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Schrodinger equation description for crass -phase modulation in grating structures

M. 3. Steel and C. Martijn de Sterke
School of Physics and Optical Fibre Technology Centre, University of Sydney, ¹wSouth Wales 2006, Australia

(Received 28 October 1993)

We present a simple approximate description of systems involving cross-phase modulation in
highly dispersive media. Optical pulses in such systems suffer large frequency shifts and correspond-
ingly experience large variations in group velocity dispersion so that a simple nonlinear Schrodinger
equation description is not valid. We take the frequency shift into account in a moments based model
that extends the standard Schrodinger description, and apply the model to the particular case of
optical pulse compression in nonlinear Bragg gratings. The model is tested against full numerical
simulations. Finally, we consider some of the difBculties involved in observing the pulse-compression
effect.

PACS number(s): 42.65.Re, 42.65.Vh

I. INTRODUCTION

The nonlinear Schrodinger equation (NLSE) and sys-
tems of coupled nonlinear Schrodinger equations have be-
come the generic models for much of nonlinear guided
wave optics. Predictions of the NLSE for standard opti-
cal Gbers have been strikingly confirmed experimentally,
most notably in the observation of optical-fiber solitons
[1]. Processes such as pulse compression via cross-phase
modulation have been described accurately by coupled
nonlinear Schrodinger equations [2]. The NLSE has also
been applied to nonlinear wave propagation in periodic
media [3,4]. Here we wish to examine a case where a
nonlinear Schrodinger-like equation is not valid without
extension, namely, that of induced frequency shifts in pe-
riodic media, or more generally, in media where the group
velocity and dispersion are rapidly varying functions of
frequency.

Gratings, or periodic structures, are media in which
the dielectric constant is a periodic function of distance.
The linear dispersion relation around the Bragg reso-
nance for such a grating is shown in Fig. 1, superimposed
with the dispersion relation for a uniform medium. The
presence of the grating produces a photonic band gap
centered at the Bragg frequency urn

——7rc/(nd), where n
is the average refractive index of the grating which has
period d. In the linear regime, frequencies lying inside
the band gap are strongly coupled to modes traveling in
the opposite direction and do not propagate through the
medium. Frequencies outside the band gap propagate
with group velocities given by the slope of the dispersion
relation, and experience group-velocity dispersion given
by the curvature of the dispersion relation. Thus waves
which are strongly detuned from the Bragg resonance
(e.g. , the plus in Fig. 1) propagate virtually unimpeded:
they travel with the velocity c/n of light in a uniform
medium of the same average refractive index, and see a
small dispersion. Close to the Bragg resonance (e.g. , cir-
cle in Fig. 1), however, the group velocity varies between
0 and c/n, and the dispersion increases to a maximum at

0
0

0
0

FIG. 1. Linear dispersion relation of a periodic medium
(solid). The dotted line is the dispersion relation for a homo-
geneous medium with refractive index n. The column vectors
show the different eigenvectors vy for the Bloch functions of
the periodic medium. The Bragg wave number ko = m/d and
uo is the corresponding frequency.

the band edge.
Grating structures can be fabricated in a range of ma-

terials including semiconductor waveguides [5], thin-film
stacks, and optical fibers [6]. In the numerical work to
follow, we consider a waveguide structure made from al-
ternating layers of GaAs and Al Gai As. For such a
device, index variations can easily reach An = 0.1. For
our examples we take a weaker grating with An = 0.042
and mean index n = 3.14. With this value, the band
gap has a width of Af = rc/(nor) = 2.44 x 10i2 Hz,
while the velocity varies from 0 to 0.95c/n over a range
Af = 3+c/(2vrn) = 3.7 x 10 Hz. In these expressions,
the coupling constant [7]
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OPB equations may be reduced to a linear Schrodinger
equation (LSE), but the presence of the frequency shift
introduces an important complication.

