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A quasicontinuous measurement incorporating lossless beam splitters and photodetectors is pro-
posed. Here the measurement by photodetectors is assumed to obey the projection postulate. The
photon statistics in the output state of the signal mode of a beam splitter is investigated. It is
shown that under certain conditions the measurement yields results equivalent to those obtained by
the continuous measurement of photon number described by the quantum Markov process. Further-
more, measurements using a nondegenerate parametric amplifier and four-wave mixer, instead of
beam splitter, are considered. The relations to the continuous measurement of photon number with
a quantum counter and the continuous quantum nondemolition measurement of photon number are

discussed.

PACS number(s): 42.50.Dv, 03.65.Bz

I. INTRODUCTION

The beam splitter is a key component of optical
measurements, mathematically equivalent to the Mach-
Zehnder interferometer and linear directional coupler.
These devices are characterized by SU(2) symmetry in
the absence of dissipation. The phase sensitivity in the
output state of the Mach-Zehnder interferometer has
been investigated for bosonic [1] and fermionic [2,3] sys-
tems. The photon statistics in the output states of loss-
less beam splitters [4,5] and linear directional couplers
[6,7] have been considered for various input states. In
these studies [4-7], the quantum effects such as sub-
Poissonian statistics and the squeezing of fluctuations in
the output state were investigated.

In this paper, we propose a quasicontinuous mea-
surement in terms of lossless beam splitters and photo-
detectors used to measure the photon number from one
of the two output ports of the beam splitter. Here the
measurement by the photodetector is assumed to be sub-
ject to the von Neumann projection postulate and thus
to be the first kind of measurement [8,9]. We investigate
the photon statistics in the output state under the condi-
tion that the photodetector exhibits the m-photon state.
Then we show that under certain conditions our mea-
surement yields results equivalent to those obtained by
the continuous measurement of photon number [10-13]
described by the quantum Markov process [14]. Further-
more, we consider measurements with a nondegenerate
parametric amplifier and a four-wave mixer, instead of
beam splitter. It is shown that a measurement by means
of parametric amplifier and photodetector subject to the
projection postulate can yield the same results as those
obtained in the continuous measurement of photon num-
ber with quantum counter [15,16]. It is also found that
a measurement in terms of a four-wave mixer and a pho-
todetector can give results equivalent to those obtained
in the continuous quantum nondemolition measurement
of photon number [17]
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This paper is organized as follows. In Sec. II we explain
a measurement by means of beam splitter and photo-
detector, and we calculate an output state of signal mode.
In Sec. III we investigate the photon statistics in the out-
put state of the beam splitter for several input states,
under the condition that the photodetector exhibits an
m-photon state. We find an oscillatory behavior of pho-
ton statistics for even and odd coherent state inputs. In
Sec. IV we discuss the relation between the measurement
we proposed and the continuous measurement of photon
number described by the quantum Markov process. In
Sec. V we consider a measurement using nondegenerate
parametric amplifier, instead of beam splitter, and photo-
detector, and we discuss the relation to the continuous
measurement of photon number with quantum counter.
We also consider a measurement with a four-wave mixer
and a photodetector, and we show the equivalence to the
continuous quantum nondemolition measurement of pho-
ton number. A summary is given in Sec. VL.

II. MEASUREMENT WITH BEAM SPLITTERS

Let us consider the measurement setup shown in Fig. 1.
It is assumed here that the beam splitter is lossless and
that the measurement performed by the photodetector
obeys the projection postulate [8,9]. In the Heisenberg
picture, the beam splitter is characterized by the relation

Qout \ _ [ cos@ —sinf Qin

bout ) - ( sin @ c050> ( bin ) ’
where (ain, a}\n) and (bin, bgn) are the annihilation and cre-
ation operators of the input signal and reference modes,
and (aout,alut) and (bouhblut) are those of the output
modes. Here we have ignored the phase shift in each
mode due to the beam splitter since such phase shifts are

not important for our purpose. The transmittance 7 and
reflectance r of the beam splitter are given by

