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We have investigated theoretically the possibility of employing noisy laser fields for spectroscopic
purposes. The basis for this spectroscopy is a modification of the statistic of the Buctuations caused
by the nonlinear interaction. All atomic resonances within the range of several bandwidths can be
observed in the power spectrum, even in case of large inhomogeneous broadening. We have derived
analytical, nonperturbative results for a real Gaussian, a complex Gaussian, and a phase-diffusing
field. The mean transmitted intensity and its variance as well as the power spectrum have been
evaluated in the limit of weak absorption for two-level systems. Without modification, we can apply
our results also to other transition schemes. As an example, the power spectrum of the Dq transition
of Cs driven by a phase-diffusing field is calculated. For this four-level system we find qualitative
agreement with experimental results by Yabuzaki et al. [Phys. Rev. Lett. 6'7, 2453 (1991)].
PACS number(s): 42.62.Fi, 42.25.Ja, 42.25.Bs, 42.50.Hz

I. INTRODUCTION

Most of the theoretical and experimental work on non-
linear atomic dynamics in stochastic (noisy) laser fields
has concentrated on describing the mean response of the
atom to the incident light 6eld. For low light intensities
and a one-photon transition the atomic response is char-
acterized by the spectrum of the light (the first-order cor-
relation function). For high intensities (saturation) and
multiphoton transitions the atomic dynamics depends on
the higher-order statistics of the light field as described
by the higher-order correlation functions. Recent stud-
ies have investigated variances and spectra of atomic
fluctuations. In particular, population fluctuations in
two-level atoms —as seen in the intensity fluctuations of
light emitted in resonance fluorescence &om an atomic
sample —were shown to be a very sensitive probe of the
higher-order statistics of the light, thus providing a new
tool in terms of a "noise spectroscopy of atoms" [1—5] (for
corresponding experiments see Refs. [6, 7]).

In the present paper we will present a theoretical study
of (the change of) intensity fluctuations and correspond-
ing intensity spectra of laser light induced by propaga-
tion in a weakly absorbing medium. We will show that
these intensity fluctuations are related to polarization
Puetuations in the atomic medium. Yabuzaki et aL [8]
have recently observed intensity noise spectra in absorp-
tion spectra of alkali-metal-atom vapor with diode lasers.
They have shown that the excess intensity noise contains
information about the interacting atoms. In particu-
lar, they have measured the intensity power spectrum
when the laser was tuned near the D2 transition of Cs
and observed all corresponding hyperfine-splitting reso-
nances.

A related, more recent experiment has been performed
by McIntyre et al. [9]. They report intensity noise spec-
tra of a broad-bandwidth laser beam which had passed
through a rubidium vapor cell. In comparing it with

a theoretical model based on the characteristics of a
weakly saturating phase-diff'using Geld they also found
good agreement.

In our model calculation we study the variance and
power spectrum of the laser intensity I „t(t) transmit-
ted with weak absorption through a cell of length z = I
for a given input stochastic light 6eld whose statistics
are specified at z = 0. For the input field we consider
a phase-diffusing light field (PDF), a real Gaussian field

(RGF), and a chaotic (or complex) Gaussian field (CGF).
A PDF describes phase fluctuations of a well-stabilized
single-mode laser, while a real Gaussian 6eld corresponds
to light with strong amplitude fluctuations and a locked
phase. A complex Gaussian field describes the interme-
diate situation between these extremes since it has am-
plitude and correlated-phase fluctuations. Our theory is
valid to all orders in the incident light 6eld but we confine
ourselves to the weak absorption limit.

The paper is organized as follows. In Sec. II we calcu-
late the transmission of a time-dependent 6eld through
a medium of two-level systems. In Sec. II B we introduce
the stochastic input fields and their correlation functions.
Relevant observables such as the mean transmitted in-
tensity, the variance, and power spectrum are defined in
Sec. IIC. Section III presents a discussion of the exact
(numerical) and perturbative results for two-level atoms,
while Sec. IV examines as an example the power spec-
trum of a phase-difFusing field interacting with a four-
level medium corresponding to the experiment of Ref.

II. ABSORPTION INDUCED INTENSITY
FLUCTUATIONS: THE MODEL

A. Maxwell-Bloch equations

Propagation of a laser wave through a medium is de-
scribed by the Maxwell-Bloch equations [10, 11]. In our
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Here E(z, t) is a slowly varying complex field envelope, e
is a linear polarization vector, and u and k denote the
&equency and wave vector of the light, respectively. The
source term in the Maxwell equation is proportional to
the atomic polarization density P(+) (z, t),

p + t(zt, t) = (
te+tt(z, t; e) e p«( (tet——(tz)].

'U

For an inhomogeneously broadened medium
to average the polarization over the Doppler
tion; this is indicated by the velocity average

f (. . .)X(v) dv with

we have
distribu-

K(v) = k/(~vrD) exp [
—(kv/D) ]

the Maxwell-Boltzmann distribution. The Doppler width
D is related to the temperature of the gas by D
/2kBT/m.

model we consider a one-dimensional situation with light
propagating along the positive z direction and a medium
extending from z = 0 to z = L. For the positive fre-

quency part of the electric field we write

E + (z, t) = E(z, t) e exp [
—i(~t —kz)].