III. THEORETICAL DESCRIPTION

A. Schrodinger equation description of grating
structures

We now Bnd a linear Schrodinger equation describing
the propagation of the probe pulse through the grating.
Our model is based on coupled-mode theory. We write
the electric Beld in the grating as

E(x, t) = f[S„(z—o.t) exp( —iApt)
+E'+ (x, t)] exp(+ikox)
+8 (z, t) exp( —ikox)) exp( —i(dot) + c.c., (2)

where c.c. denotes the complex conjugate and ko is the
wave number corresponding to the Bragg frequency ~0.
Further, ty are the slowly varying amplitudes of the
forward- and backward-traveling modes comprising the
weak probe, and E'„ is the pump pulse amplitude with
a detuning 0„ from the Bragg frequency. Note that as
discussed earlier, the pump sees a negligible dispersion
so we further assume E'„ to be a constant envelope trav-
eling at the velocity o.. We therefore consider it simply
as a region of moving detuning or refractive index, rather
than as a dynamical field. Inserting the ansatz (2) into
the Maxwell wave equation, and using the slowly varying
envelope approximation, the probe Belds can be shown
to satisfy [10]

.OE'+ .n OF++i + i +KB + 6(z—, t)E'+ —o,
Ox c Ot

sion relation in Fig. 1, while the vectors v~ are closely
related to the Bloch functions of the medium on either
branch of the dispersion relation, and indicate the rela-
tive strength of the forward and backward. modes as a
function of the wave number detuning k from the Bragg
resonance [14]. Some values for the eigenvectors v of
Eq. (6) are indicated in Fig. 1. Far from the resonance,
the linear solutions are traveling plane waves represented
by either the forward mode f+ or the backward modet, with the eigenvectors (1,0) and (0, 1), respectively.
At the band edges, the solutions are standing waves pro-
duced by an even (l, l) or odd combination (1,—1) of the
two modes. In an idealized case of the pushbroom, the
stationary probe would start out at the lower band edge
with v = (1, 1), an equal mixture of the forward and
backward modes giving a zero total group velocity in a
standing wave solution. After extended interaction with
the pump, the probe frequency is shifted so far negatively
that v —(1,0)—all the probe energy is in the forward
mode and the pulse moves at the speed of light in the
medium.

The dispersion relation and eigenvectors completely
describe the linear properties of the system. With the
nonlinear effects introduced by cross-phase modulation,
the properties of the system are naturally more complex
and we use an approximate approach to proceed. We
write the probe Beld in the form

F = [a(x, t)v + b(x, t)v+] exp[i(kz —0 t)], (7)

where the small correction term in b(z, t) represents a
"mixing" of the two Bloch functions by the pump [4].
Substituting this ansatz in Eqs. (3) and carrying out the
procedure of Ref. [4], we find that b is completely deter-
mined by a, and for v~ normalized, is given by

'i c K BG
b((, t = ——

2 n (K2+ k2) 0(
Further, a satisfies the linear Schrodinger equation,

where

&(x, t) = &(x —nt) = 2I']f„(x —at)]2 (4)
where the retarded distance is

is the detuning of the probe from the grating due to cross-
phase modulation with the pump, with I' the nonlinear
coupling coefficient. Note that as the pump 6 is com-
pletely determined, the system (3) is linear.

To find a NLSE corresponding to the system (3), we
use the results of Ref. [4]. Writing 8 for the column vector
(F+, E ) and inserting the plane wave 8 = vexp[i(kx-
Bt)] in Eqs. (3) in the absence of the pump [i.e. , A(x, t) =
0], leads to the solution

O~ = 9—gr2+ k~,

j=x —0't,

(n —0' ) is the relative velocity of the pump with re-

spect to the probe and A may be thought of as a
time-dependent potential moving at this relative veloc-
ity. Equations (8) and (9) describe the evolution of the
probe pulse near the center frequency ~„. As the probe
frequency shifts lower, the "constants" 0' and 0" also
evolve in a manner we determine later.

with the corresponding (unnormalized) eigenvectors B. Moments approach

k~ v +2+ k2 (6)

Thus in the linear limit, Eq. (5) gives rise to the disper-

We can of course solve Eq. (9) numerically using the
beam propagation method. However, approximate meth-
ods of solution can be both faster and more physically il-

luminating. To find a simple approximation of the prop-
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where the asterisk denotes the complex conjugate. We
choose these three moments because they are the sim-
plest that evolve in a lossless medium, and because in
the absence of the nonlinearity, the first two lead to the
exact results for dispersive spreading of a Gaussian pulse.
The third moment is a measure of the pulse central fre-
quency (or momentum).