(2.1)
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FIG. 1. A schematic representation of the measurement
setup where BS is a lossless beam splitter and D is a pho-
todetector with which the measurement obeys the projection
postulate. Wi, is the density matrix of the signal mode input
and Wiacyum is the density matrix of the reference mode in-
put assumed to be in a vacuum state. Waetector represents the
output state of the reference mode exhibited by the photode-
tector. W,y indicates the output state of the signal mode
under the condition that the photodetector exhibits the state
Wdetector~

T =cos’f, r=sin’4. (2.2)

In the following, we assume that the input state of the
reference mode is the vacuum state. In the Schrédinger
picture, the output state Wy, of the beam splitter is
given by

Wout = V(Win ® ancuum)VT,
V = exp[-0(J; — J_)],

(2.3a)
(2.3b)

where W, is the density matrix of the signal mode in-
put and Wy,cuum is the density matrix of the reference
mode input that satisfies 8Wyacuum = Wyacuumb' = 0. In
(2.3b), J+ and Jg are the generators of su(2) Lie algebra
given by

Jy = a'b, (2.4a)
J_ = abt, (2.4b)
Jo = 1(a'a —b'D), (2.4c)

which satisfy the commutation relations, [J;,J_] = 2J,
and [Jo,Ji] = +Ji. Here we set (a,af) = (ain,a;\n)
and (b,b') = (bin,b] ). The relation (2.3) shows the well
known fact that a lossless beam splitter is characterized
by su(2) Lie algebra [1-7].

Suppose that the photodetector for the output of the
reference mode exhibits an m-photon state such that
Waetector = |m)({m/|, where btb|m) = m|m). According
to the projection postulate, the non-normalized output
state of the signal mode is given by

Wout (m) = Trb[Wout Wdetector]
1 m
== (I) amT“'“/ZWin*r“f“/z(at)m, (2.5)
m! \1
where Tr, is the trace operation over the Hilbert space

of the reference mode. Now we introduce the generators
K+ and K of su(1,1) Lie algebra as
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K. X =a'Xa, (2.6a)
K_X =aXal, (2.6b)
KoX = }(ataX + Xala + X) (2.6¢)

for an arbitrary operator X [18,19], where [K_,K ]| =
2K, and [Ko, K+]| = £ K are satisfied. Then W, (m
is expressed as follows:

Wout (m) = U(P‘a m)VVin,
(e — 1)
m!

(2.7a)

U(p,m) = K™ exp[-pu(Ko — 3)),

1 (2.7b)

where u is defined by 7 = e #. Note that u is
positive since 1 > 7 > 0. The normalized out-
put state of the signal mode is given by Wo,(m) =
U(p, m)Win/Tra|U (, m)Wiy], where Tr, is the trace op-
eration over the Hilbert space of the signal mode. The
relations (2.7) show that the output state of the sig-
nal mode of the beam splitter is described by su(1,1)
Lie algebra under the condition that the output state
of the reference mode is an m-photon state. It is in-
teresting to note that the relationship between the two
input modes and the two output modes is unitary and
characterized by SU(2) symmetry while the reduced de-
scription of the signal input-output relation is nonunitary
and characterized by SU(1,1) symmetry. The quantity
P,(m) = Tr,[U(p, m)Wiy] represents the probability dis-
tribution of the photodetector registering m photons in
the output state of the reference mode. This probability
distribution is calculated as

(e —1)™ Z - :L!m)!e_yn<n|w'in|n), (2.8)

n=m

Pﬂ(m) = m!

which satisfies Y oo_, P,(m) = TtWj, = 1.

It is interesting to remark that the output state (2.5)
[or (2.7)] is equal to the state of photon system, after
a photon counter registered m photons, in the contin-
uous measurement of photon number described by the
quantum Markov process [10-13]. The probability (2.8)
is equivalent to the photon counting probability of the
counter registering m photons. It should be noted here
that the measurement by the photodetector in Fig. 1
obeys the projection postulate. However, the continu-
ous measurement by the photon counter does not obey
it. Later we will discuss further the similarity between
these measurements.