By formally integrating Maxwell's equation in the
slowly varying envelope approximation, we relate the
output field E,„t(t) = E(z = L, t) and the input field

E;„(t) = E(z = 0, t) through

E „,(t) = E;„(t„„)
~

I z=I.
+ dz'(e" 7 (+) (z', t„,~ + z'/c; v) )„,

with t„,i ——t —L/c
For a medium of two-level atoms with ground state ~0)

and excited states ~1) the polarization density within a
small volume dV containing dX = n dV two-level atoms
is

+ (z, t; v) dV = 2 D()i pi()(z, t; v) dX

with Doi the atomic dipole between ground and excited
states and pip(z, t;v) the slowly varying atomic coher-
ences of a single atom moving with velocity v. In the ab-
sence of velocity-changing collisions or other mechanisms
afI'ecting the &ee linear motion of the atom the time evo-
lution of the atomic density matrix is determined by the
Bloch equations for a single moving system

/0 8)
(

—+v —[—
i(9t Bz)

iO(z, t) —iO'(z, t)

~ 0'(z, t) 0Z 2'

.A(z, t) 02

(ppi(z, t; v) )
pip(z, t; v)

u)(z, t; v)

=0, (6)

0 0 ) ( tr(z, t;v) J

with Rabi frequency A(z, t) = 2@Dip E(z, t)/h, detuning
b = u —ufo, the population inversion m, and the trace tr=
1. The Doppler shift is already included in Z = —i(6'—
kv) —z. The detailed form of 'P + (z, t; v) depends on
the underlying atomic structure. In the present section,
we have assumed that a two-level approximation is valid.
A four-level configuration modeling Cs is considered
in Sec. IV.

In an optically thin medium, the difference between
local and incident Geld is small and we use perturba-
tion theory to solve the Maxwell-Bloch equations (6) and
(4). We evaluate the polarization term in (4) by approx-
imating the field E(z, t) by the incident field, E(z, t) ~
E;„(t —z/c), and we find for the field at the end of the
cellz=L

„t(t) = E;„(t„,t) + ' (nL) ((E;„E-,*„))

with (nI) = n(kL)e Dpi/(Ep((E' E )) ) and the den-

sity of atoms n. At this stage, it is not necessary to intro-
duce the mean incident, stationary, intensity ((E;„E,„))but
it facilitates the further application to stochastic input
fields and the definition of a dimension-free attenuation
parameter (nL).

B. Models for stochastic input Belds

The transinitted field E „i(t) is determined by the in-

cident field E;„(t) and the atomic structure. Fluctuations
and noise are inherited by E „i(t). However, the noise is
modified by the interaction and thus carries information
on the atomic structure. In this paper, we consider three
prototypical models for describing a stochastic E;„(t): a
phase-diffusion model (PDM), a complex Gaussian field,
and a real Gaussian field. Their common features are
the mean emitted intensity ((E;„E;*„))and the bandwidth
b of the associated spectrum which we assume to be
Lorentzian. Although all models have the same auto-
correlation function

(i)
( ) l

((Ein(t)eitt( + ))
( h~ ~) (8)

they differ in their higher-order statistics

(Z) . ((E (t)E (t + 7 )Eit-t(t + 7')Eitt(t)))

((;.(t) ' (t)))

The phase-digusing geld According to the th. eory of
a single-mode laser, which is operating above thresh-
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old, the output Geld exhibits a slow diffusion of the
phase and rapid (but small) Huctuations of the amplitude
around a stationary mean value [12, 13]. The experimen-
tal fact that amplitude fluctuations are well suppressed
in a diode laser [8, 14] supports the assumption that a
phase-diffusion model is well suited to model fluctuations
in semiconductor lasers.

The phase-diffusion model of the laser is described by
phase Huctuations of the complex laser amplitude e(t) =
Ep e '~~ 1 where P(t) is a Wiener process with zero mean,

((dg(t)2)) = 2b dt, and b is the Lorentzian bandwidth of
the light. The PDF has no amplitude fluctuations, so
that gl'~(r) = 1.

The complex Gaussian field A. field generated by
superposing a large number of independent, randomly
phased, fields approaches a CGF [2]. The phase of the
resulting field is random and the intensity fluctuations
are as large as the mean intensity itself (»)2 = ((I)) .
Examples are thermal sources of radiation as well as mul-
timode lasers with no phase-locking mechanism. A com-
plex Gaussian field e(t) = z(t) + i y(t) with Lorentzian
spectrum and bandwidth b can be found as a solution of
the Langevin equations

dz(t) = —bz(t) dt + Qb ((e;ne,
'

)) dW. I(t),
dy(t) = —by(t) dt + gb ((e;„e,.*„))dW2(t),

with noise increments obeying ((dW;(t) de(t))) = b;I dt
and ((dW;(t))) = 0. The intensity correlation function is
given by gl l(r) = 1+ 1 exp( —2b~r~).

The mal Gaussian field If a C. GF is formed by two
quadrature components fluctuating independently, a real
Gaussian field [15] is characterized by two fully correlated
quadrature components, i.e., the fluctuations are derived
from the same source apart &om some constant phase
factor e(t) = e '4"x(t). The Langevin equation for the
real Geld amplitude is

dh(t) = bE(t)dt+ /2b—((E' E ))dttE(t), (11)

with ((dW(t) 2)) = dt, ((dW(t))) = 0. Since no phase Huc-

tuations occur, there are increased intensity fluctuations
with respect to the same mean intensity (»)2 = 2 ((I))
and gi l(r) = 1+2exp( —2b~r~).

