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Atomic states with spectroscopic squeezing
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The spectroscopic squeezing characteristics of the angular-momentum state
exp{8S,)exp[ {i—m/2)S~]~S, m ) are calculated. The parameter i/2SAS, /~&S, )

~
is shown to be less

than or equal to 1 and takes the asymptotic value (1+S) ' ' as 0~0 if m =0. This small value makes
those states especially useful in applications where quantum noise reduction is required. Also, the spin-

spin correlations of those states are nonzero and negative.

PACS number(s): 42.50.Dv, 42.50.Lc, 42.50.Fx

(as„)'(-,'
l & S, ) . (2)

There can be many states satisfying the squeezing condi-
tion (2). Wodkiewicz and Eberly [2] considered a class of
atomic coherent states for which condition (2) is satisfied
and for which equality sign in (1) holds. The squeezed
atomic states which are of interest, in this paper, are
defined by the solution of the eigenvalue problem

[exp(8)S+ +exp( —8)S ] ~ g ) = A,
~ g ), 8 real . (3)

These include in the special case the state
exp[P/2(S —S )]~S,—S ) considered by Wodkiewicz
and Eberly. These states lead to the equality sign in (1)
and satisfy the condition (2). The angular momentum
states satisfying (3) have been constructed [3] and their
possible production mechanisms have been discussed [4].
Note the similarity of the eigenvalue Eq. (3) defining the
squeezed atomic states to the corresponding problem for
bosons [5]. Note that the squeezing condition (2) defined
from the usual considerations of the uncertainty principle
may have to be modified in the light of a given experi-
ment to be performed [1,6]. For example, Wineland
et al. [1] have found in the context of Ramsey spectros-
copy that one would like to have the parameter
defined by

gg =i/2S (bS„)/i &S, ) i

=Q(S/(&S, ) ~)(&Zas, /&~&S, ) i)

less than 1:

(4)

The importance of the atomic squeezed states in spec-
troscopic work is beginning to be recognized [1]. Consid-
er the Heisenberg uncertainty relation involving the un-
certainties in the angular-momentum operators S

as„xs, &-,'~&S, ) ~,

where uncertainties like AS, are defined in the usual
manner. In view of this it is possible to define the
squeezed atomic states as those for which, say,

g„(1 . (5)

Although i/2b, S„/Q~ &S, )
~

in (4) is less than one by vir-
tue of (2) but S/~&S, ) ~

) 1. Hence, the states satisfying
(2) do not necessarily satisfy (5). Wineland et al. [1]
showed that the states satisfying (5) can be produced by
an efFective interaction of the form (S+a +a S ),
where the oscillator mode is in a squeezed state. In our
earlier work [4] we considered a similar interaction ex-
cept that our model involved interaction with a broad-
band of squeezed oscillator modes. We showed that such
a model produces the atomic squeezed states satisfying
the condition (2). In view of the similarities of the two
models and in view of the spectroscopic importance of
the atomic squeezed states, it is desirable to find out
whether the states (3) would be suitable candidates for the
spectroscopic applications, i.e., whether they satisfy con-
dition (5) as well. That is the objective of the present pa-
per. We calculate the parameter gR for the states (3) and
show that it is indeed bounded by unity from above. We
give numerical results for gi, as a function of the parame-
ter 0 and show that gz can become much smaller than 1.
We will refer to gi, as the spectroscopic squeezing param-
eter.

Squeezed states satisfying the equality in the Heisen-
berg uncertainty relation (1) for a collection of X two-
level atoms are given by [3]

) = 3 exp(8S, )exp( i~St/2)~S—, m ),
m= —S, —S+l, . . . , S,

where A is the normalization constant and S represents
the angular-momentum operator corresponding to the
spin value S =X/2. For simplicity we let 0&0. The
state ~S, m ), as usual, is the simultaneous eigenstate of S
and S, with eigenvalues S (S + 1) and m, respectively. As
shown in Ref 3, the state .~P ) defined by (6) is the solu-
tion of the eigenvalue problem (3) with k=2m so that (3)
can be rewritten as

[S,cosh{8)+isinh(8)Ss]~g ) =m ~itj ) .
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&s„s,&+&s,s„)=0,
cosh (8)(S„)+sinh (8)&S,'&

(10)

—sinh(8)cosh(8}&S, &
=m' .

On combining Eqs. (8}and (10) we find the uncertainty in

Note that ~f~ ) is an eigenstate of a non-self-adjoint
operator but the eigenvalues are real. The phase space
representations of these states are discussed by Agarwal,
Dowling, and Schleich [7]. A class of the squeezed spin
states involving unitary transformation on coherent spin
states has been proposed by Kitagawa and Ueda [6].
From (7) it is clear that

(P ~S ~1{t ) =m/cosh(8), (f ~s»~g ) =0 . (8)

To determine (S„)and (S ) we use (7) in the forms

( P [S„cosh(8)—isinh(8)S ]

X[S„cosh(8)+isinh(8)S ]~1{ ) =m2(p ~g ),
(9)

(f ~[S„cosh(8)+isinh(8)S ] ~g ) =m (lit ~p ),
and arrive at the following mean value equations

cosh (8)(S„)—sinh (8)(S» ) =m

b,s„'& (S, )/2 . (12)

Thus, the component S exhibits squeezing. We also find
that

b,s» = (S, )coth(8) /2,

which, along with (11), leads to

as„'ss,'= (s, )'/4 .