When we do not refer to the result exhibited by the
photodetector for the output of the reference mode, the
output state of the signal mode becomes

Wout = Z Wout(m)
m=0

= exp[u(K- — Ko + 3)|Win, (2.9)
where TroWoue = TraWin = 1 is satisfied. It is easily
seen that this state is the same as that of the output
from the thermal reservoir at a temperature of T = 0
[20]. Here the relations p = 2kt and 7 = e~ 2%t are
established, where « is the damping constant of pho-
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tons due to the reservoir and t is the transit time of
the photon passing through the reservoir. Indeed, we
have (ata)ou = e #(a'a)i,. Thus, if we do not refer to
the output state of the reference mode, the beam splitter
with the vacuum input of the reference mode is equiva-
lent to the thermal reservoir at T = 0.

III. PHOTON STATISTICS
IN THE OUTPUT STATE

In this section, we consider the photon statistics in the
output state of the signal mode for several input states,
under the condition that the photodetector for the refer-
ence mode output shows an m-photon state. Using the
density matrix Wous(m) = U (p, m)Win/Tro[U (1, m) Win)
of the signal mode output, we can calculate the average
and second-order moment of the photon number and the
Mandel Q factor [21],

(a'a)m = f}":, (3.1a)
((a'a)®)m = f%:—z + f’}‘“, (3.1b)
Qm = j::j - f’}‘“, (3.1c)

where we set (), = Trg[ - - Wout(m)] and f,,, is given by

fm = (n—f!m—)!e—“"(mwinm).

Thus, making use of (3.1) and (3.2), we obtain the fol-
lowing results.

(a) The number eigenstate. When the input state of
the signal mode is the eigenstate of photon number, such
that Wi, = |no){no| with ng > m, we obtain

(3.2)

n=m

(ala)m = no —m, (3.3a)
((@'a)*)m = (no —m)?, (3.3b)
Qm = -1, (3.3(3)
(a'a)m = (ala)m=o — m. (3.3d)

These are trivial results indicating that ng input photons
are divided into m reference output photons and ng — m
signal output photons by the beam splitter. In partic-
ular, (3.3c) and (3.3d) show the sub-Poissonian photon
statistics and the antibunching correlation of the photon
numbers in the number eigenstate.

(b) The binomial state. The binomial state [22] is given
by

N
|N;b) =Y P(N,n)"?|n), (3.4a)
P(N.m) = (1 =p)" " (3.4b)

Thus, for Wi, = |N;b){(b; N| (N > m), we obtain the
results

(N —m) TP .
(@'a)m = (N = m) — -t (3.5a)
_ P P
(e = (N =) 72 |V = m =) T ]

(3.5b)

___Pp
Qm = — [ (3.5¢)
(aa)m = (1 - %) (a'a)m—o. (3.5d)

We find the antibunching correlation of photon numbers
in the binomial state since the average photon number
in the output state of the signal mode decreases if the
photodetector for the output state of the reference mode
registers the photons, (afa), < (afa)m=o. We also see
the sub-Poissonian photon statistics from @,, < 0.

(c) The coherent state. When the input state is the
coherent state, such that W;, = |a){a| with a|a) = a|a)
and 79 = |a|?, we obtain

(aTa)m = Thg, (3.6a)
((a'a)?)m = (7o) (TR0 + 1), (3.6b)
Qm =0, (3.6c)
(aTa>m = (aTa)m:O. (3.6d)

Thus the property of the output state is independent of
that how many photons the photodetector of the refer-
ence output registers. This is characteristic of the coher-
ent state.

(d) The thermal state. When the input signal mode
is in the thermal state, Wi, = 3 oo pa|n)(n| with p, =
a2 /(1 + o)™+, we get the results

(alaym = (ﬂlfﬁ)?;ﬂ (3.7a)
_(m4+1)1ig [(m+2)TRe

{(a'a)*)m = 1+ r7g [ 1+ r7g T 1]  (37h)

Qm = 1 :_ioﬁ07 (37C)

(al'a)m =(m+ 1)(a1a)m:0. (3.7d)

Thus we find the bunching correlation of photon numbers
in the thermal state since the average photon number
in the output state increases if the photodetector regis-
ters the photons, (afa),, > (a'a)m=o. We also have the
super-Poissonian photon statistics (Q., > 0).

