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Photon distribution in two-mode squeezed coherent states with complex displacement
and squeeze parameters
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Two-mode squeezed coherent states with complex squeeze and displacement parameters are studied,
taking advantage of the SU(2) dynamical symmetry underlying two-mode systems. Expressions for the
photon distributions in such states are derived using an SU(2) identity and the fact that the two-mode

squeeze operator can be viewed as a rotated version of the product of reciprocal single-mode squeeze
operators. An important U(1) XU(1) invariance of this photon distribution is established. As a conse-
quence, the three phases of the complex squeeze and displacement parameters enter the photon distribu-
tion through just one U(1) XU(1) invariant combination. An associated Gouy effect is noted. Numerical
examples of two-mode photon distributions are shown, and interesting new features demonstrated.
Second-order coherence properties and their nonclassical nature are briefly studied.

PACS number(s): 42.SO.Dv

I. INTRODUCTION

Photon distribution in nonclassical states of light has
been studied by several authors [1]. Interest in such stud-
ies was triggered, in part at least, by the work of Schleich
and Wheeler [2], who showed that photon distribution in
the squeezed coherent state of a single-mode system has
an oscillatory behavior. They further suggested that such
an oscillatory behavior of the photon distribution can be
taken as signature of the nonclassical nature of the state
involved.

More recently, Dutta et al. [3] made a more systematic
study of the single-mode squeezed coherent state with
complex squeeze and displacement parameters, and
showed that in some range of the complex parameters the
oscillations in the photon distribution exhibit collapses
and revivals somewhat similar to the one familiar in the
Jaynes-Cummings model [4]; the former is in the photon
number domain rather than in the time domain. It
should be emphasized that this new beat behavior in the
photon distribution is not shared by squeezed coherent
states with real squeeze and displacement parameters
studied by other authors.

In an interesting recent work, Caves et al. [5] studied
the two-mode squeezed coherent state, and demonstrated
some interesting features of the photon distribution in
such states for real values of the two-mode squeeze and
displacement parameters. We wish to note in particular
the qualitatively difFerent distributions obtained for paral-
lel (a& =a&) and antiparallel (a, = —a2) values of the real
displacement parameters, shown respectively in Figs. 1(b)
and 2(b) of their work. The striking difference in the two
cases tempts one to ask: How does the photon distribu-
tion interpolate between these extreme ends? Motivated
by this question, and by the work of Dutta et al. [3],
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which demonstrated the phase sensitivity of the photon
distribution in the single-mode case, we study in this pa-
per the photon distribution in two-mode squeezed
coherent states with complex squeeze and displacement
parameters.

The content of this paper is organized as follows. In
Sec. II we develop an expression for the photon number
distribution in an arbitrary two-mode squeezed coherent
state with complex squeeze and displacement parameters.
The analysis of Caves et al. is based on normal ordering
techniques. Our approach is symmetry based: we exploit
the SU(2) dynamical symmetry underlying two-mode sys-
tems. This allows us to view the two-mode squeeze
operator as a rotated version of product of reciprocal
single-mode squeezings. Thus the probability amplitude
for the photon distribution becomes a linear combination
of product of the well known single-mode Yuen matrix
elements [6] given in terms of Hermite polynomials, the
coeScients of the linear combination being determined by
the matrix elements of a particular SU(2) rotation. Final-
ly, an identity relating associated Laguerre polynomial
helps us to write the probability amplitude in terms of a
single associated Laguerre polynomial. It is of interest to
note that this identity itself is an immediate consequence
of the SU(2) structure. Conformity of our final result
with that of Caves et al. is noted.

In Sec. III we bring out the fact that this two-mode
photon distribution possesses a U(l) XU(1) invariance
property. As a consequence, even though our problem
has three phases (each one arising from the two displace-
ment parameters and the third from the squeeze parame-
ter), the photon distribution depends only on one
U(1) X U(1)-invariant linear combination y of these
phases. We bring out also a Gouy phase [7] in the
manner in which this invariant y influences the argument
of the associated Laguerre polynomial.