Substituting Eqs. (11) in Eq. (9) and assuming that
ia~ vanishes at large (, we find that the three moments
evolve as

dMi . 86 (Ba*,Ba)
dt 0( i 0( cj()

(12)

Equations (12) are still exact. Our approximation enters
by assuming that the probe pulse can always be repre-
sented by the Gaussian form [8],

a = exp(, i exp[i(p(+ v(')],
V «2p') (13)

and seek the evolution with t of the probe width p, center
wave number p, and linear wave number chirp v. If we
also take the pump to be Gaussian with fixed width o:

6(() = Vo exp~
(—('i
& ~') (14)

and substitute Eqs. (13) and (14) in Eqs. (11) and (12)
we find the evolution equations

agation at one &equency, we use a moments approach
[12,13]. In this technique, the infinite dimensional sys-
tem Eq. (9) is approximated by following the evolution
of several lower order moments of the envelope function
a. Here we choose the following three moments:

and the separation s between the centers of the pump
and probe (defined such that s is negative if the probe
leads the pump) is trivially given by

ds l II—= o. —0 —p0
dt

We now brieBy describe the nature of the system of
Eqs. (15) and (16). Equation (15a), and the terms in II"
in Eq. (15b), give the exact result for dispersive spread-
ing of a pulse in a uniform medium. The remaining terms
in Eqs. (15b) and (15c) describe the effects of the pump.
To understand their form we recall that the instantaneous
wave number change induced on the probe is proportional
to the gradient of the pump intensity [8], and thus the
leading edge of the pump induces a negative wave num-

ber shift on the probe while the trailing edge induces a
positive shift. Hence if the pump is behind the probe
(s ( 0), the probe is most strongly affected by the front
of the pump and the average wave number p becomes
more negative, consistent with Eq. (15c). The dimension-
less factor h describes the weakening of the shift as the
separation of the pulses increases. Turning to the varia-
tion in wave number across the probe, the second term
in Eq. (15b) describes the chirp induced on the probe
because different portions of the probe are acted on by
different parts of the pump. The chirp depends only on
the absolute value of the pulse separation s, not on its
sign: if the pulses are far apart [2s /(cr2+ p2) ) 1], then
the dominant effect is the interaction between the closest
parts of each pulse. That is, the wave number shifts in
the same direction across the whole pulse, but the shift
is larger closer to the pump. The net effect is a positive
chirp. When the two pulses are close, the wave number
shifts in opposite directions on either side of the probe
and the overall effect can be seen to be a negative chirp.
Overall, the change in &equency and acceleration of the
pulse during one period of propagation under Eq. (9) are
given by the parameter p. The compression of the pulse
occurs through the chirp v—if the &equency increases
across the pulse, the rear will catch up to the &ont. We
remark that similar calculations can be performed for
pulse shapes other than Gaussian, but in general these
do not yield results in terms of well-known functions [13].

C. Transformation of the probe frame

= 20 pvq
dp ll

dt
dv

dt

dp
dt

where

„(I,i V,' ( 2s'

) ' &'+p'
2V02

(72
'hs,

3
( 0' i ' ( s'

h=
~

exp&~'+ p') &
~'+ p'&

(15a)

(15b)

(15c)

(16)

We now come to the key step of this section, in which
we take account of the effects of the change in the probe
&equency on the dispersion and group velocity of the
pulse. The NLSE describes dispersion through a single
constant coeKcient

t920
- Ok20 Q=~p

where cu„ is the center &equency of the pulse, ko is the
wave number, and 0 = O(ko) is the dispersion relation
of the waveguide. The pulse group velocity
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00
vg ——0' =

Okp ~
(19)

a = a exp( —iyx),
b= b —ipa,

k=k+p,
0 =0 +pO'.

(21)

(22)

(23)

(24)

Thus the parameter k measures the wave number of the
point on the dispersion relation corresponding to the
most recent change of frame, while p is the wave-number
shift from that point while the pulse travels in that frame.
In this procedure, we neglect smaller terms in b. We can
now find the new values of 0' and 0" from Eq. (5) and
continue propagation with Eqs. (15) and (17) repeating
the change of frame at regular intervals in a steplike fash-
ion. Equation (22) gives us a criterion for the minimum
frequency with which the frame should be changed —the
product pa should at most be comparable in size to b.

