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b' potential arising in exterior complex scaling
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In the method of exterior complex scaling the coordinates of the Hamilton operator are scaled
by a constant factor starting at a radius R g 0. We show that this procedure induces a singularity
in the kinetic-energy term which must be interpreted as the derivative of a b function.

PACS number(s): 03.65.Db, 11.55.—m

The method of exterior complex scaling [1] is a tech-
nique to analytically continue a self-adjoint Hamiltonian
operator of the general form

H = d'/dr—'+ V,

D(H) = D( d /dr —) = (@ C W2 (R+), @(0) = 0)

to a family of non-self-adjoint operators (H, j. If there
are resonances in the physical system described by H,
then H, will have complex eigenvalues whose real and
imaginary parts give the positions and half the widths of
the resonances, respectively. The family (H, ) is con-
structed such that the point spectra o~(H, ) have the
property

rr„(H„) C o'~(H„), 0 ( arg(zq) & arg(z2) (n„(2)
i.e., the eigenvalues are independent of the modulus of
z and any eigenvalue of H, that appeared for zq stays
constant when one increases arg(z) up to a certain crit-
ical angle o, Such continuation techniques are widely
used in physics and quantum chemistry to determine, in
a nonperturbative way, the widths of resonance states
(see reviews in Ref. [2]). We will point out below that
for the particular variant of exterior complex scaling the
proper choice of the functions on which the Hamiltonian
is defined is nontrivial and also of immediate computa-
tional relevance. In the case of a discontinuous transition
from the unscaled (interior) region of coordinates to the
scaled (exterior) region these functions must have a well
defined discontinuity. Any attempt to define a discontin-
uously scaled kinetic energy on smooth functions would
encounter similar difBculties as to define the unscaled ki-

!

netic energy on discontinuous functions.
The usual procedure to construct (H, ) is to define the

operator of scaling of the coordinates

e -+ V.e: (U.e)(r) = e.'~'(r)@
~ e.(r')«'

I (3)
o

In Ref. [1] q, was chosen to be

(4)

From this one obtains the family of scaled Hamiltonians

H, = U, HU,*, D(H, ) = U, D(H).

For 0 ( z p R the operator U, is unitary and therefore
(H, ) is a family of self-adjoint operators. When the po-
tential V has the property of being "dilation analytic"
[3] the continuation of this family to complex values of z
has the spectral property Eq. (2).

It is important to notice that for R & 0 the domains
D(H, ) depend on z in the form

e(R+0) = z~~2e(R-0)O'D(H): e(R+0) =. I e(R 0)
(6)

Conditions (6) mean that K, is only defined on func-
tions that are discontinuous at r = R, and also the
derivatives Inust be discontinuous. Suppose we have
a set of basis functions &om the domain of H, say,
r exp( —nr) c D(H). Then, according to Eq. (5), a set of
basis functions for H can be obtained in the form

r exp( —nr ), r&R
z ~2[R+ z(r —R)]exp( —n[R+ z(r —R)]), r ) R.

In this Brief Report we want to show that the kinetic-
energy term d2/dr upon —scaling produces a zero-range
singular potential at the point R ) 0. This fact as such
is not surprising and earlier an attempt was made to take
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it into account by introducing a Bloch term at R to cal-
culate matrix elements of the kinetic-energy [4]. We will
show that the correct form of the scaled kinetic-energy
operator contains the derivative of the b function with
support at the point R. For this purpose it will be suffi-
cient to restrict the discussion to the case with z g R.

We first encounter the problem that the domain of H,
contains functions whose values and derivatives will in
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general be discontinuous at R. In order to define b' on
discontinuous functions, in Ref. [5] the generalized defi-
nition of the b function

4{R—o) + @(R+o)
2

(8)

was used. The function values 4(R —0) and 4'(R+ 0)
were chosen to enter symmetrically in order to keep b an
even function: b(r —R) = 6(R —r). For the usual 8'
function and a continuously differentiable function f (z)
the equation

K, = q—, 'd /dr q, ',

D( q,—d /dr q, ) = q, D( d—/dr )

~(R+O) = zq(R —O)

~(R+0) = ., (R-o) (16)

is self-adjoint and therefore a suitable candidate for a
kinetic-energy operator. Functions from its domain obey
the boundary conditions at R

f(*)~'( ) = f(0)~'(*) —f'(0)h(*) and the eigenfunctions of K, are

holds. To extend this equation to discontinuous func-
tions, in Ref. [5] the values and derivatives at z = 0 were
replaced by the mean values of the left and right limits
to 0, which is implied by the definition (8):

f(*)~'(-)=" ""{")~'(*)
2

f'(-0) + f'(+0), .
2

While b' does not have an interpretation as an operator in
the Hilbert space, the operator which is formally de6ned
by

sin kr, r&R
&R'. (" ") — „—'k. ( —R) + „* 'k. ( -R)

with v = 2[zsinkR+icoskR]. One sees that this naively
scaled kinetic-energy operator does not coincide with the
one obtained by the scaling Eq. (5). The essential diKer-
ence is that the logarithmic derivatives of y E D(K, ) are
continuous, while, according to Eq. (6),

e'(R+0) e'(R-0) =. f., @AD(H). (18)
C (R+ o) 4 (R —o)

A%i—: d'/dr'+ —cb'(r —R) @ = ~

can be given meaning by demanding that y contain no a-
like singularities. This subjects the domain of functions
where A is defined to the conditions [5,6]

4'(R + 0) = [(2 + c) /(2 —c)]@(R —0)
e'(R+0) = [(2 — )/(2+ )]@'(R—0).

