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Tunneling in the presence of driving in a cavity that contains a Kerr medium
and is parametrically pumped
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Driving is applied to an optical system consisting of a Kerr medium combined with a second-
order parametric process driven by a pump field which is sinusoidally modulated in amplitude. The
coherent tunneling in this system is found to be both enhanced and suppressed by this, depending
on the frequency of the driving chosen. A variation of time-independent perturbation theory is

applied to this system and found to successfully describe this behavior.

PACS number(s): 42.65.—k, 05.45.+b

I. INTRODUCTION

In a previous paper [1] we have considered the be-
havior of a system, which was called the Cassinian os-
cillator, consisting of a Kerr medium combined with a
pumped parametric amplifier. This system was found to
exhibit tunneling between the two wells centered around
the classical fixed points. In this paper we will examine
the behavior of the system when it is driven by sinu-
soidally varying the strength of the parametric pump.
This causes the motion of the classical counterpart of
the system to become chaotic. It will be shown that the
tunneling frequency of the quantum system can be ei-
ther enhanced or suppressed by this driving. This result,
found by numerically modeling the quantum system, is
also predicted by applying a form of perturbation theory
similar to standard time-independent perturbation the-
ory to the problem of calculating the Floquet states of
the system given the unperturbed states.

The coherent tunneling of a quantum system across
classically forbidden barriers has long been seen as a
striking example of the difFerences between classical and
quantum mechanics. On the other hand classical systems
have been found often to exhibit a pseudorandom motion
called chaos for which there is no obvious quantum coun-
terpart. Much recent work has been done attempting to
find behavior which distinguishes between quantum sys-
tems whose classical counterparts are chaotic and those
whose are not. The efI'ect of driving on the behavior of
a tunneling system has previously been considered by a
number of authors [2—6]. Most of this previous work has
modeled the system numerically and much of the ana-
lytic study used two-state systems [5]. As will be seen,
two-state systems do not display the efFect of resonances
with higher levels which is found in this paper. An ex-
ception to this is [6] which describes a generalization of
time-independent perturbation theory for systems whose
perturbations are in the form of periodic driving. This
work had been previously done by Sambe [7] and others
[8,9]. It is this method which is used here as one way to
model the system.

The rest of this paper is set out as follows. In the
next section the model Hamiltonian will be presented

and the main results of our previous paper [1] will be re-
viewed. The behavior of the tunneling frequency in the
low-driving-frequency limit will then be found. Then the
methods used to find both the classical and quantum mo-
tions of the system numerically will be introduced. Next,
perturbation theory will be applied to both the classical
and quantum models. Both classical and quantum re-
sults obtained by these methods are then presented and
contrasted. In the last section the results of this investi-
gation will be reviewed and an attempt made to interpret
them. Future paths will also be discussed.

II. MODEL

The Hamiltonian of the model (in the interaction pic-
ture) is

hy t 2 hr(1 + e cos Ot)H= —aa a +a
2 2

Xi ——4(Xi + X2)X2 + 4p, X2,

X2 ———4(X,'+ X2)Xi + 4p Xi,
(2)

(3)

with Xi and X2 commuting numbers which replace the
quantum operators defined by Xi —— -(a + at) and

X2 ——
2 (a —at). The dot represents difFerentiation with

respect to the scaled time r = ty/4 and we have defined

p = —". The trajectories of the system through phase
space were calculated and shown to be ovals of Cassini
with foci on the Xi axis at +p, and the frequencies of
oscillation of the system were shown to be given by

where a is the annihilation operator for the cavity field,
g is proportional to the third-order nonlinear suscepti-
bility, r is proportional to the product of the amplitude
of the parametric pump field and the second-order sus-
ceptibility, e is the strength of the perturbation, and 0
is the frequency of the driving. This is identical to the
Hamiltonian of [1] when e is equal to zero. In that paper
the equivalent classical equations of motion were shown
to be
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Here, P4 = p, + E, E is the total energy of the system,
and the critical angle 0, is defined by

cos28, = +
p2

(6)

with F an elliptic function of the second type [10]. The
quantum system's energy levels were numerically calcu-
lated by diagonalizing the Hamiltonian matrix in the
number basis, and it was shown that the first two en-

ergy levels are localized at the classical fixed points and
are parity eigenstates of opposite parity. A state ini-
tially localized at one of these fixed points, for example
a coherent state [11],will tunnel across to the other well
and then back again with a frequency given by the un-

perturbed tunnel splitting A0 ——~q —u0. The subscripts
refer to the number of the eigenstates, which are arranged
in ascending order of energy. This assumes that the lo-
calized state is mainly representable by a superposition of
the lowest two eigenstates; however, for a coherent state
this assumption is found to be a good one. This tunnel
splitting is approximately given by