is thus fixed as a linear function of the pulse wave num-
ber. These quantities are also constants in our Eq. (9),
expressing the fact that locally the dispersion relation
is parabolic, although globally it is actually a hyperbola
(see Fig. 1). In waveguides without gratings, the dis-
persion varies only slightly with frequency, and a global
parabolic dispersion relation (constant 0") is often suffi-
cient to model the medium. For pulses which are either
very short (and hence have a broad frequency spectrum)
or have a center frequency near the zero-dispersion point,
the analysis can be improved by the addition of a cu-
bic dispersion term [8]. As discussed in Sec. I, however,
the constant dispersion approximation is most certainly
not valid for the OPB, and so the moments analysis pre-
sented in Sec. III 8 does not alone correctly describe the
pushbroom. In fact, Eq. (9) describes the probe mo-
mentarily, while the actual group velocity and dispersion
are close to the constant values in the equation. After
a short period of propagation under Eq. (9), the probe
frequency and velocity change, and the coefficients 0'
and 0", are no longer suited to the pulse. Clearly, the
coeKcients must be adjusted during the propagation to
match the changing velocity of the frame in which the
probe is at rest. Recalling that the NI SE is usually writ-
ten in a frame moving with the pulse group velocity as is
true for Eq. (9), our approach is seen to generalize this,
by recognizing that the velocity of the comoving frame
changes during propagation due to the influence of the
pump pulse.

To accomplish the change of frame, we need to rewrite
the field (7) in the form

g = (gv + bv+) exp[i(ks —0 t)], (20)

where the caret indicates the corresponding quantity in
the new frame. We are free to move to any sensible frame,
the most obvious being that in which the wave number

p becomes zero. For the procedure to be valid, we must

demand that b satisfies a relation of the form of Eq. (8)
in terms of the new variables. Given the choice of new

frame, a unique set of transformations can be found, for
which to first order,

As well as this steplike approach we can present the
problem in a continuous manner: Increasing the fre-
quency of changes of frame without bound, we reach the
limit in which the group velocity and dispersion coefB-
cients are adjusted constantly, and at all times the NLSE
is written in the frame of the instantaneous velocity of
the probe. We can cast Eqs. (15) to reflect this approach,
by writing fI' (k) and 0" (k) explicity as functions of k
and using Eq. (15c) to measure the change in total wave
number k rather than the "local wave number" p which
is identically zero because the NLSE is always in exactly
the frame of the probe. For the same reason, the Anal
term in Eq. (17) vanishes and may be dropped. While
the continuous approach may appear more aesthetic, we
emphasize that provided the criterion b (& pa is satisfied,
the stepwise and continous approaches are equally valid
within the approximations of the model.

Equations (21) and (24) are notable in showing that
although the nature of the Bloch functions changes from
standing waves at the band edge, to plane waves far from
the gap [see the discussion following Eq. (6)], the enve-
lope function a(() changes only in phase under a change
of frame. While for a homogeneous medium, one might
expect that simply making 0' and 0" functions of k
would be sufBcient to incorporate strongly varying dis-
persion, it is perhaps surprising that the same is true in
a grating structure.

IV. NUMERICAL EXAMPLES

We now compare the predictions of our model with ex-
act numerical simulations of Eqs. (3). The simulations
are performed using a fourth-order collocation technique
described in Ref. [15]. The predictions of the model are
found by integrating Eqs. (15)—(17) using a fourth-order
Runge-Kutta algorithm with the change of frame given
by Eqs. (21)—(24) performed sufficiently often to satisfy
the criterion b (( pa. The simulations presented here
model a GaAs-Al Gai As grating with an average re-
fractive index of n = 3.14 and an index modulation of
An = 0.042. For illumination at A = 1.65 pm, and a
grating length of L = 1 mm, this gives a grating strength
of KL = 80. In addition, we assume a nonlinearity of
n~ l = 2 x 10 i mz/W, and a pump peak power of 10.2
kW. For a focal spot of circular cross section with radius
2 pm and eH'ective area 12.6 p,m2, the pump will produce
a maximum index change of AnN~ ——0.016. Figure 2
demonstrates the operation of the pulse compression for
this geometry with pump width o = 60 pm, initial probe
width p = 70 pm, initial pulse separation 8 = 250 pm,
and pump velocity n = c/n Figure 2(a) .shows this start-
ing configuration. The pump intensity is represented by
the dot-dashed line, the forward probe intensity
by the dotted line, the backward probe intensity ~f
by the dashed line, and the total probe intensity by the
solid line. At t = 0, the probe has zero velocity and equal
energy in the forward and backward modes. At t = 8.4
ps, shown in Fig. 2(b) as the pump leaves the grating, the
probe has been swept to the right by the pump and signif-
icantly compressed, the peak intensity having increased
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by a factor of over 8. The backward (dashed) mode now
contains only a tiny &action of the total probe energy,
indicating the change in &equency and shift away &om
the Bragg resonance.