C. Output intensity fluctuations

The detected intensity at the end of the cell z = I
I „2(t) = 2cEp E (t)2E ( 2)tis calculated from Eq. (7) aIld
consists of several contributions of decreasing magnitude
in (aL):

I u2(t) = I;„(t~«)+ (nL)(I bs(t~«t v))„+O((nL) ).
(12)

The incident intensity is denoted by I;„,I b, is the ab-
sorbed intensity

I E (t;V) = 2EEEE)t)((E~ E ))E (t)PEE(Z = 0 t;V) + C E.,

and the errors due to approximations are of order (aL) .

After performing the stochastic average ((. . .)), we find
the dominant contributions to the mean intensity and
variance

((I- (t))) = ((I'-(t- ))) + ( L)(((I-'(t- ')))).
+o(( L)'), (14)

Si,2(v) = lim 2Re e '" ((Ii(t+r), Iz(t))) dr,
taboo 0

(16)

where Re denotes the real part. In the case of general
stochastic driving Geld, the output intensity-correlation
spectrum is

Souttout(v) = Sin, in(v) + (nL) ([SinEabs(vt v)

+Sub. ;n(v; v)])„+O((aL) ). (17)

The situation is different for a field with pure phase fluc-
tuations. Due to the fact that the intensity I;„(t) is a
constant, all correlation functions ((I;„,I(t))) vanish iden-
tically by definition. The variance is therefore given by

[»-i(t)]'=(nL)'(((I-b (t-I vi) I-b (t-I »))))...,
+o(( L)') (18)

Similarly one finds

Soui «2(v) = (nL) (Snb, nb, (v;vit v2))» + O((nL) ).
(19)

D. Evaluation of stochastic averages

The calculation of the output intensity and the power
spectrum of the intensity fluctuations requires us to de-
termine stochastic atom-Geld averages and correlation
functions. For the PDF, the CGF, and the RGF the
averages can be found analytically. The possibility of
obtaining an exact solution can be traced back to the
Markovian property of the stochastic Gelds. The compos-
ite atom-field system (u„(t),e;„(t))with u„(t) a vector of
atomic density matrix elements (or bilinear expressions
in the atomic density matrix elements) is again a Markov
process.

In order to Gnd the dominant contributions to
the mean intensity arid its noise, as well as to the
power spectrum, we have to calculate averages in the
form ((e; (t) u„(t)e;„(tg")) for RGF, or more generally

((e;„(t) e;„(t)' u„(t)e;„(tJ e; (tg' )) if a complex Gauss-
ian field is considered. This can be done by means of
characteristic functions, Taylor expansions, and results
always in second-order difference equations which are
solved by matrix continued fractions. They are evalu-
ated numerically with reasonable convergence properties.

[» „,(t)] = [AI;„(t„„)]
j2(nL)(((I; (t„oI),I bs(t~«; V))))„

+o(( L)'),
where we have introduced the notation for the variance
[»(t)]' = ((I(t), I(t))) = ((I(t)')) —((I(t)))'. A statio n-

ary intensity-correlation spectrum is defined by
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However, all calculations involving a complex Gaussian
field are algebraically more involved since there are cor-
related phase-amplitude Huctuations [16].

In the case of a PDF the evaluation is more easily
accomplished since it can be done in closed form and
no continued fractions are involved. It is sufBcient to
determine averages in the form ((roe *" l )u„(t))) and

((Eoe
''" l')u„(t), roe' l~u„(t)*)), with niin = 0, +1.

The formalism we have used to calculate the averages
and correlation functions is outlined in Appendix A for
the RGF (the calculation for the CGF is very similar),
and in Appendix B for the PDF (for details see also [5]
and references cited).

((I.-)) =((I-)) 1+( L)((&'-~1;;)) R

+O((nL); 0;„), (21)

with Z = —i(b —kv) —K/2. Within this approximation
there is no influence of higher-order statistics since all
three models of stochastic driving fields have the same
first-order correlation functions.

The absorption dip scales proportional to D in the
case of inhomogeneous broadening D )) r/2, b, b, but no

Doppler broadening was assumed in Fig. 1.

B. Induced intensity noise

III. RESULTS AND DISCUSSION

A. Mean intensity of the transmitted light

The mean intensity of the transmitted light shows the
usual absorption profile with respect to detuning (see
Fig. 1). For low intensities the linewidth is given by the
natural linewidth (no other broadening mechanisms were
considered) while with increasing saturation parameter
9 = 0;„/(rb) [with 0;„=((0;„(t)Q;„(t)*)),t/ t ] we have
power broadening. In Fig. 1, b = K and 0;„= 10K,
and the linewidth is therefore mainly determined by
power broadening. The value of the dimensionless at-
tenuation parameter was somewhat arbitrarily chosen as
(aL) = 0.2. The inHuence of the incident field statistics
on the absorption profile is small. This can be understood
qualitatively by studying the perturbation limit for weak
saturation,

We pointed out earlier that the noise in the transmit-
ted intensity (AI,„t) is a linear function of the attenu-
ation parameter (nL) for fields with amplitude Huctua-
tions (RGF,CGF), and goes quadratically in the case of
a driving field with pure phase fluctuations (PDF).