(e) The even and odd coherent states. Finally, we con-
sider even and odd coherent states |a,.) and |a_) as input
states of the signal mode,

1

) = 7 () £ — ). (3.89)
+
Ny =2(1+e ), (3.8b)
where |a) is the usual coherent state and %o = |af?.

These states are eigenstates of a2, a?|ay) = a?|as). The
even and odd coherent states shows the sub-Poissonian
photon statistics and quadrature squeezing under certain
conditions [23]. Using (3.1), we obtain

(ata),m = (770) [tanh(T7)] ™ , (3.9a)



((a'a)}),, = (27'r'fo)2 + (T#ig) [tanh(T7)]"™, (3.9b)
Qm = ”’"s—iihz—znro—ﬁo—) (3.9¢)
for even coherent state Wi, = |a;){a4| and
(ata)m = (7o) [tanh(TRg)]"™**, (3.10a)
((ata)?®)m = (T70)? + (T7o) [tanh(T70)]"™+*,  (3.10b)
0, = 277 (3.10¢)

Im+1 sinh(277,0)

for odd coherent state Wi, = |a_){(a_|. Here we set
Om = (—1)™. We also find the following relations:

(ala)sm® = (ala)5ady, (3.11a)
((a'a)®)sm™ = ((ala)®)3nss, (3.11b)
e = Qncs (3.11c)

and
(a'a)sei, = (ala)3nd, (3.12a)
((ala)geen, = ((ala)?3ie, (3:12b)
mi1 = Q3n, (3.12¢)

where m and n are non-negative integers, and ()2v°® and
()334 stand for average values calculated for the even
and odd coherent state inputs. From (3.9) and (3.10),
we find the following. For the even coherent state input,
the photon statistics in the output state of the signal
mode becomes super-Poissonian or sub-Poissonian, if the
photodetector for the output of the reference mode ex-
hibits a (2m)-photon state or a (2m + 1)-photon state.
On the other hand, for the odd coherent state input, a
(2m)-photon state or a (2m + 1)-photon state of the ref-
erence mode output leads the sub-Poissonian or super-
Poissonian photon statistics in the output state of the
signal mode.

IV. RELATION TO THE CONTINUOUS
MEASUREMENT

Let us now discuss the similarity between the measure-
ment shown in Fig. 1 and the continuous measurement of
photon number described by the quantum Markov pro-
cess [10-13]. We assume that the reflectance of the beam
splitter is sufficiently low (r <« 1) so that the probabil-
ity of the photodetector for the output of the reference
mode registering more than one photon is negligible. Un-
der this assumption, we can approximate U(u, m) as

U(p,0) = S(8t), (4.1a)
U, 1) = TS(52)6t, (4.1b)
U(p,m >1) =0, (4.1c)

where we set y = At and use u =~ r, and the operators
S(t) and J are defined by

S(t) = exp[—At(Ko — %)],
J =)AK_.

(4.2a)
(4.2b)
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From the results given in Refs. [10-13], we find the fol-
lowing. The nonunitary operator S(t) is equal to the
time evolution operator in the continuous measurement
of photon number described by the quantum Markov pro-
cess [14]. This operator describes the time evolution of
the photon system under the condition that no photon
is registered by the counter during time ¢. The oper-
ator J describes the change in the state of the pho-
ton system when the counter registers one photon and
Tr,[J Win]dt represents the probability of one photon be-
ing registered in [0,0t). The parameter A corresponds to
the coupling between the counter and photons and A~?
is a measure of the average time that elapses before the
counter registers the presence of the photons. Here it is
important to note that the continuous measurement of
photon counting does not obey the projection postulate.
However, the photodetector used in the measurement in
Fig: 1 does obey it. In the continuous measurement of
photon number, Py(t) = Tro[S(¢t)Win] is the probabil-
ity that the counter does not register photons in [0,t)
and P;(t) = Tr,[J S(t)Wi,]6t is the probability that the
counter registers the first photon in [¢,t + 6t).