Figure 3(a) shows the peak position of the probe pulse
for this case, according to our model (solid), the simu-
lator (dashed) and the moments approach in which the
LSE with constant coeKcients is used (dotted). For this
latter curve, the dispersion is assumed to have a constant
value equal to half the value of the dispersion at the band
edge —chosen as a reasonable average measure of the dis-
persion. We note that the predictions of this approach
are not significantly improved by choosing different con-
stant values. Figure 3(b) shows predictions of the width

p by the same three methods. For pulses which are not
exactly Gaussian, there is a degree of arbitrariness in the
choice of a measure of width. For the numerical simula-

tions, we find the width p by measuring the full width
at half maximum (FWHM) and dividing by the Gaus-

sian conversion factor 2y ln2. The present model is in
good quantitative agreement with the numerical simula-
tion, and in particular predicts the correct asymptotic
behavior while the constant coeKcient model does not.
The inclusion of frequency shifting is thus clearly essen-
tial here as discussed in Sec. II.

The initial peak in the width which is not predicted by
either analytic model is due to the non-Gaussian form of
the exact result. In fact, simulations reveal that when
the pulses first begin to overlap and interact, the probe
becomes asymmetric and the peak briefly moves back-
wards towards the pump. This effect is visible around
t = 1.5 ps in Fig. 3(a). In light of this, we have also com-
pared the model width with a "second-moment" width p
calculated &om the simulator results with the definition
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FIG. 3. (a) Position of the peak of the probe pulse for
the simulation of Fig. 2 and (b) width of the probe pulse,
according to our model (solid), the exact simulation (dashed)
and the NLSE without change of frame (dotted).
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FIG. 4. (a) Position and (b) width of the probe for a case
with a peak pump power of 1.9 kW. Line styles are as in

Fig. 3.
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(25)

where (o is the mean position of the energy in the pulse.
This measure is weighted by the distribution of energy in
the pulse and is less prone to brief Huctuations than the
FWHM. The model predictions are found to agree even
more closely with this measure p than with the FWHM.
Note that for exactly Gaussian pulses, the two definitions
are trivially related by p = i/2p.

In Fig. 4 we show the results for a case with param-
eters identical to those of Pig. 3 except that the pump
peak power is reduced to 1.9 kW. In this case, the fre-
quency shift induced on the probe is insufFicient to allow
it to keep up with the pump. Although the plot of po-
sition shows an initial slight acceleration, the pump still
catches up easily. From the moment when the center of
the pump overtakes the center of the probe, the probe is
most strongly affected by the trailing edge of the pump.
It thus experiences a net positive frequency shift back to-
wards the band edge with a corresponding deceleration.
The overall effect is that the probe is shifted to the right
by about 0.05 mm and then left behind with a negligi-
ble velocity. Similarly, Fig. 4(b) shows that although the
probe is initially compressed by a weak pushbroom ac-
tion, dispersive spreading dominates once the pump has
walked through the probe. As the frequency shift in this
case is relatively small and short-lived, the inclusion of
frequency shifting has little effect on the predictions —the
dispersion may be successfully modeled as a constant.

V. DISCUSSION AND CONCLUSION

While we have demonstrated the applicability of our
simple model, the simulations imply that the pushbroom
effect for a pulsed probe can only be observed in this ge-

ometry at high pump intensities, above 10s W/cm2. We
note in passing though, that for a cw probe tuned to a
transmission resonance of the grating, the effect should
occur at substantially lower powers [10]. We now consider
two possible techniques which could be thought likely to
reduce the pump power needed for effective action of the
optical pulse compression. Clearly, for significant effects
to occur, the pulse frequency must change by an amount
of the order of Kc/n the scale on which the velocity
and dispersion vary. It would seem then, that the effect
should appear at lower pump powers in weak gratings
where e is small and the necessary frequency shift is re-
duced. With weaker gratings, however, the forward and
backward modes in the initial probe pulse are weakly
coupled and move apart rapidly. This is shown explicitly
by the relation which holds at the lower band edge