The real and complex Gaussian geld

It is instructive to study first the perturbative re-
sults for weak saturation. In this limit the fluctuations
in the intensity (AI „t) are sensitive to the second-
order field correlation functions of the incident light,
((E' (ti)e;*„(t2)e;„(ts)e,*„(t4))).We find for the CGF

(DIo„t)(cGF) = lim ((I;„))

r 1
x 1+ 2 (ctL)((0;„0,*„))'Re

V

t

poi(t; v)
2J

dt, e l'-")A,*„(t,). (20)
+ O((aL)', 0,'„)

=((I- )) + O(( L) fl.) (22)

Since I b, (&; v) is proportional to Im(O;„(t)p (oti; v)), we

find for the transmitted intensity that and for the RGF

1.47-

].45-

o(6)

].41
-] & -1() JS

FlG. 1. Scaled mean transmitted intensity ((I „t))/((I~))
through a medium of two-level system for a real Gaussian
field (solid)acorn, plex Gaussian field (dashed), and a phase-
diffusing field (dashed-dotted) vs detuuing 8 with b = r, 0;„=
10r, (aL) = 0.2, and no Doppler broadening, D=O

FIG. 2. Relative noise ratio 0 = b,I „t/((I „t)) vs detuu-

ing for a real Gaussian driving field with 0;„=~, and in-

creasing bandwidth: b = 0.25tt (solid), b = tr, (dashed), and
b = 5tt (dashed dotted), (nL) = 0.2. No Doppler broadening
was assumed, D=O.
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( o«)(RGF) ( &«)(CGF)

=2((I-t)) + O((aL) fi;.) . (23)

1.045

1.04-

Note that in this weak saturation limit there is no
additional intensity noise caused by the propagation.
Both the RGF and CGF retain their relative noise ra-
tio» „t/((I „t)) = b,I;„/((I;„))+ O[(nL); 0; ]. In the
case of large inhomogeneous broadening, the absorption
dip of (AI „t) decreases proportional to D(

In Figs. 2 and 3 we plot our numerical results for
the relative noise ratio 8—:» «/((I «)) + O[(aL) ].
The individual curves represent 0 as a function of de-
tuning for the three values of the saturation parameter
S = 0.2, 1, and 4. The relative noise ratio 8 increases
with the laser light intensity. The noise ratios for the
RGF and CGF show a similar qualitative behavior. The
RGF shows a sharp albeit small resonant feature near
zero detuning which is absent for the CGF. The width of
this resonance (= tc/2) is independent of the bandwidth
of the driving Geld. A similar resonance has been found
and explained in our previous work on population Buc-
tuations in resonance fluorescence [5]. With increasing
saturation parameter we find a broadening of the noise
as a function of detuning.

1.035-

1.03-

1.025-

) O2-

1.015-

1.01-

1.005-

-15 -10 -5 0
5/x

5 10 15

FIG. 3. Relative noise ratio 0 vs detuning for a complex
Gaussian driving 6eld. Same parameter values as in Fig. 2.

g. The phase-digusing field

For an incident phase-difFusing 6eld the intensity noise
is generated by a transformation of phase Buctuations
into amplitude Buctuations by the medium:

(AI «)(FDF)
——lim (cxL)' (((I~b, (t; vl), I~b, (t; v2))))„„+O((aL); 0;„)
= (a'L) ((I' )) 2 Re (((t (t)ppl(t; vl) e* (t)pip(t' v2))) ((e' (t)ppl(t; vl) e (t)ppl(t'' v2))) ) (24)

The intensity noise decreases linearly as the bandwidth of the incident light becomes smaller than the atomic decay
width. This was already demonstrated and explained in Ref. [9].

To see this we consider the weak saturation limit first and 6nd that the two contributing correlation functions show
a different behavior with respect to phase noise. The 6rst correlation function is proportional to

((0' (t)ppl(t Vl)fbi (t) pip(t' V2))) = ((l~' I )) ((ppl(t Vl) pip(t V2)))

dt dt e '(' ")+ ~(' ")((n' (t )n (t )))4
(25)

h(Z1, Z2) =— (
Zl —b

I (Zl+ Z2)(Z2 —b)

(Zl + Z2 —4b) (Z2 —b) )

It is rather insensitive to phase Buctuations and cen-
tered around vq v2. However, the second correlation
function ((0; (t)ppl(t; vl)O; (t)ppl(t; v2))) is strongly in-
Buenced by phase noise but is also smaller in magnitude.
This term is responsible for the noise maxima which ap-
pear if the bandwidth is small enough. From the final
expression for the intensity noise

(~I-«)(FDF) = (-L)'((I;-))'((~'-~;;))
x Re (h(Z„Z2) )„„+O((a.L);0,„),

(26)

with

x exp [
—2(b/D) ] . (28)

In Fig. 4, we show the relative intensity noise ratio 0
of the output field for an arbitrarily strong Geld. The
individual curves represent 0 as a function of detuning
for an increasing bandwidth b = 0.25r (solid curve), b =
r (dashed curve), b = 5r (dashed dotted curve); the
corresponding saturation parameters are S = 0.2, 1, and
4. We note again the appearance of noise maxima o6'
resonance. This feature remains well resolved as long
as the bandwidth is smaller than the Rabi &equency. To
understand this qualitatively, let us consider a Geld which
has slow &equency Buctuations on the time scale given
by the atomic decay: such a 6eld experiences absorption

and Zl ———i(b —kvl) —K/2, Z2 ———i(b —kv2) —z/2,
we find that these noise maxima appear at b = +K/2 if
b &( ~. In the case of large inhomogeneous broadening
D )& b )) K, all of these features vanish:

(»-«)(PDF) = (aL)'((I'-))'((fl'-~;;)) D,
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according to the absorption profile in Fig. 1 so that the
conversion of f'requency to amplitude fluctuations will be
at a maximum for detunings near the points of maximal
slope. For the corresponding discussion in the context of
population fluctuations see Ref. [4].