Ao ——yexp
~

—2—x)
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III. DY'NAMICS
I —4

A. Classical dynamics

The equations of motion still hold in the driven sys-
tem if the r in p is replaced by r(1 + e

cosset).

These
equations can then be numerically solved. The results of
this are then presented as stroboscopic phase portraits
(Fig. 1). As well as these numerical simulations, the sys-
tem was also subjected to classical perturbation theory,
which revealed the expected locations of the resonant is-
lands. This procedure is treated in most of the relevant
literature [12].

B. I mv-freguency limit

In the low-frequency limit we assume that the value of
r(1 + e cos Ot) varies slowly enough that the system can
be assumed to be described by the eigenstates of the un-
driven system with r, having the value of r(1+ e cos Ot).
The overlap of an arbitrary state with an energy eigen-
state is assumed to be constant as the frequencies and
compositions of these states are slowly varied. This is the
adiabatic approximation [13]. It is also assumed that the
tunneling frequency is still much larger then the driving
frequency. Now consider the evolution of a coherent state

FIG. 1. Phase-space diagrams for the driven system with
e = 12, y = 4, 0 = 70.0 (dimensionless units) and e equal to
(a) 0.0 (b) 0.1.

which starts off centered at one of the wells. It will start
off composed of only the two lowest-energy eigenstates
and as it evolves will retain this composition. After one
period of the driving, the system will have returned to its
original state except for the phase changes of the energy
eigenstates. The difference between these phase changes
for the two tunneling states will play a role exactly equiv-
alent to the phase change difference due to free evolution
in the unperturbed system, and this can be used to find
the frequency of the tunneling over an integer number of
periods. This frequency is called the perturbed tunnel
splitting 4„. As the system evolves for a time dt at an
instant t the phase of the mth eigenstate will change by
—iu (r(t), y)dt so over a time of one period T =
each eigenstate will change its phase by

T
—i (u(r. (t), y) dt.

0

The system's state after one period is then given by
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if the two-state approximation is made. As for undriven
tunneling one of the phases is taken outside the sum

fraction technique of [2] because setting up the calcula-
tion on a computer is more straightforward and so less
error prone. However, it has the limitation that the time
required increases as the period. This is why only driving
frequencies of greater then 50 are used numerically.

(y)) 1
f(& wy ()c(c))y)«

~ ) D. Perturbation theory

+ei f&&
w 0(tc(t),y)dt i f—o wo(tc(&), x)«

~ ) (10)

—iA T= —ip 6p (K(t), )( )dt,

So the total change of relative phase, the equivalent of
—iAot in the undriven system, will be

The quantum motion was also examined by applying
a perturbative method to the problem of calculating the
Floquet states analytically. The details of this method
have been previously published in [6]. Here we will re-
peat the development done in that paper but will use the
above model.

First the Hainiltonian Eq. (1) is written in the form of
an unperturbed system plus a small driving perturbation.

with Ao the tunnel splitting given by Eq. (7) and b.„
the perturbed tunnel splitting. The perturbed tunnel
splitting then evaluates to

(2K' ')
6o ——ye Io

~4&)
where Io is a modified Bessel function of the first kind.
The behavior of this equation will be described in Sec.
IV where it will also be compared to the prediction given
by perturbation theory.

So

H(t) = —(a a) ——(a + a )
a~
2 2

h~K

2
(cos Ot) (a + at ),

= Ho + ~V cos Ot.

Ho = —(a a) ——(a +a )
by ) 2 h]c

2 2
(16)

C. The Floquet states
v= —(a +a ).

h~

2
(17)

The Floquet theorem states that when the Hamilto-
nian of a system is time dependent but periodic then the
solutions of the Schrodinger equation are of the form

IT-(t)) = e ""'lv-(t))

where ~v (t)) = ~v (t + T)) and tu is called the quasi-
frequency. This is similar to the case in which there is
a periodic variation of the potential in position space.
These Floquet states are useful as evolution of one of
them by one period leaves them in the original state mul-
tiplied by a phase factor. Thus only the form of the Flo-
quet states at t = 0 is needed to simulate evolution in
fixed steps of a period. The quasifrequencies ~ then
play the part of eigen&equencies and the level splitting
can be written as 4, = ~z —coo.

