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Nonideal lasers, nonclassical light, and deformed photon states
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We show that both super-Poissonian and sub-Poissonian photon statistics may be modeled by
the use of the recently introduced M-type g-deformed coherent states, while P-type g-deformed
coherent states exhibit nonclassical sub-Poissonian photon statistics. Applications to the character-
ization of the photon statistics of laser outputs reasonably close to threshold, single-atom resonance
fluorescence, the micromaser field, and absorption by two-level atoms are considered.

PACS number(s): 42.50.Dv

The states of an ideal laser are conventionally de-
scribed by Glauber coherent states [1]. However, real
lasers do not strictly adhere to this description; in partic-
ular, the photon number statistics of real lasers are not
exactly Poissonian [2]. Furthermore, various nonlinear
interactions give rise to well-defined deviations from the
Poissonian distribution [3]. Recently, deformations of the
commutation rules of boson operators have been consid-
ered both in the purely mathematical context of giving
realizations of the so-called “quantum groups” (nonco-
commutative Hopf algebras) [4] but also as models for
physical systems which deviate from the ideal cases [5].
We approach the problem of the “real” laser in this latter
phenomenological spirit, and show that indeed a coherent
state of the deformed boson (g-coherent state) provides
a more accurate model of a nonideal laser, at least as far
as the photon number statistics is concerned.

An ideal laser may be described as a normalized eigen-
state of the photon annihilation operator a, where a and
its Hermitian conjugate af (photon creation operator)
satisfy

[a,a'] = aal —ala =T (1)

The normalized eigenstate satisfying a|a) = a|a) is easily
seen to be

al? et a®
o) = exp (—%) > i 2)

The number eigenstates are |n), and this coherent state
gives rise to the Poisson distribution

a 2n
P = [(na)]? = exp (—af?) 2" ®)

The factorial moments of this distribution are

(n) = laf?,
(n(n — 1)) = |af*,
(n(n - 1)(n - 2)) = |a?,

etc., from which the variance is found to be
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o? = (n?) — (n)? = |af”.

A convenient measure of the deviation of a distribution
from the Poisson distribution is the Mandel parameter

0 7, _ (nn=1)
(n) (n)
which vanishes for the Poisson distribution, is positive
for a super-Poissonian distribution, and negative for a
sub-Poissonian distribution. :
The two main deformations of the canonical commu-
tation relations, Eq. (1), which have been considered are
(a) “maths” boson,

—(n),

aat —gala=1. (4)

This was introduced by Arik and Coon [6], who also de-
scribed the corresponding g-coherent states. We refer to
this deformed boson as a “maths” (or M) boson as the
“basic” numbers [cf. Eq. (7)] and special functions, ¢
functions, associated with this operator have been inves-
tigated in the mathematical literature for over 150 years;
see, for example, Ref. [7].
(b) “physics” boson,

at —qata =q77. (5)

The number operator N in Eq. (5) satisfies [V,a] = —
just as for the usual (nondeformed) boson operators.
This deformation was introduced [8,9] in order to pro-
vide a realization of the “quantum groups” [4] which arise
naturally in the solution of certain lattice models [10].
The g-coherent states associated with these “physics”
(or P) bosons have been investigated by several authors
9,11,12].

One may readily show that the normalized g-coherent
state |a) satisfying ala) = ala) is given by

) = Z \/_1 n), (6)

where [n] (read “box n”) is given by

1_ n

—q M case
m=y ™
9 —9 _ P case
q9—q
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and, in both cases,

Eya) =S 2o (8)

with
[n]! = [n][n —1]---[1]. (9)

As a model for a nonideal laser, this g-coherent state
gives rise to the photon number distribution
1 |a12n

Ey(jo?) (]l (10)

P, =
Note that the distribution in Eq. (10) depends on two pa-
rameters; |a|? and the value of g (taken here to be real).
We shall refer to Eq. (10) as the ¢g-Poisson distribution.
One can easily check that the P-type ¢-Poisson distri-
bution is sub-Poissonian (Q < 0) for all values of g, re-
ducing to the conventional Poisson distribution for ¢ = 1.
On the other hand, the M-type ¢-Poisson distribution is
super-Poissonian for ¢ < 1 and sub-Poissonian for ¢ > 1.
The g-Poissonian g¢-factorial moments are ([n]) =
la)?, {[n][r — 1]) = |a|*, etc.
To evaluate the average number of photons and the
Mandel parameter for the g-Poisson distribution we note
that the corresponding factorial moments satisfy

= OE4(z)
<n)_Eq(m) Oz

bl

z=|a|?