We further consider such a similarity. Suppose a series
of n lossless beam splitters such that the output signal of
the kth beam splitter is used as the input signal of the
(k 4+ 1)th beam splitter. Here it should be noted that
the result exhibited by the kth photodetector is taken
into account in the input state of the (k + 1)th beam
splitter. The setup is shown in Fig. 2. Then we assume
that the input state of the reference mode of each beam
splitter is vacuum and that the output of the reference
mode is observed by the photodetector subject to the
projection postulate. If the kth photodetector exhibits
the m-photon state, the non-normalized output state of
the signal mode of the last (nth) beam splitter is given
by

Wout(mnamn—la e aml)

= U(ll'na mn)U(ﬂn—la mn—l) e U(P’ly ml)Win7 (43)

W\"a(‘uunl W\'acllunl WVaCuUm
BS1 lBSQ l BSn l
Wo \ Wl\ Wo wn.l\ W
Wa1 Wa2 Wadn

FIG. 2. A schematic representation of the measurement
setup in terms of n lossless beam splitters and n photodetec-
tors. BSi is the kth beam splitter whose transmittance and
reflectance are 7« and 7, and the D’s are photodetectors with
which the measurement is subject to the projection postulate.
Wy is the density matrix of the signal mode input, and the
states of all reference inputs are assumed to be vacuum states,
Weyacuum = |0)(0|. W is the output state of the signal mode
from the kth beam splitter under the condition that the kth
photodetector exhibits the state Wg, and W; becomes the
input state of the (k + 1)th beam splitter.
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where U(u,m) is defined by (2.7b), 7, = e #* is the
transmittance of the kth beam splitter, and Wi, is the
input state of the signal mode of the first beam splitter.
The probability that each photodetector exhibits the my-
photon state (k =1,...,n) is given by
ymy ) .
(4.4)
If none of the results exhibited by the n photodetectors
are referred, the output state of the signal mode becomes

I/‘Vout = exp[ﬂ(K_ - KO + %)]Winv (45)
J

P(m'nymn—-lv- . '7m1) = ’I‘raWout(mnvmn—la ..

m ones

P(0,1,1,...,0,1,0) = Pu(t;ts, ,t1,_,s---
————

(n—m) zeros

Pe(titi,, ti

m-17"

..,tll) = TI‘Q[S(t - tlm)js(tlm
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where we have defined i = Y ;_; pk. This is the same
as the output state of the thermal reservoir with T' = 0.

Now we assume that each of the n beam splitters has
a sufficiently low reflectance (rp =~ pr < 1) and that
the probability of the photodetector for the output state
of the reference mode registering more than one pho-
ton is negligible. Then the probability that the given
m photon detectors, for example, [;th,lsth,... [, th de-
tectors, exhibit one-photon state and the other n — m
photodetectors do not register a photon is obtained from
P(mn,mn_l, ey ml),

sty )0t 6, o Oty (4.6a)
- tlm—l)J e JS(tll - tO)Win]
=" exp[—/\E;"zltlj]Tra {exp[—/\tafa]a’"Win(af)m} , (4.6b)

where we set i = Adty and ¢, = Ei"zl 8t; with t, = ¢ and to = 0, and S(t) and J are given by (4.2). It is seen that

the quantity Pe(t;tm,tm—1,.-.,%t1) is equal to the elementary probability distribution in the continuous measurement
of photon number [10,11], which is the probability that one photon is registered by the photon counter at each of the
times ¢;,, > t;,,_, > --- > t;, and no photon is registered in the rest of the measurement interval. The normalized

output state of the signal mode is given by

A S(t —t1,)TS(tr, —tr,, )T -+ TS(ty, —to)Win

Wout(t;tlmatlm_1 PR 7tl1) =

Tra[S(t - ttm)js(tlm
_ exp[—3Atata]a™ Wiy (ah)™ exp[—1Atatd]

—t1, )T - TS(t, — to)Wia]

Tr,{exp[—Atata]a™ Wi, (at)™} ’

which is equal to that obtained in the continuous mea-
surement of photon number. Therefore, it is found that
the measurement in terms of a series of lossless beam
splitters with very low reflectance and photodetectors
subject to the projection postulate can lead to results
equivalent to those obtained by the continuous mea-
surement of photon number described by the quantum
Markov process.