The Floquet states at t = 0 are eigenstates of the
evolution operator over one period. This operator will
be called the Floquet operator I'". It can be calcu-
lated numerically as follows. First E~C'(0)) = ~4(T))
so (m~F~n) = (m~n(T)); thus, by using a routine which
solves the time-dependent Schrodinger equation over one
period with a number state as initial conditions, each row
of the numerical representation of the Floquet operator
may be found. Then the Floquet states are found as the
eigenstates of this operator. The quasienergies are not
found directly, rather e ' is found. From this the
frequencies can be found modulus the driving frequency.
This method is used rather than the matrix continued

Denote the Floquet states by ~T (t)). Then ~v (t)) =
e' -'~T (t)) is a state with period T. This will equal
the Floquet state at t = 0, which is the goal of this cal-
culation. Substituting this into the Schrodinger equation
for ~T (t)) gives the following equation for ~v (t)).

v ) = —ih —
~v )+H(t)~v ).

d

dt
(18)

~v (t)) can be expanded as a Fourier series as it is

periodic.

lv-(t)) = ) """v-ilv-).
l,n

i h, ~l) = —0th. —
dt

In this way the Schrodinger equation for ~v ) will appear
as an eigenvalue equation. Again, this is similar to the
study of a periodic lattice in space. Now expand ~v )

around ~tu ), the unperturbed states, as a series in e(o) ~ ~

and do the same with cu . Substituting this into the
Schrodinger equation Eq. (18) and equating equal orders
of 6' gives

The e'+ ' can be seen as the t representation of a set of
states of period T in a one-dimensional subspace. They
can then be written as ~l). These states are eigenstates
of the operator —iII—".

dt
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0th order: Ru~ ) lid~ )) l0) = Koiid~ )) l0),

1st order:

Ru( ) lid( ))i0) + ~( )iv( ))

(21) By using the 6rst-order corrections for the states and the
second-order corrections for the &equency the tunneling
behavior of the system for small perturbations is pre-
dicted analytically &om the unperturbed states, which
are in this case found numerically. The results can then
be compared with those found by a direct numerical so-
lution to the Schrodinger equation.

= Koiv(')& + (cos Qt)Vied~ )) i0), (22) IV. RESULTS

2nd order:

Ru '
iv

'
) + hu '

iv
'

) + tiid
'

lid ) i0)

= Koiv~ )) + (cos At)Viv ' ). (23)

gaud~ ) = (ol cosidtio&(ld~ ) iviid~ )). (24)

However by using the t representation for the lt) states
it is found that

(tl cos Otl~& = 2(~i, i+i + ~&,a —i). (25)

Here Kp is Hp —zh«and u denotes the zeroth-orderd (o)

correction (which is in that case the unperturbed fre-

quency) to the mth frequency, and similarly for other
superscripts. The zeroth-order equation is just the origi-
nal eigenvalue equation for the unperturbed system. The
6rst-order equation when both sides are multiplied by
(id~ )

l(ol will give for id~ )

All of the results were generated with K = 12 and y = 4
in arbitrary units. Most of the dynamics are dependent
on the ratio —", which leads to the relative structure of
the energy eigenvalues and eigenvectors. The only ex-
ception to this is varying the value of y with the above
ratio held constant, which causes a directly proportional
change in the eigenfrequencies. The values chosen above
are convenient as the eigenvalue spectrum has only two
states below the separatrix and the tunneling times are
conveniently short. The undriven tunneling &equency is
0.1S37 and the two tunneling levels are approximately
11 below the separatrix frequency as measured in arbi-
trary units. As the above figures have no units associ-
ated with them and the ratio of —is dimensionless, the
above discussion is only intended to give some idea of the
relative sizes of the system properties. However, —" deter-
mines one squared radius of the fixed points and thus the
average 6eld intensity for states localized at these fixed
points. So our choice of constants means that the fixed
points correspond to a photon number of approximately
3. This increases linearly with pump amplitude.