().()'&-

().()8-

().()7—

C. Power spectrum of the transmitted intensity
fluctuations

In this section we analyze the spectrum of the intensity
fluctuations of the medium.

O(g) ().0&

().()0

The real and cornples. Gattssian field

S(L ) = (Sin, in Sout, out)/((Iin))

=-[s,„...( )+ s, ;„( )j/((I;„))'. (29)

According to Eq. (17) the intensity-correlation spec-
trum for the transmitted field consists of three con-
tributions: the sum of the first and the second term,
S;„;„+S;„b„correlates the incident intensity and the
transmitted light. These two terms lead to a frequency
dependence in the form of a simple Lorentzian with band-
width 2b (reflecting the spectrum of the incident laser).
The third contribution, S b, ;„,is a spectrum relating the
absorbed intensity to the intensity of its driving field.
This part of the spectrum exhibits resonances near the
Rabi frequency. However, the output intensity spectrum
is always dominated by S;„;„.Thus we plot in Figs. 5
(RGF) and 6 (CGF) only the nontrivial part of the spec-
trum, defined by

() e e

—IO

FIG. 4. Relative noise ratio O(b) vs detuning for a phase-
difFusing driving field with 0;„=K, an increasing bandwidth:
b = 0.25K (solid), b = r (dashed), b = 5K (dashed dotted),
and (o(1) = 0.2. No Doppler broadening was assumed.

The two curves show S(rr) for a bandwidth of b = K and
6= 5K.

For b sufficiently small (b = K,) the Rabi sidebands of
S b, ;„(in Figs. 5 and 6, 0;„=10K) are dominated by the
Lorentzian spectrum S;„b, . This behavior is found for
strong and weak saturation intensities and can be seen
explicitly in the following analytical expression derived
in the limit of weak fields:

s..t...t(&) = s..t...t/2(CGF) (RGF)

2=Re
iv+ 2b

(&Io t)(can) (ctl )((~ f~* ))
' ((I ))

( b b

(Z —b)(Z —b —iv) (Z' —b)(Z* —b —'
))~

V

(30)

In Fig. 6, the Rabi sidebands are still visible for the CGF (b = K). By increasing the bandwidth b = 5r the contribution
from the central Lorentzian spectrum decreases and the Rabi sidebands become clearly visible. The spectrum for the
CGF is always smaller in magnitude than the spectrum for the RGF, but the qualitative features are the same.

By studying the weak saturation expansion for S „t for large inhomogeneous broadening D )) b )) K we find that
the Rabi sidebands S b, ;„scale as D~ ~ and S;„b,goes as D~ ~; S;„;„remains unafI'ected by the Doppler average.

2. The phase digPusiny fi-eld

The intensity fluctuations and the power spectrum for the PDF are of order (o(I) . We find, however, that the
peak at the Rabi frequency is much more pronounced than for the RGF or CGF. This can be seen in Fig. 7, which
shows the intensity-correlation spectrum as a function of frequency v. The individual curves represent S „t „t for
b = rr, (solid line), b = 5r, (dashed line). The Rabi frequency is 0;„=10r. The weak saturation expansion for the
spectrum,

S. .. , (a) = (aL)'((I& )) ((n; n )) Re(h(Ze, Ze)
~

„+-
~

+ O((aL);n; ), (31)„( ttr + b —Zi err + b —Zi r)—Vl rV2
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FIG. 5. Intensity-correlation spectrum for a real Gauss-
ian field. Only the nontrivial part of the spectrum, S(v) =
[S;„,;„(v) —S,„t,,„t(v)]/((I;„)) is shown. The parameters are
Fl;„= 10pc, b = 0, and b = g, (solid line) and b = 5rc (dashed
dotted line). No Doppler broadening or detuning was as-
sumed, D = 0.

FIG. 7. Intensity-correlation spectrum for a phase-
difFusing field S „t,,„i(v)/((I;„)) with 0;„=10rc, an increas-

ing bandwidth b = ls, (solid), b = 5it', (dashed dotted), and

(otL) = 0.2. No Doppler broadening or detuning was assumed,
D=O, 8=0.

is closely related to the variance of the intensity
(b,I „t)(&D&) [see Eq. (24)]. These resonances are lo-

cated at the generalized Rabi frequencies v = kb.
We have studied large inhomogeneous broadening D )&

b, b, ic, v in this perturbative expression (31). In the
limit of an arbitrarily large Doppler width we can re-
place the Doppler average f (. . .)K(v)dv by K(v =
0) j (. . .)dv, and we are able to show by contour in-

tegration that this integral vanishes identically. More
generally, we have found by asymptotic methods as well
as numerical studies that the leading nonvanishing term
in S«t «t(v) scales proportional to D(

The strong saturation limit proves to be more inter-
esting. By numerically integrating the exact intensity-
correlation spectruin S „t „t(v) [see Eq. (B8)] we find

that the overall scaling factor for the spectrum is now
proportional to D . Thus inhomogeneous broadening
in the strong field limit will not wash out the features
as for low intensities. In addition the resonance remains
well resolved. In Fig. 8 we show the result of Doppler av-
eraging S „t „t of Fig. 7. We have used a Doppler width
of D = 40K.