V. MEASUREMENTS WITH PARAMETRIC
AMPLIFIERS AND FOUR-WAVE MIXERS

So far we have considered the quasicontinuous mea-
surement of photon number with beam splitters. How-
ever, the discussion of the measurement with beam split-
ters can be applied to measurements by means of other
optical devices. In this section, we consider quasicontin-
uous measurements with nondegenerate parametric am-
plifier and four-wave mixer. We first consider the mea-
surement using the nondegenerate parametric amplifier
and the photodetector shown in Fig. 3. The Hamilto-
nian of the nondegenerate parametric amplifier with the

classical pump field is given by
H = wya'a + wpbla + iu(a’bfe™ — abe™?t), (5.1)

where (a,a’) and (b,b") are the signal and reference
(idler) modes and pe~** stands for the classical pump

(4.7)

r

field [24]. If we assume w = w4 +wp, we obtain the time-

translation generator of states in the interaction repre-
sentation

Hine = ip(a'b! — ab). (5.2)

When it is assumed that the measurement performed

by the photodetector is subject to the projection postu-

late, the output state Wout of the nondegenerate para-
metric amplifier is given by

Win Wout
PA
Wyacuum
Wetector

FIG. 3. A schematic representation of the measurement
setup where PA is a nondegenerate parametric amplifier and
D is a photodetector with which the measurement is sub-
ject to the projection postulate. Wi, is the density matrix of
the signal mode input and Wyacuum is the density matrix of
the reference mode input assumed to be in a vacuum state.
Waetector represents the output state of the reference mode ex-
hibited by the photodetector. W, indicates the output state
of the signal mode under the condition that the photodetector
exhibits the state Waetector-
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I/i/out = V(Win ® ancuum)Vtv
V = explf(Ly — L)),

(5.3a)
(5.3b)

where Ly and Lg are the generators of su(1,1) Lie alge-
bra,

L, =a'bf, (5.4a)
L_ = ab, (5.4b)
Lo = 3(ata + bTb + 1), (5.4¢)

and we set § = u7, where 7 is the transit time of the
photon passing through the parametric amplifier. Thus,
if the photodetector for the output of the reference mode
exhibits an m-photon state given by Waetector = |m){m|,
according to the projection postulate, we obtain the non-
normalized output state of the signal mode,

Wout(m) = U(s, m)Win,
(1—e®)m™
m!

(5.5a)

U(s,m) = KT exp[-s(Ko +3)], (5.5b)
where we set e~ = 1 — tanh?@ (s > 0), and K+ and K,
are given by (2.6). It should be noted that Wy, (m) is
equivalent to the state considered by Agarwal and Tara
to investigate nonclassical character without squeezing or
sub-Poissonian statistics [25]. When we do not refer to
the state of the photodetector, the output state of the
signal mode becomes
Wout = exp[s(Ky — Ko — 3)|Win, (5.6)

which is equivalent to the output state of linear amplifier.
Indeed, we obtain the relation (aat)ou = G(aat)in, where
the gain constant is given by G = e”.

Suppose the weak parametric coupling (8 < 1) so that
we can approximate U (s,m) as

U(s,0) = 5(6t), (5.7a)
U(s,1) = JS(6t)ét, (5.7b)
U(s,m>1) =0, (5.7¢)
where S(t) and J are defined by
5(t) = exp[-At(Ko + 1)], (5.8a)
J =Ky, (5.8b)
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FIG. 4. A schematic representation of the measurement
setup using n parametric amplifiers and n photodetectors.
Wo is the density matrix of the signal mode input, and the
states of all reference inputs are assumed to be vacuum states,
Weacuum = |0)(0|. Wi is the output state of the signal mode
from the kth parametric amplifier under the condition that
the kth photodetector exhibits the state W4, and W; becomes
the input state of the (k + 1)th parametric amplifier.

and we set s = Adt (< 1). It is found from these expres-
sions that the operator J describes the change in the
state of photons when a photon is registered by quantum
counter [15,16]. The nonunitary operator S(t) describes
the time evolution of the system without photons be-
ing registered by the quantum counter. The quantum
counter characterized by S(t) and J measures the pho-
ton number by making use of stimulated emission, while
the usual photon counter characterized by S(¢t) and J
measures it by photon absorption. The quantum counter
was proposed originally by Mandel to measure antinor-
mally ordered correlation functions. Normally ordered
correlation functions are measured by the usual photon
counter.