lv"
&

= ).v"i.l~."&lt& (26)

This is substituted into the first-order equation Eq. (21)
and both sides are multiplied by (id„i(ki. After using Eq.
(25) this gives

(o) (o)

(27)

The second-order &equency correction is now found &om
the second order equation Eq. (22). Similarly to what
was done for the first equation, both sides are multi-

plied by (id l(0l and then the first-order correction to
the state is substituted in. This gives

So in general u is zero. To find the second-order &e-(i) ~

quency correction it is necessary to find the first-order
correction to the lv ) states. This is found in terms of
its expansion in terms of the unperturbed states,

A. Classical results

The classical phase-space portraits of the system were
calculated numerically by solving the classical equations
of motion Eq. (2) by the Runge-Kutta method, the re-
sults of which were plotted as series of points for various
initial conditions at intervals of the period of the driv-
ing force, which are Poincare sections. These pictures
reveal that inside the separatrix resonances of all orders
occur and for the &equencies that are plotted the third-
and fourth-order points are visible. A chaotic area forms
around the separatrix and moves inward around these
points, which form stable islands in this sea. For the pa-
rameter range used so far the size of these islands is much
smaller then the minimum size of a coherent state and so
such eKects as tunneling between these islands have not
been studied. Outside the separatrix only resonances of
even periods are visible, as is predicted by the application
of classical perturbation theory.

B. Quantum results

(2) K g i(id~ l(a + a )lid~ )l (id~ —id )
(o) (o))2

The most comprehensive numerical results about the
quantum behavior were those gained by calculating the
Floquet states and the quasi&equencies. The numerical
integration of the Schrodinger equation was used as a test
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on the validity of these results. Hence the results gained
by that method add nothing to what the Floquet states
reveal and so are not discussed any further here.

The first thing of interest found is that in general, for
small values of ~, it is still a good approximation that only
two of the Floquet states are included in the makeup of
a coherent state. This is shown numerically in Fig. 2
where the magnitude of the overlap of a coherent state
with the two Floquet states having the highest overlap
with this state is plotted against O. It can be seen from
this that for most values of 0 the first two states make
up over 95% of of the coherent state. This figure only
drops at certain values of 0 where a third state begins to
make a contribution to the mix. These points are where a
multiple of 0 is equal to the frequency difference between
one of the tunneling states and a higher-energy Floquet
state. These resonances are frequencies where perturba-
tion theory breaks down and the motion of the system at
driving frequencies above the resonance frequency is very
different from that below. The values are only calculated
down to a frequency of 50 dimensionless frequency units,
as the time required to calculate the Floquet states rises
in direct proportion to the period and the calculation
time required to extend the curve below this cutoff is too
great.

Although perturbation theory breaks down very near

a resonance due to the denominators of the form (w
(o)

) —0 becoming zero, it can still explain the above
behavior. The perturbed energy eigenfunctions are of the
form ~v ) = ~a )+ ~v ) with the first-order corrections(o) (~)

[v ) given by Eq. (27). Most terms in this sum will be

small as (uo ~V~w~ ) will only be large for the m = n
state. So the first-order-corrected states are usually un-

changed from the unperturbed states and so the results of
the above paragraph, that the two-state approximation
is valid away from resonances, hold. However, if the driv-
ing frequency is near a resonance, with ~ —~„nearly
equal to 0 for some n, and m equals 1 or 0, then the

mth corrected state will have a large contribution from
the nth state. Then a coherent state can no longer be
modeled as simply the sum of the first two Floquet states
but must include a large contribution from a third, the
nth state. Then there will be three frequencies in the
tunneling rate, not only the difference between the 0th
quasifrequency and the 1st but also the differences be-
tween these two and the nth. This result was also found
in [2].

An important feature which needs to be pointed out
here is that the value of (w [V[a ) will be zero if the

parity of [w~ ) is opposite to that of ~a„). Then be-(o) . . (0)

cause the two tunneling states have opposite parity only
one will show the effects of a resonance for any value of 0,
even though they will both be near a resonant frequency
with an upper state at almost the same driving frequency.
One of the consequences of this is that in the above case
only three states are of importance rather then four, even
though the difference between the resonances associated
with the zeroth state and the first state is not resolv-
able on Fig. 2. Another important effect of this will be
seen when the behavior of the system with changing e is
considered.