IV. SPECTROSCOPY OF xssCs
WITH A PHASE-DIFFUSING LASER FIELD

In a recent article Yabuzaki et aL [8] reported a new

type of intensity noise spectroscopy. They performed an
absorption measurement in a vapor cell filled with r Cs
atoms and observed that the intensity of the incident
laser beam became quite noisy after having passed the
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FIG. 6. Intensity-correlation spectrum for a complex
Gaussian field. The parameters are the same as in Fig. 5.

FIG. 8. Intensity-correlation spectrum for a phase-
diffusing field S „t „t,(v)/((I;„)) Same parameters .as in Fig.
7 but a Doppler width of D = 40K.
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cell. For this experiment they employed a commercial
Fabry-Perot type diode laser whose amplitude is in gen-
eral very stable (amplitude fluctuations are reported to
be even below shot-noise limit [14]),however, the phase is
Huctuating randomly. The width of the associated spec-
tral line is typically tens of MHz. Among other results,
they also reported a measurement of the hyperfine split-
ting of the D2 transition of Cs.

In this section we will demonstrate how to apply our
theory to this multilevel system. In particular, we will
calculate the intensity-correlation spectrum and relate
the spectroscopy of the atom to the features in this noise
spectrum. The calculation is based on the assumption
that the laser field can be described by a PDF and thus
has a Lorentzian spectrum with bandwidth b. In our
calculations we have not included Doppler broadening.

We are interested in the Cs 6S1/2 to 6P3/2 transi-
tion. The nuclear spin of this isotope is I = 7/2. Con-
sequently we have four hyperfine states I' = 2, 3, 4, 5 for
the excited state separated by 150, 200, and 250 MHz,
and two F = 3, 4 ground states with 9.2 GHz splitting.
Below we consider the four-level system shown in Fig. 9.
We will label these states starting from the bottom by
~0), ~1), ~2), and ~3). In our model calculations we ignore
the Zeeman substructure.

The slowly varying envelope of the positive frequency
part of the polarization [compare Eq. (5)] is in the present
case given by

(z, t)dV = 2 [Dp~ Pyp(z, t) + Dps Psp(z, t)
+Dos psp(z, t)]dK (32)

and it is straightforward to derive the corresponding
atomic density matrix equations [17]. Consistent with
the experiments we will further assume that the transi-
tion ~0) -+ ~3) is almost resonant with the incident light,
i.e. , the detuning b3 —(i) Ll/30 is much smaller than
the level splittings ~32, ~21. Thus we can neglect the
populations of the nonresonant levels. This gives us the
two-level Bloch equations for the transition ~0) — ~3), and
a set of equations for the coherences on the nonresonant
transitions. The two-level equations are

d . 03(t) . 0;(t)
dt 2
—ppp = K30 p33 —i p03 + 1 p30, (33)

2
d .O,*(t)
dt

P03 Z3 P03 + & (P33 POO)
2

(34)

e-v„,

6 S,p

50 MHz

00 MHz

IF=5)

IF=4)

IF=4)

IF=3)

FIG. 9. Level scheme of Cs vrithin the D2 transition
(6SJ 1/2 M 6PJ 3/2).

d .As(t) . A*,(t)
dt

P33 K30 P33 + t P03 ~ Psp (35)
2 2

with Zs ———ibs —Ksp/2, spontaneous decay rates K~ 0, and
Q~(t) = 2 eD~O e(t)/h. This system has been discussed in
the previous sections. The equations for the coherences
are

d . 0;(t) . 0;(t)
dt

P02 —~2 P02 + & P32 i Ppp&
2 2

d /' . Kzp + Ksp ) .As(t)
dt q 2 )

P32 =
l

Ztd32—
I psz+ t Pos, (37)

2

(36)

and

d .0;(t) .0;(t)
dt P01 —Zl Ppl + Z P31 l PPP~

2 2

Klp + K301 .~3(t)
dt ( 2

Psv
l

ZWsx
~
Psx+~ Pox,

2

(38)

I „t(t) = I; + ) (n(L)I b, (()(t„,q) + O[(n;L)(n L

(40)

with (n, L) = n (kL)@*DO;/(ep((EE)) '') 'and n the
atomic density.

In the following we will focus on the discussion of the
intensity-correlation spectrum, since it contains all the
physical information about position and width of the
transitions as well as saturation eg'ects. The power spec-
trum of the transmitted field is given by the expression

with Zz ———ip/32 —ibs —Ksp/2 and Zq ———iO/3$ Xbs-
K] p/2. The transmitted field [see Eq. (4)] and output
intensity [see Eq. (12)j are calculated as in the previous
sections,

S „, „,(v) =) S b () „,(v)+ O((nL) )

3

= ) lim 2Re
t —+oo

l=1
) ((( L)I b (&)(t + ) ( L)I b ( )(t))) d + O(( L) )

where the subscripts I, and j indicate summation over
all excited states. For a fixed I the partial spectrum
S b, ~~~ „t consists of two resonances whose locations are
determined by the beat frequency of the incident field
cu and the dipole oscillation frequency a~p. In our ex-

ample these resonances occur at v = ebs +(4/33+ b3),
and +(usq + bs). This can be most easily seen &om Eqs.
(34), (36), and (38) for pp~ when we neglect the deple-
tion of the ground state as well as the time dependence
of the Rabi frequency (i.e., ignore the bandwidth). Then
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with

+ O((nL)s; 0;„),
xv+—b —Z~)

(42)

si = ) (a~L)((AiQ'))h(Z~, Z )

Iab, fil(t) is proportional to ]OI~ImpoI(t) and the Fourier
transform will exhibit these beat &equencies. Observa-
tion of the resonances in the noise spectrum thus allows
one to determine the splitting &equencies of the excited
states.