(l:z 2 T
(nln = 1)) = s

z=|a|?

These expressions were used to construct Fig. 1, which
provides estimates of the g-Poissonian parameters ¢ and
|a|? corresponding to a distribution which is specified
in terms of given values of (n) and Q. The values of ¢
corresponding to given pairs of values of (n) and @ are
presented in Fig. 1(a), and the corresponding values of
|a|? are presented in Fig. 1(b).

For small deviations from a Poissonian distribution we
define ¢ = e™* and obtain in the M case

_2Q

()’
which is positive (i.e., ¢ < 1) for a super-Poissonian dis-
tribution and negative (¢ > 1) for a sub-Poissonian dis-
tribution. In the P case we obtain

82 = —-———3Q
T (D)

so that only the sub-Poissonian distribution (Q < 0) cor-
responds to a real value of s (and q).
Another useful result is

1—g

T¥g M case

(m)=0 (n) —2—1 —1 P case.
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FIG. 1. Parameters of the g-Poissonian distribution corre-
sponding to given values of the average photon number (n)
and of the Mandel parameter Q. (a) The values of q. (b) The
values of |a|?. Note the different scales for Q > 0 and Q < 0.

In the M case the range of pis —1 < p < 1, corresponding
to a sub-Poissonian distribution for p < 0 and to a super-
Poissonian distribution for p > 0. In the P case the range
of pis —1 < p < 0, exhibiting only a sub-Poissonian
distribution.

From Eq. (11) we obtain

I+
q= (12)

1 1 _
1+p:t (1+p)2 1 P case.

M case

Using the three highest peaks in the experimental data
pertaining to the photon statistics of a He-Ne laser just

2
above threshold [13] we obtain P—I:}g = % = 1.319, which
in the M case is a quadratic equation in ¢, yielding ¢ =
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0.747. Note that the corresponding equation for the P
case can be shown to rule out the P boson as a model of
this system since for all real and positive ¢ the inequality
Bl > 2 holds.

In Fig. 2, we compare the best fit for the M-boson
g-coherent state against the experimental data [13] and
the ideal (Glauber) coherent state. The value of ¢ corre-
sponding to the best fit is 0.749, in very close agreement
with the value estimated above using the highest three
peaks. It is not surprising that a better fit is obtained
with the g-coherent state, due to the extra parameter gq.
However, certain constraints are satisfied [for example,
the convergence criterion for the M-type g-exponential
function demands that (1 — ¢)|a|? < 1 and is satisfied
here] and, as we have already remarked, the P-boson
model is ruled out.

Experimental studies of the photon statistics of a laser
at different intensities above the threshold were reported
in Refs. [15] and [16]. Since super-Poissonian statistics
is exhibited, only M-type analysis is warranted. In both
cases it is found that for counting times that are short
relative to the intensity correlation time the distributions
agree with g-Poissonian statistics, the value of ¢ increas-
ing from a value which could be close to zero at threshold
to a value close to unity (Poissonian distribution) for in-
tensities about an order of magnitude higher than the
threshold intensity. At twice the threshold intensity val-
ues of ¢ ranging between roughly 0.3 and 0.8 were ob-
tained from the different sets of experimental data.

Another set of experimental data, exhibiting a sub-
Poissonian distribution, involves the photons emitted by
single-atom resonance fluorescence [14]. Using the data
for Py, Py, P>, we obtain [2] = 3.44, which corresponds
to gp = 2.44 or to gp = 3.12 (or 355 = 0.321). This is in
agreement with the estimate for gp; obtained using Eq.
(12) and the data reported in Ref. [14], (n) = 6.23 x 10~3
and Q = —2.52 x 103, from which qpr = 2.36.

Sub-Poissonian photon statistics was also established
for the micromaser field [17]. For the set of data (n) = 13
and Q@ = —0.7 we read off Fig. 1(a) the value ¢ = 1.3.
The corresponding value of |@|? can similarly be read
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FIG. 2. Comparison of the Poissonian (dotted),

g-Poissonian (dashed), and measured (Ref. [13]) photon num-
ber distribution for a laser just above threshold.

off Fig. 1(b). A sub-Poissonian distribution was also
observed for photon absorption by two level atoms [18].
Using Fig. 1(a) for the values (n) = 2.69 and @ = —0.51
we obtain ¢ = 1.8.

The g-Poisson distribution presently introduced pro-
vides yet another example, in this case from quantum
optics, where a more accurate model of a physical sys-
tem may be obtained by use of quantum group ideas.
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