(12)

The eigenfunctions of this operator can be easily given
as

sin kr, r&R
V'&( ~ r) ~e —ik(r —R) + u* ik(r —R) ) R

where u = z([(2 + c)/(2 —c)] sin kR + i[(2 —c)/(2 +
c)] cos kR).

Let us now return to the scaled Hamiltonian H, and
try to write down explicitly the action of scaling on the
kinetic-energy operator dz/dr For 0—( r (. R the
second derivative remains unchanged, while for r ) R a
factor of z appears due to the multiplication of r by z.
Thus everywhere except at the point r = R, the scaled
kinetic-energy operator acts as follows:

From Eq. (12) one sees that the constant c in front
of b' parametrizes the discontinuity of the logarithmic
derivative. It is easy to verify that the operator

A, =q, d /dr +—2 b'(r —R) q,

D(A, ) = q, D(A)

acts as defined in Eq. (14) and its domain coincides with
the domain of the properly scaled Hamiltonian: D(A, ) =
D(H, ). The eigenfunctions of the properly scaled kinetic-
energy operator A, have the form

sin kr, r&R
V ~. ( ~ ) — „ ikz(r R) + e ik-z(r-R) „)R)

{2o)

with iv = -[z ~2sinkR+ iz ~ coskR]. These functions
fulfill the boundary conditions (6).

Thus we have shown that the difI'erence between the
naive operator (15) and the correctly scaled operator {5)
is the zero-range potential

2(1 ~)/{1+K) q ~'(R )q.'-—zdz/d 2 —ldz/d 2 —i r g R. (14)

Here the second symmetric expression suggests as a nat-
ural choice for the domain the functions of the form
q, P, P 6 D( d /dr ). It is easy to—verify that

For the variational determination of eigenvalues of H,
one needs to calculate matrix elements (y]H, 4). It is
interesting to note that such a matrix element for either
operator, A, or K„ for z E 'R is given by the integral
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y'(r)4" (r) dr —z y*(r)@"(r)dr
p R

R OO

(x')*( )~'( ) d + -' (x')*( )+'( ) &'
0 R

the domain an adequate set of functions obeying this
condition.

Consider now boundary conditions of the particular
form

ql'(R+ 0) = o.4'(R —0), 4'(R+ 0) = P@(R—0). (27)

(22)

The only difference between the two functionals lies in
the domains: Trial functions for K, have to be chosen
according to conditions (16). For example, starting again
&om trial functions for the unscaled operator of the form
r exp( —nr) one obtains

r exp( —nr), r ( R
zr exp( —ar), r & R.

(pl~, e) —(s,~le) = 0. (24)

By substituting for S, the explicit differential form
Eq. (14) the symmetry condition reads

R
dr —y, +

p P T

,d'4 d'y*
+z ' dr —y*, +, 4 =0. (25)

R

Integrating by parts we get the following condition on
the values of the function at the point r = R:

—y*(R —0)4'(R —0) + (y')*(R —0)4'(R —0)

+z '[~'(R+ 0)@'(R+0)
—(y')'(R+0)C(R+ 0)] = 0. (26)

The operator can be made self-adjoint by choosing as

The crucial difference between these functions and the
functions (7) is that the discontinuity amounts to a fac-
tor z here, while it is a factor zi~2 in the set (7). [The
conditions on the derivatives can actually be omitted if
one calculates only matrix elements as in Eq. (22).]

Finally we would like to remark that (H, j is the only
self-adjoint family of scaled operators which can be con-
structed if we do not allow one to connect the boundary
values of the functions with the boundary values of their
derivatives.

Obviously, any self-adjoint operator S, needs to fulfill
the symmetry condition

Substitution into the boundary form (26) iinplies for the
constants

o.p' = z, o.'p = z . (28)

This condition can be satisfied for z 6 R. One can
show that the corresponding operator will be not only
symmetric, but also self-adjoint.

On the other hand, scaling the coordinates of a func-
tion with continuous derivative by the substitution r ~
R+q, (r) (r R) will—always lead to a jump in the logarith-
mic derivative of the scaled function as given in Eq. (18).
That equation combined with the symmetry requirement
uniquely defines the domain D(H, ).

If one gives up the condition that H, be self-adjoint for
real z, then one can readily construct families of opera-
tors, which are defined on continuous functions and which
have the spectral property (2). For example, when the
potential V is local, the operator

1/2H —1/2
z ~z z~z D(H, ) = q, ~ D(H, ) (29)

has an eigenfunction 4, z ——q, 4, @ with eigenvalue
E for each eigenfunction 4 E of H, at the same eigen-
value E. Now we have otained a domain D(H, ) that
contains only continuous functions. (Note that the log-
arithmic derivatives remain discontinuous. ) When one
sets up a variational functional such as (22) for this non-
symmetric operator, one has to be careful to choose the
left functions &om the domain of the adjoint operator
D(H;) = q, iD(H, ) g D(H, ). These functions differ
&om the functions on the right-hand side of the operator
and are discontinous. We see that by this manipulation
at best nothing was gained. In practice, it would lead
to nonsymmetric matrices, which are harder to handle
computationally.

In exterior complex scaling one has z C C such that the
resulting operator H, is non-self-adjoint. The reasoning
that leads to the identification of the boundary condi-
tions (12) with the b' function only uses that the right-
hand side of Eq. (11) contain no b-function-like singular-
ities and does not depend on self-adjointness. Therefore
Eq. (12) is equally valid for complex z and the difference
between the operators defined with the domains Eqs. (6)
and (16), respectively, is still given by Eq. (21).
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