To study the width of the resonances we have to in-
clude the stochastic temporal behavior of the Rabi &e-
quency (phase noise). In the weak saturation regime we

can simply relate the power spectrum to the fourth-order
correlation function of the incident field and find

3

S „, „,(v) = ((I; )) Re) (a(L)si
(Iv + b —Zt

In comparing our results with experiments we point
out, however, that the splitting observed in the exper-
imental spectrum is caused by hole burning due to in-
homogeneous broadening (Doppler effects are ignored in
our treatment), while the origin of the splitting in our
spectrum (Fig. 10) is that all three transitions are ex-
cited by the same saturating field. Therefore the atom
will end up in a superposition state where coherences be-
tween excited states become important. Again this can
be understood qualitatively by assuming that Oi(t) is
constant on the atomic time scales (i.e., we ignore the
phase fluctuations). Hence I b, fil(t) is proportional to
~BI~Imps|. Under the influence of a strong field po2 is
coupled to the coherence p32 and vice versa. By examin-
ing the homogeneous part of Eqs. (36) and (37) one finds
that the resonance frequency of po2'. v = uq2 + b3 splits
up into v = ur32 + 83 + ~03~/2. The same arguments ap-
ply to the other transition. From Fig. 10 we see that this
qualitative argument is still valid for 6nite bandwidth.

[compare Eq. (31)]. This shows now the position, width,
and strength of the six resonances at the complex &e-
quencies vs ——kb3 —i(iso/2 + b) vz —+(llf33 + b3)—
&(+20/2 + b), and vi ——k((usi + h3) —i(KIo/2 + b)

We have performed numerical calculations valid in the
strong saturation regime. In Fig. 10 we plot the power
spectIum S«t «t (v) fol a saturating field 0j—I 3 3 —4z
which is resonant with the ~0)-~3) transition and has a
bandwidth b = 3+. When this is compared to Fig. 3
of Ref. [8] we see that we get good qualitative agree-
ment with the experimental results. Since the laser in
Ref. [8] was roughly tuned to the 3SIg2, F' = 4 e+

P3yq, F = 5 transition they observed resonances at
pj —R$ —5 $'—3 —453 MHz and v2 ——~g 5 Ir 4

251 MHz. From these &equencies as well as their dif-
ferences v2 —vq ——~~—4 ~ 3

——202 MHz one can deter-
mine the hyperfine splitting of the 63P3~3 states ~F = 5),
~F = 4), and ~I" = 3) from the intensity noise spectrum.

x10-'
1.2

08.
)

0.6-
0 Ll l,0 ll l(

0.2

0 ~ ~

0 1() 20 30 40 50 60 70
v/K

FIG. 10. Intensity-correlation spectrum for Cs with
3K' Og —02 —03 —4K) 83 —03 &3] —45K' (832 —25+,

and (neer 2 3)L) = 0.2. No Doppler broadening was assumed,
D=O.

V. CONCLUSIONS

In this paper we have studied the change in statistics of
a laser propagating through a weakly absorbing medium.
In particular we have been interested in the change of in-
tensity fluctuations and the intensity power spectrum.
As a model for classical stochastic input Gelds we have
considered a phase-diffusing Geld, and a real and complex
Gaussian Geld. These models have the same light spec-
trum (Lorentzian with bandwidth b) but differ in their
higher-order correlation functions.

Our analysis has shown that the power spectrum and
the variance of the output intensity scales proportional
to the absorption length for amplitude modulated Gelds
while it goes quadratically for 6elds with phase noise.
Comparing b,I«t/((Io„t)) as a function of detuning for
different noise 6elds and a two-level atom, we found that
this ratio is always maximum on resonance for 6elds with
amplitude fluctuations (RGF, CFG) while in the case
of a PDF there can be a local minimum if the band-
width is sufBciently small. The power spectra for 6elds
with amplitude fluctuations consist —apart &om trivial
zeroth-order contributions —of two Grst-order heterodyne
spectra. The first of these terms reflects the stochastic
properties of the incident intensity and has the form of a
simple Lorentzian (vs spectral frequency) centered at the
origin with a bandwidth of 2b. The second contribution,
however, reflects the dynamic response of the medium to
the incident field and has a resonance at the generalized
Rabi frequency. The I orentzian part always dominates
for small bandwidth, and this resonance becomes visible
only for large bandwidths and Rabi &equencies. In con-
trast, for a PDF this resonance at the Rabi &equency is
always much more pronounced. We have extended the
theory to describe four-level systems corresponding to
the noise spectroscopy experiment with Cs of Ref. [8]
and found qualitative agreement with experimental re-
sults. An interesting new feature is the prediction that
the resonances of the power spectrum which are associ-
ated with given transitions split in the strong field limit
due to the coherent excitation of different levels.
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APPENDIX A: A REAL GAUSSIAN FIELD