When we consider a measurement in terms of a se-
ries of nondegenerate parametric amplifiers with weak
parametric coupling constants and photodetectors shown
in Fig. 4, using the same discussion as that derived
(4.6) and (4.7), we can obtain the probability distribu-
tion P, (t;tk, s tk,._,»---,tk, ) that the kyth, kath,. .. kn,th
photodetectors exhibit a one-photon state (the other
n — m photodetectors do not register a photon) and the
output state Wt (t;tmytm—1,-.-,t1) of photons. Here
we set s = 02 = Aoty and th, = Zf’;l ot; with
t, = t, where 0y is the coupling constant of the kth
parametric amplifier. Since P, (¢;tk,, ,tk,,_,,---,tk,) and
Wout (t;tk,nsth,,_ys---»tk, ) are obtained by replacing S(t)
and J in (4.6) and (4.7) with $(¢) and J, we have

Po(tyth,  thn _ys--esthy) = Tra[S(t — th, )T S(tr,, — th, )T - T S(te,)Win]

= A™exp ’\Zt"i Tr, {exp[—/\taaf](af)"‘VVinam}

and

Wout (8 ths thn 1se-rtiy) =

(5.9)
ji=1
S(t —tr, ) TS(tk,, —th,, )T -+ TS(tk,)Win
Tra[S(t — th) T S(thon = thpn 1) T -+ T S(th,) Win]
exp[—1Ataa’](al)™Wisa™ exp[— 1 Ataal] (5.10)

Tr,{exp[—Ataat](at) Wia™}



5084

It is seen that (5.9) and (5.10) are equivalent to the
elementary probability distribution and the state of pho-
tons in the continuous measurement of photon num-
ber with quantum counter [16], where one photon is
registered by the photon counter at each of the times
tk,, > tk,._, > -+ > tr, and no photon is registered
in the rest of the measurement interval. Therefore, the
measurement using parametric amplifiers and photode-
tectors subject to projection postulate yields the results
equivalent to those obtained in the continuous measure-
ment of photon number with quantum counter described
by the quantum Markov process.

Next, we consider measurement with four-wave mixer,
instead of beam splitter, and photodetector with which
the measurement obeys the projection postulate. The
setup is the same as that shown in Fig. 3, except for re-
placing parametric amplifier with four-wave mixer. We
assume here that one mode of the four-wave mixer is
highly excited and treated classically and that its Hamil-
tonian is given by

H=wpala+ wBbTb + /\OaTa(bf*ei“’t + bTee‘i“’t), (5.11)

where (a,a’) and (b,b) are the signal and reference
modes and ee~*! stands for the classical field [26]. If
we assume wg = w and € to be real, we obtain the time-
translation generator of states in the interaction repre-
sentation,

Hine = Aata(b +b7), (5.12)

where we set A = Age.

When the input state of the reference mode is a vac-
uum state, the output state W, of the four-wave mixer
is given by

Wout = V(Win ® ancuum)VTa (5133)

V = exp|—itAa’a(b + b')], (5.13b)

where 7 is the transit time of the photon passing through
the four-wave mixer. When the photodetector for the
output of the reference mode exhibits an m-photon state,
the non-normalized output state of the signal mode be-
comes

Wout (m)

i

(| Wout|m)

1
%—,gm(afa)"‘ exp[—1g(ata)?]W;

X exp[a%g(a“a)zj(aTa)'", (5.14)

where we set ¢ = 7A? and |m) is a number eigenstate
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of the reference mode. Thus it is found from the result
given in Ref. [17] that this state W,y (m) is identical to
that obtained by the continuous quantum nondemolition
measurement of photon number described by the quan-
tum Markov process. When )\ represents the coupling
between the photon and the detector and T is a mea-
surement time in which m photons are counted, then we
have the relation ¢ = AT. The probability P(m) of the
photodetector showing an m-photon state is given by

P(m) = g™ Tr, {exp[~g(a'a)?|(a'a)" Win} . (5.15)

which is equal to that obtained in the continuous mea-
surement. Therefore, it is found that the measurement
using the four-wave mixer and the photodetector gives
the same results as those obtained in the continuous
quantum nondemolition measurement described by the
quantum Markov process.