(13)

(14)

The state ~f ) is thus a minimum-uncertainty state.
We next examine the value of the spectroscopic squeez-

ing parameter ga defined by (4) for the system in the state
[8] ~ g ) . On using (11) in (4) we get

gz
2=

~ (S, ) ~
/Stanh(8) . (15)

We thus need to know the value of (S, ) in the state
) which we now compute. On using (6), we get

S„ to be given by

b,s„=tanh( 8) ( S, ) /2 .

Note that for 8 & 0, 1 & tanh(8) & 0, ($„)should be posi-
tive and hence

(S, ) = 3 (S,m ~exp(inS /2)exp(8S, )S,exp(8S, )exp( i irS /—2) ~S, m )

d(S, m ~exp(its»/2)exp(28S, )exp( its /2)~s, m—)
d(28)

d( 3 )/d(28) =d(ln( 3 ))/d(28), (16)

and hence

2 1 d (ln(D) )
Stanh(8) d(28)

To determine D we proceed as follows:

(17) (1—x) d(ln(D))
S x (21)

I

end, define x=r—:tanh2(8) so that Eqs. (17} and (20)
read

D = (S,m ~exp(inS»/2)exp(28S, )exp( imS»/2—) ~S, m )

=(S,m ~exp( —28S„)~s,m ), (18)

where we have used the property that the rotation opera-
tor exp(i ~S /2) represents a rotation by m. /2 about the y
direction. On using the disentangling theorem [9]

exp[ —8(S+ +$ }]=exp( —rs+ )(1—r ) zexp( rs ), —

r—:tanh(8), (19)

Eq. (18) gives

D=(S,m ~exp{ —vs+)(1 —r ) zexp( rs )~s, m )— :—(1—x) (S+m)!(S—m)!x»

» =o (S+m —p)!(S—m —p)!(p!}~

(S +m )!(S—m +p)!x»(1—x)
(S +m —p)!(S—m )!(p!)z

—= (1 x) F( —S —m—,S —m+1;1;—x/(1 —x)), (22)

where F(a, b;c;z) is the hypergeometric function. Using
the relation [10]

F(a, b;c;z)=(1 z) 'F(a, c b;c; ——z/(1 —z)), —

the expression (22) for D reduces to

D =(1 x) F( —S—m, ——S+m;1;x),

(S,m ~(s )»(S )»~s, m )
(r)'»(1 —r )

» =p (p!)'
(r)»(1 —2)» (S+m)!(S—m +p)!

(p!)2 (S+m —p)!(S—m)!p=0
(20)

We now prove that gz ~ 1 for all S, m, and 8. To that

Finally, substituting Eq. (24) in Eq. (21) we get

1+ (1— )

DS

($ + m)!(S —m)!px»
(S —m —p)!(S+m —p}!{p!)2

(25}
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Since the second term in (25) is positive semidefinite, it
follows that gi, & 1.

Note that („ is symmetric under m ~ —m, i.e., gi, has
the same value in the states

~ f & and
~ g &. Also, it is

clear from (25) that

1.0—

0.8—

(~ =1, m =+S, (26)

whereas gii &1 if mW+S. Analytic expressions for gii
can also be obtained in certain limiting cases. In the limit
8~0, i.e., x ~0, it is straightforward to show that 0 4

(S+m)(S —m)
R S as 0~0.

In particular,

g~ ~(1+S) '~ for m =0, 8~0 .

(27)

(28)

0.2
0.0 0.5 1.0 1.5 2.0

Hence, the spectroscopic squeezing parameter gii is of
the order of I/v'S for large N and for m =0. The state

~ go & [Eq. (6)] should, therefore, be of practical interest in
the context of the Ramsey spectroscopy.

For 0~~, i.e., x~1, on the other hand, it follows
from (25) that

(R~I as gazoo . (29)

1.0—

0.8—

0.6—

We show by means of numerical calculations that gii, in

fact, increases monotonically with 0.
The results of numerical evaluation of (R are presented

in Figs. 1 and 2. In Fig. 1, we have plotted gii as a func-
tion of 0 for a fixed N =—2S =20 and for
m =0, +4, +6, +8. Clearly, g~ increases monotonically
from the limiting value (27) as 8~0 to 1 as 8~ cc. Also,

gR increases with increasing ~m~ for a given value of 8.
In Fig. 2, we have plotted g& as a function of 9 for a fixed
m =0 and for E =2,4, 10,20. It is seen that the higher
the number N of atoms the lower the value of g~ is for a
given 8. The figures show that gz indeed may become
very small thereby making the atomic squeezed states
very useful for the spectroscopic applications where a
reduction in noise is required.

