the local maxima of the output flux occur when

4, (O, r)=@z(0,r), since at these points reconversion of
A@3 photons with the photons of the greater of the two in-

put fields cannot occur. For DFG, the input fiux 4, (O, r)
and the output fiuxes 4&(L,r), @z(L,r), and the 4&(L, r)
are related in the following ways: (a) The output photon
fiux at r is bounded by the smaller of 4,(O, r) and

@z(L,r). (b) Only when both 4,(0,r) and @z(L,v. ) (the
Aux of photons at frequency ~2 at the end of the non-
linear medium) are large can 4&(L,r) be large (this is a
necessary but not a sufficient condition). (c) The maxima
of the output fiux 4z(L, r) occur when 4, (0,r) —4,(L,r)
is maximum.

The efBcient sum-frequency generation for broadband
input fields that was experimentally demonstrated [8] is
theoretically analyzed. The method involves using an ar-
rangement with two or more nonlinear mixing crystals
with a time-delay line, situated between the crystals, for
one of the fundamental fields relative to the other. The
delay line temporally shifts the fundamental fields one
relative to another by a time longer than their coherence
time. The improvement in efficiency for SFG using the
method is much higher than for difference-frequency gen-
eration. Experimentally, the conversion eSciency of the
second crystal is increased almost to that of the first crys-
tal by time-delaying one of the input fields, thereby elim-
inating the anticorrelation caused by the SFG in the first
crystal. Additional stages can be cascaded using this ap-
proach. The time-delay method is not effective for mutli-
mode DFG.
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