VI. SUMMARY

We have investigated the photon statistics in the out-
put state of the signal mode of a lossless beam splitter
under the condition that the photodetector for the out-
put state of the reference mode exhibits the m-photon
state, and we have found the oscillatory behavior of the
photon statistics for the even and odd coherent state
inputs. We have shown that the measurements using
beam splitters and photodetectors in the setups shown
by Figs. 1 and 2 yield results equivalent to those ob-
tained in the continuous measurement of photon num-
ber described by the quantum Markov process. We have
also shown that the measurements with parametric am-
plifiers and photodetectors shown in Figs. 3 and 4 give
the results equivalent to those obtained in the continuous
measurement of photon number with quantum counter.
Furthermore, we have found that the measurement us-
ing the four-wave mixer and the photodetector yields the
equivalent results given by the continuous quantum non-
demolition measurement of photon number described by
the quantum Markov process. Here it should be noted
that the measurements performed by the photodetectors
in all the setups that we proposed obey the projection
postulate, while the continuous measurements of the pho-
ton number do not obey it. Therefore, it is found from
our results that the continuous measurements of photon
number described by the quantum Markov process can
be simulated by combining the first kind of measurement
with appropriate optical devices.

[1] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A
33, 4033 (1986).

[2] B. Yurke, Phys. Rev. Lett. 56, 1515 (1986).

(3] B. Yurke, Physica B 151, 286 (1988).

[4] B. Huttner and Y. Ben-Aryeh, Phys. Rev. A 38, 204
(1988).

(5] R. A. Campos, B. E. A. Saleh, and M. C. Teich, Phys.
Rev. A 40, 1371 (1989).

[6] J. Janszky, C. Sibilia, and M. Bertolotti, J. Mod. Opt.

38, 2467 (1991).

[7] W. K. Lai, V. Buzek, and P. L. Knight, Phys. Rev. A 43,
6323 (1991).

[8] J. von Neumann, Mathematical Foundations of Quan-
tum Mechanics (Princeton University Press, Princeton,
1955).

[9] P. Busch, P. J. Lahti, and P. Mittelstsedt, The Quantum
Theory of Measurement (Springer-Verlag, Berlin, 1991).

[10] M. D. Srinivas and E. B. Davies, Opt. Acta 28, 981



49 QUASICONTINUOUS MEASUREMENTS OF PHOTON NUMBER 5085

(1981).

[11] M. D. Srinivas and E. B. Davies, Opt. Acta 29, 235
(1982).

[12] M. Ueda, Quantum Opt. 1, 131 (1989).

[13] M. Ueda, N. Imoto, and T. Ogawa, Phys. Rev. A 41,
3891 (1990).

[14] E. B. Davies, Quantum Theory of Open Systems (Aca-
demic Press, New York, 1976).

[15] L. Mandel, Phys. Rev. 152, 438 (1966).

[16] M. Ueda and M. Kitagawa, Phys. Rev. Lett. 68, 3424
(1992).

[17] M. Ueda, N. Imoto, H. Nagaoka, and T. Ogawa, Phys.
Rev. A 46, 2859 (1992).

[18] S. Chaturvedi and V. Srinivasan, Phys. Rev. A 43, 4054

(1991).

[19] M. Ban, J. Math. Phys. 33, 3213 (1992).

[20] W. H. Louisell, Quantum Statistical Properties of Radia-
tion (Wiley, New York, 1973).

[21] L. Mandel, Opt. Lett. 4, 205 (1979).

[22] D. Stoler, B. E. A. Saleh, and M. C. Teich, Opt. Acta
32, 345 (1985).

(23] V. Buzek, A. Vidiella-Barranco, and P. L. Knight, Phys.
Rev. A 45, 6570 (1992)

[24] B. R. Mollow and R. J. Glauber, Phys. Rev. 160, 1076
(1967).

[25] G. S. Agarwal and K. Tara, Phys. Rev. A 46, 485 (1992).

[26] G. J. Milburn and D. F. Walls, Phys. Rev. A 30, 56
(1984).