FIG. 2. The spectroscopic squeezing parameter g~ as a func-
tion of 6 for m =0. The uppermost curve is for X=2 followed
by the curves for N =4, 10, and 20 respectively.

Let us now discuss the experimental conditions re-
quired for the generation of the states (6) and their rela-
tionship with the parameter 8. It has been shown in Ref.
[4] that a system of N two-level atoms interacting with a
broadband squeezed bath has the state (6) as its steady
state if 1V is even. A squeezed bath is constituted, for ex-
ample, by the radiation from a cavity containing a non-
linear medium undergoing degenerate two-photon down
conversion on pumping by an external field [11]. That ra-
diation is multimode with pairwise correlation between
the modes separated in frequency by the frequency of the
pump. The longest correlation time ~, between the
modes is (y —

~e~) ', where ~e~ is the parametric
amplification factor and 2y is the rate of leakage of the
photons from the cavity with the condition g ~

~
E

~

re-
quired for stability. If ~, is much shorter than the time of
decay of the atoms with which the field interacts then it
can be considered as a broadband field. The parameter 0
in (6) is then given in terms of the parameters of the para-
metric amplifier by the relation

exp(2&) =4XIEl(X'+ IEI')/[4y'IEI'+(y'+ IeI')'] . (30)

Clearly the value 0=0, for which there is maximum spec-
troscopic squeezing, is obtained for y= ~E . That is also
the value for which the bath attains optimal squeezing
[11] (which as is well known corresponds to 50% squeez-
ing inside the cavity and much larger squeezing outside).

The spectroscopic squeezing in ~i' & is associated with
the finiteness of the correlation

C'&. =&S„'Si &
—&S„'&&Si &, (31)

0.4—

0.2
0.0 0.5 1.0

I

1.5 2.0

FIG. 1. The spectroscopic squeezing parameter f„as a func-
tion of L9 for N =20. The uppermost curve is for m =+8 fol-
lowed by the curves for m =+6, +4, and 0, respectively.

between the pth and the vth components (p, v=x, y, z) of
the spin vectors of the ith and the jth atoms. The corre-
lation function vanishes for a state which is a product of
single-atom states. We evaluate C'j for the squeezed
atomic state and show that the spins in that state are
correlated whenever g„& 1. There are no spin-spin
correlations if gz = 1.

Note that the state ~itj & is obtained, as is seen from its
definition (6), by a collective atomic transformation on
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&S„'&=&S„&yN,

&S„'SJ &= &S„S„&—y &S„'S'.& [N(N —1)] .
(32)

Since S„' are spin- —,
' operators therefore the product S„'S,'

can always be reduced to a single spin- —,
' operator.

Hence, the term Q, S„'S'„appearing in (32) is also reduc-
ible to a collective atomic operator.

Let us now evaluate the spin-spin correlation function
C„'J . Using Eqs. (31) and (32) it can be shown that

& S„&'
C'~ = hS ——+xx x 4

[N(N —1)] . (33)

the collective atomic state ~S, m &. However, the trans-
formation operator in (6) is evidently a product of the
single-atom operators but the state ~S, m &, and conse-
quently ~!f &, cannot be expressed as a product of the
single-atom states unless m =+S. Hence, the spin-spin
correlations in state

~ 1b & can be nonzero if m W+S and
those are the values of m for which gz & 1. On the other
hand, ~S, +S& and hence ~P+s& is a product of the
single-atom states. Hence, the spin-spin correlations are
absent if m =+S and, for those values of m, hatt

=1. We
evaluate C„'J and show that the spins in the squeezed
atomic state ~lb& are indeed correlated.

Since the state ~f & is a collective atomic state, the
evaluation of C„' in that the state involves finding the
mean values of the single-atom operators in collective
atomic states. The problem of the evaluation of those
mean values can be reduced to the evaluation of the mean
values of collective atomic operators by invoking the fact
that the collective atomic state ~lb & is symmetric under
the exchange of the atoms so that

On using the expression (8) for &S„&;Eq. (11) to express
AS„ in terms of &S, &, and Eq. (15}to write & S, & in terms
of gs, we get

C„'~ =—[x)~ —1+4m (1—x)/N ]l[N(N —1)] . (34)

Substituting the expression (25) for gtt in (34) it can be
shown that

N(—1 —x)
xx 4D

~ (S+m)!(S—m)!x~[1—2p/N —4m IN ]
(S —m —p)!(S+m —p)!(p!) N(N —1)

(35)

Since 1 2p/N —4m I—N )0 for 0&p &S —
~m~ for

~
m~ &S, it follows that C„'~ &0, i.e., the spin-spin correla-

tions in the state ~g &(mA+S} are finite and negative.
For ~m~ =S, on the other hand, it is clear from (35) that
C'J =0.

XX

In conclusion, we have shown that the spectroscopic
squeezing parameter gs is always less than or equal to
one for the atomic squeezed states and that gtt may, in

fact, become very small in some cases thereby making
these states very useful in spectroscopic applications. We
have also demonstrated that, for gtt &1, the spin-spin
correlations are finite and negative which may also be
considered a signature of the nonclassical character of
the state.
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