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Nonideal lasers, nonclassical light, and deformed photon states
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We show that both super-Poissonian and sub-Poissonian photon statistics may be modeled by
the use of the recently introduced M-type q-deformed coherent states, while P-type q-deformed
coherent states exhibit nonclassical sub-Poissonian photon statistics. Applications to the character-
ization of the photon statistics of laser outputs reasonably close to threshold, single-atom resonance
Quorescence, the micromaser Geld, and absorption by two-level atoms are considered.

PACS number(s): 42.50.Dv

The states of an ideal laser are conventionally de-
scribed by Glauber coherent states [1]. However, real
lasers do not strictly adhere to this description; in partic-
ular, the photon number statistics of real lasers are not
exactly Poissonian [2]. Furthermore, various nonlinear
interactions give rise to well-de6ned deviations &om the
Poissonian distribution [3]. Recently, deformations of the
commutation rules of boson operators have been consid-
ered both in the purely mathematical context of giving
realizations of the so-called "quantum groups" (nonco-
commutative Hopf algebras) [4] but also as models for
physical systems which deviate from the ideal cases [5].
We approach the problem of the "real" laser in this latter
phenomenological spirit, and show that indeed a coherent
state of the deformed boson (q-coherent state) provides
a more accurate model of a nonideal laser, at least as far
as the photon number statistics is concerned.

An ideal laser may be described as a normalized eigen-
state of the photon annihilation operator a, where a and
its Hermitian conjugate at (photon creation operator)
satisfy

[a, at] = aat —ata = I.
The normalized eigenstate satisfying ala) = nla) is easily
seen to be

O' A A 0!

A convenient measure of the deviation of a distribution
&om the Poisson distribution is the Mandel parameter

o' (n(n —1))
(n) {n)

aat —qata = I. (4)

This was introduced by Arik and Coon [6], who also de-

scribed the corresponding q-coherent states. We refer to
this deformed boson as a "maths" (or M) boson as the
"basic" numbers [cf. Eq. (7)] and special functions, q

functions, associated with this operator have been inves-

tigated in the mathematical literature for over 150 years;
see, for example, Ref. [7].

(b) "physics" boson,

aat —qata = q (5)

which vanishes for the Poisson distribution, is positive
for a super-Poissonian distribution, and negative for a
sub-Poissonian distribution.

The two main deformations of the canonical commu-
tation relations, Eq. (1), which have been considered are

(a) "maths" boson,

ln) = exp — ) ln).
2 ) n!

(2)

[~[2nP„= l{nla)]2 = exp( —ln]2)

The factorial moments of this distribution are

{n) = l~l'

{ ( —1)& =
I

I'

{n(n —1)(n —2)) = l~l'
etc. , &om which the variance is found to be

The number eigenstates are ln), and this coherent state
gives rise to the Poisson distribution

The number operator N in Eq. (5) satisfies [N, a] = —a,
just as for the usual (nondeformed) boson operators.
This deformation was introduced [8,9] in order to pro-
vide a realization of the "quantum groups" [4] which arise
naturally in the solution of certain lattice models [10].
The q-coherent states associated with these "physics"
(or P) bosons have been investigated by several authors
[9,11,12].

One may readily show that the normalized q-coherent
state ln) satisfying aln) = o.lcr) is given by

1 n"

v'E~(l~l') „=;v'[nl'

where [n] (read "box n") is given by

1 —q
1 —q
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an&, ina both cases

with

[n]! = [n] [n —1] [1].
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0.747. Note that the corresponding equation for the P
case can be shown to rule out the P boson as a model of
this system since for all real and positive q the inequality
L[',[l & -', holds.

In Fig. 2, we compare the best fit for the M-boson
q-coherent state against the experimental data [13] and
the ideal (Glauber) coherent state. The value of q corre-
sponding to the best 6t is 0.749, in very close agreement
with the value estimated above using the highest three
peaks. It is not surprising that a better 6t is obtained
with the q-coherent state, due to the extra parameter q.
However, certain constraints are satisfied [for example,
the convergence criterion for the M-type q-exponential
function demands that (1 —q)]n] & 1 and is satisfied
here] and, as we have already remarked, the P-boson
model is ruled out.

Experimental studies of the photon statistics of a laser
at different intensities above the threshold were reported
in Refs. [15] and [16]. Since super-Poissonian statistics
is exhibited, only M-type analysis is warranted. In both
cases it is found that for counting times that are short
relative to the intensity correlation time the distributions
agree with q-Poissonian statistics, the value of q increas-
ing &om a value which could be close to zero at threshold
to a value close to unity (Poissonian distribution) for in-
tensities about an order of magnitude higher than the
threshold intensity. At twice the threshold intensity val-
ues of q ranging between roughly 0.3 and 0.8 were ob-
tained from the different sets of experimental data.

Another set of experimental data, exhibiting a sub-
Poissonian distribution, involves the photons emitted by
single-atom resonance fluorescence [14]. Using the data
for Po, Pi, P2, we obtain [2] = 3.44, which corresponds
to qM = 2.44 or to qp = 3.12 (or s i2

——0.321). This is in
agreement with the estimate for qM obtained using Eq.
(12) and the data reported in Ref. [14], (n) = 6.23 x 10
and Q = —2.52 x 10, from which qM = 2.36.

Sub-Poissonian photon statistics was also established
for the micromaser field [17]. For the set of data (n) = 13
and Q = —0.7 we read off Fig. 1(a) the value q = 1.3.
The corresponding value of ~n] can similarly be read
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FIG. 2. Comparison of the Poissonian (dotted),
q-Poissonian (dashed), and measured (Ref. [13])photon num-
ber distribution for a laser just above threshold.

oK Fig. 1(b). A sub-Poissonian distribution was also
observed for photon absorption by two level atoms [18].
Using Fig. 1(a) for the values (n) = 2.69 and Q = —0.51
we obtain q = 1.8.

The q-Poisson distribution presently introduced pro-
vides yet another example, in this case &om quantum
optics, where a more accurate model of a physical sys-
tem may be obtained by use of quantum group ideas.
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