(26)

Thus, the envelope function a((, t) which describes both
the modes, initially experiences stronger dispersion in
weak gratings and in the absence of the pump, broadens

more rapidly. To overcome this broadening, broader op-
tical pulses and longer gratings are required- the power
requirement can only be reduced at the expense of longer
geometries. In optical fibers, for example, the gratings
are somewhat weaker and the change in velocity can oc-
cur in under 0.1% of the optical frequency, while the
gratings are indeed much longer than in semiconduc-
tor structures —typically a centimeter. The glass nonlin-
earity, however, is three orders of magnitude less than
in GaAs, so that t, he power requirements remain se-
vere. We remark also that Eq. (26) is at first somewhat.
surprising —the dispersion due to the grating increases
without bound as the grating strength vanishes. Math-
ernatically, this limit is due to the dispersion relation
becoming increasingly nonparabolic at the band edge,
as the grating strength decreases. To see the physical
consequence of this, we recall that the envelope function
a.((, t) represents a pulse comprised of two modes trav-
eling in opposite directions. In a strong grating, energy
is continually coupled between the modes and the pulse
remains well confined for some time, In the limit, of a
vanishing grating, the pulse splits into two pulses, one
in each mode, which separate at the speed of light with
virtually no mutual interaction. The envelope function
a approximates this behavior by broadening very rapidly
under the inHuence of the very large dispersion 0".

We remarked before that the shift in instantaneous
probe frequency is proportional to the gradient of the
intensity of the pump pulse [8]. Hence, at first sight, , it
seems that the frequency shift may be maintained if a re-
duction in the pump power is accompanied by a decrease
in the pump width, so as to keep the pump intensity gra-
dient constant. Numerical simulations reveal that, while
this is true to an extent, the details are not straightfor-
ward. Reducing the pump width also reduces the avail-
able interaction time between the pump and probe in
which the probe may be accelerated. This typically leads
to situations in which a large component of the probe en-

ergy is not compressed but falls behind the pump, with a
small fraction of the energy remaining on the pump. Such
a case is shown in Fig. ~. This simulation has the same
parameters as for Fig. 2 except that the pump width
is reduced by a factor 3 and the intensity by a factor
0.5. The pump intensity gradient is thus greater than for
Fig. 2 and yet the pushbroom action is far less effective.
In other similar simulations we have observed the forma-
tion of multiple peaks in the probe. In such cases, when
the probe shape is highly non-Gaussian, our model is
naturally far less successful. For the simulation of Fig. 5
both the frequency shifting and non-shifting approaches
predict that the pump walks through the probe as in
Fig. 4. In general, our model should be less successful
as the pump width decreases. The model assumes that
the chirp on the probe is linear which is a reasonable ap-
proxirnation if the probe sees only a small fraction of the
pump pulse at any particular time. If the pump is nar-
row, then the actual chirp imposed on the probe is mare
complicated and the model will begin to fail.

As many high-powered lasers produce soliton pulses,
it would be useful to model the OPB when the pulses
were assumed to have hyperbolic secant shapes rather
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and second moment width as the input sech pulses.
A significant addition still required, is to model the

pump as a fully dynamical field rather than as an in-
ert moving detuning, allowing self-phase modulation to
act on the pump, and permitting the exchange of energy
between the two pulses. An extension of the moments
method that preserved the total energy in the grating,
but not the energies of the individual pulses would be
one possibility for incorporating these effects.

In conclusion, we have developed a simple model that
describes the optical pushbroom by a Schrodinger-type
equation modified to take account of the large &equency
shifts induced on the probe. We have demonstrated the
importance of including the frequency change when the
pump intensity is large enough for the pulse compression
action to occur. Reduction in the necessary pump power
will be most easily achieved by using long weak grating
structures.

FIG. 5. Pump and probe energies in arbitrary units at
t = 8.4 ps. Parameters are as for Fig. 3 with pump width

reduced to cr = 20 p,m and pump intensity reduced to 5.2
kW.

than Gaussians. Unfortunately, if either or both fields
have sech shapes, the integrals (12) do not in general
exist. One approach to gaining some analytic insight is
to choose Gaussian pulses which have the same energy
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