To look at how the tunneling rate changes with varying
~ the second derivative of the tunneling rate, evaluated
at e = 0, as a function of e is plotted versus 0 in Fig.
3. There are in fact two curves on this graph; in one
the results are calculated numerically and in the other
are the results predicted by perturbation theory. The
almost identical nature of these predictions shows that
perturbation theory is a successful device for analytically
calculating and understanding the tunneling behavior of
driven systems.

The numerical line was obtained by letting

(uri —wo ) + 2 &,'e, and by calculatmg two values(o) (o) 1 ~ & 2

of 6„, one at zero and the other at a small e value, the
second derivative was found. Although this method does
assume the relation given by perturbation theory it still
seems that this assumption would not have given both
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Flt . 2. Fraction of the overlap with a coherent state cen-
tered on one of the fixed points made up by the erst two
(tunneling) states as a function of A. The other parameters
are as in Fig. 1.

FIG. 3. Second derivative of the tunneling frequency with
respect to e evaluated at e = 0 plotted as a function of O.
The other parameters are as in Fig. 1.
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results in such close agreement unless it was justified.
When the line is above the zero axis the second derivative
is positive. As the first derivative is zero at e = 0, a posi-
tive second derivative means that the tunneling frequency
will increase with increasing driving strength. When the
second derivative is negative the tunneling &equency will
decrease with increased driving. In this case the tun-
neling can be totally suppressed by sufI][ciently powerful
driving. Greater driving strength would lead to renewed
tunneling with the phase changing in the reverse direc-
tion. At the resonances the value of the second derivative
goes to infinity, as would be expected from the denomi-
nator in Eq. (28). The reason for the change of sign at
the resonances is that the actual tunneling frequency is
given by

is combined with Eq. (12) it gives

The first term is simply the unperturbed tunneling fre-

quency. The second term is the equivalent of the e term
in the perturbative series. This has the same ~ depen-
dence as the second term above; however, confirming the
other parts of this would require an analytic expression
for the unperturbed states, which we do not have. Nev-

ertheless the absence of a first-order power of e does give
further justification of the method used to calculate nu-

merically the second derivative of the tunneling rate.

(29)

Now when a resonance is approached one of the second-
order corrections will go to infinity, while the one for the
state with opposite parity will remain small, as the term
(u( )]V]u ) with the state with which it is in resonance
is exactly zero due to parity considerations. The sign
of the correction will be positive before the resonance as
(u~ ) —u( ))2 is greater then 02 before the resonance, but
is negative after the resonance. The value of the second
derivative will therefore go to infinity at the resonance
and then come in &om the infinity of opposite sign on
the resonance's far side. At the next resonance, the other
frequency will be the one going to infinity, and as the
multiplying sign of this is reversed it will go to the same
sign infinity as the derivative has just come from. So the
general form of the tunneling behavior can be understood
in terms of the above perturbation theory.

The equation for the low-&equency limit, Eq. (12), can
also be compared to the results of perturbation theory.
The modified Bessel function Io can be expanded in the
series

(30)

The first two terms of this expansion correspond to the
e and e terms in the perturbative expansion. When this

V. CONCLUSIONS

It has been shown above that the tunneling behavior of
the quantum optical system examined here can, for small
driving forces, be explained and predicted by the use of a
perturbation theory. This allows some degree of analyti-
cal understanding of both this system and of the systems
studied by others. Our results show that tunneling can
be either enhanced or suppressed for suitable values of
the driving frequency. Nevertheless, the system here was
examined for values in the deep quantum regime, while
to attain the goal of studying the chaotic effects of the
system will require moving to large photon numbers. It
appears that any classical effects on a scale smaller than
h will be averaged out in the quantum system.

One interesting idea is that the enhancement of the
tunneling frequency due to the effect of driving can be
used in experiments to observe this tunneling. The ma-

jor problem in devising experiments to observe coherent
tunneling in optical systems is that the low values of non-
linearities available means that any tunneling will have
very low &equencies and therefore the states will have
their coherences destroyed by dissipation before any tun-
neling occurs. However the enhancement of tunneling
rates possible when near resonances could result in this
kind of experiment being possible. We are currently in-

vestigating the effect of dissipation in this context.
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