We outline the evaluation of the required equal-time
(t = t) stochastic averages in the case of a real Gaussian
driving field. Moreover, we consider all bilinear atomic
averages, since all linear averages are included as a special
case [u4(t) = tr(p) = 1] and a simultaneous evaluation of
resonance-fluorescence intensity [5] is then also possible: S(+) (g + g(+)S(+))

—ig( —) (A9)

0= (—nblxl+1 x A+ A x 1) X(g("))

+i (1 x B+B x 1) [(n+ l)X(g(2" )
—&(g2 )]

q ~( (~)) + q(+)y(g(~+i)) + g( —)y(g(»» —i))

(A7)

This equation is now solved by a matrix continued frac-
tion and

g( ) = e4 e4 —P [(Q +Q(+)Sp(+)) Q X(e4 e4)]

(AS)

with

= -"—) (")(t)~"
n=o

(Al)

—g
" (t) = —nbg " + Ag ") + g(")A

gt —2 —2 =2 —2

+'B[(n+1)g("+') —«"-')]
+1[(n+ 1)g( + ) —g{" )]B

Once stationarity has been reached, we face a linear, ho-
mogeneous, second-order set of difference equations. Its
solution can be found easily by using a linear isomor-
phism T, which induces the so-called Kronecker or direct
tensor product x by

where we use a scaled e(t) = e(t)/g((ee*)). Once the
matrix coefficients g(") (t) are found—2

((e(t)"u(t)u(t) )) = ((ee')) ' " !

j=p

(A2)

where [n/2] is the greatest integer less than or equal to
n/2.

The stochastic equation for the composite atom-field
system (u, e}, i.e., the Bloch equation, Eq. (6),

dt
—u(t) = [A + e(t) B]u (A3)

and the stochastic field equation [see Eq. (11)] can be
translated into an equation for the probability of a certain
realization P(u, e, t)

~

—+ L(e)
~

P(u, e, t~u, e, t) = —7'„((A + e(t) B) uP} .
t' c)

Ot

(A4)

In order to find the matrix coefficients g(")(t), we have

to use Eq. (A4) and solve

APPENDIX B: THE PHASE-DIFFUSING FIELD

du(t; v) = A[a;„(t) = ape
* ('); v]u(t; v) dt

= exp —iNp4(t) A (ep, v)

x exp iNpC»(t) u(t; v) dt, (Bl)

with ((d4(t)2)) = 2bdt a Wiener process and Np a diag-
onal matrix with integer elements. Introducing

gi(t; v) = exp iNpO(t) u(t; v) (82)

we obtain the required Im((e;„(t)ppi(t; v))) as
eplm ((gi(t; v)))„ i. The stochastic equation for gi is

dgi (t; v) = exp (iNp [I'(t) + dC'(t)]) [u(t; v) + du(t; v)]
—exp iNpC'(t) u(t; v) . (B3)

According to the rules of Ito's calculus [16],we have to ex-
pand the exponent up to second order in d4(t), and make
use of Eq. (Bl) and the property of a Wiener increment.
Since u(t) is nonanticipating, i.e. , fluctuations in u(t) are
not correlated with future noise ((dC»(t)u(t))) = 0. Con-
sequently, we find the ordinary differential equation for

(( (t )))

((gi(t v))) [A (ep v) bNp ] ((gl(t v))) dt ~ (B4)

Second-order correlations g2(t, t; v) can be treated sim-
ilarly. It can even be generalized, if we consider two
atoms, members of different velocity groups, that experi-
ence the same stochastic field but are detuned differently
due to their various Doppler shifts.

g2(t, t; vi, v2) = exp [zNp4(t)]u(t; vi) u (t; v2)

x exp [
—iNp4(t)].

If an atomic system is driven by a phase-diffusing
field, all averages can be determined in closed form.
We demonstrate it for the mean absorbed intensity
((I b, (t; v))) which is proportional to Im((e;„(t)ppi(t; v))).
The stochastic Bloch equation (6) is of the general form

AgB = BxAT g . (A6)

Applying this to Eq. (A5), once stationarity has been
reached, yields

d ((g2 (t, t; vi, v2))) =f [A (Ep, vi) —b Np] ((g2))

+ ((g2))[A (Ep, v2) —bNp]

+2bNp ({'g2)) Np}dt. (B6)
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The covariance matrix is obtained by removing the mean
values

C2(t, t; vy, v2) = g2(t, t; vg, v2) —gy(t; vy) ((gy(t; v2)))

(B7)

Insights into the atomic dynamic and the inBuences
of noise are gained by studying the correlation func-
tion ((cz (t, t; vq, v2))) with unequal-time arguments.
Most conveniently it is studied in &equency domain.

Laplace transformation 8, (((c2(t, t; vq, v2)))) is equiva-
lent to Fourier transformation once stationarity has been
reached:

((cz(s = iv; v~, v2))) = lim (iv —[A (eo, vy) —bNoj )
x ((c2(t, t;vg, v2))) . (BS)

The intensity-correlation spectrum for a phase-diffusing
field is obtained by combining components of Eq. (B8)
to form So„t,~„t(v) [Eq. (19)].
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