Some examples of photon distribution are studied nu-
merically in Sec. IV. Our principal aim is to bring out
the sensitivity of the photon distribution to the U(1)
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XU(1) invariant g. It will be seen that while our results
are in conformity with the results of Caves et al. for
those values of y that correspond to their studies, there
are new interesting features for other values.

In Sec. V we study some properties which turn out to
be invariant to the phases. Second-order coherence func-
tions are briefly considered in Sec. VI, and it is shown
that they exhibit nonclassical behavior in some range of
g. And we conclude with some final remarks in Sec. VII.

II. PHOTON DISTRIBUTION

The general two-mode squeezed coherent state is uni-
tarily related to lvac) = l0, 0), the ground state of the
two-mode system described by annihilation operators a
and b, in the following familiar manner:

lz;a„a2) =D(a„a2)S(z) 0,0),
S(z)=exp(z'ab —za b ), D(a1,a2)=D(a1)D(a&),

D(a, ) =exp(a1a —a;a ), D(az) =exp(azb —az b ) .

As the first step, we exploit the dynamical SU(2) sym-

metry underlying the two-mode system. Two-boson reali-
zation of the SU(2) symmetry is originally due to
Schwinger [9] and has more recently played an important
role in quantum optics [10, 11]. The basis of all these ap-
plications is the easily verified fact that the Hermitian
operators J, ,J„J,defined through

J)= a "b+b a . a 'b —b'a
2

' '-
2

J2= —i
a"a —b b

2
(4)

satisfy the SU(2) algebra [J&,J1 ]=i ek1 J . This fact be-

comes obvious if one notes that Jk =
—,'g o.kg, where g is a

two-element column vector with entries a, b, and o.
k be-

ing the Pauli matrices. With the help of these SU(2) gen-
erators, we can write our two-mode squeeze operator
S(z) as

~ ~ ~ ~
S(z) =exp i J—

2
—S, (z)S&( —z)exp i J~—

where S,(z), S1, (
—z) are the single-mode squeeze opera-

tors

Here z is a complex two-mode squeeze parameter and Q, ,

and a2 are complex displacement (coherent excitation)
parameters. Detailed analysis of two-mode squeezed
coherent states has been made by several authors [8]. In
the above definition we have allowed, following Caves
et al. [5], the squeeze operator to act on vacuum and
then displace the resulting two-mode squeezed vacuum.
Sometimes it will be more convenient to order these
operations the other way in the definition of the squeezed
coherent state. Both definitions are equivalent, and we
have the following identity:

S, (z)=exp[ —,'(z*a —za )],
S&( —z)=exp[ —

—,'(z*b zb )] . —

Since exp[ —i(~/2)J2] produces n/4 rotat. ion in the
mode space, the important identity (5) shows that our
two-mode squeeze operator S(z) is indeed a rotated ver-

sion of product of single-mode squeeze operators produc-
ing reciprocal squeezing.

When the identity (5) is used in (3) we obtain
—i (m. /2) J~c(n„n2)=(n„n2le 'S, (z)S&( —z)

lz;a„a2) =S(z)D(a„a2)l0,0),
Q) =Q)P+Q2 V, Q2=Q~+Q) V,

z =re '~, p=coshr, v=e '~sinhr .

(2) Since

Xe 'D(a„a2)l0, 0) .

~ ~
exp i J2 D(a, ,—a2)exp —i—J2

P(n„nz)= lc(n„nz)l

c(n1 n2) (nl n2lz;a»a2)

= (n „n~ lS(z)D(a1, a2) l0, 0),

(3)

where ln„n2) are the familiar Fock states of the two-
mode systems. We will compute P(n1, n2) in several

steps.

The photon distribution P(n„nz) in the two-mode
squeezed coherent state lz;a„a2) is given by Q)+Q2 Q2 Q)

v'2 ' v'2 (8)

e 'D(a1, a2)l0, 0) = Q] +Q2 Q2 Q)

&2 ' &2

This allows us to rewrite (7) as

and since exp[i(m/2)Jz] acts as identity operator on

l0, 0 ), we have the useful relation

( 71 /2 )J2 r i p
Q)+Q2 Q2 Q)

c(n1, n2)= g (n, , n2le 'ln', , n2) n', , nzlS, (z)S&( —z)l
&2 '

2
(10)

As the next step, we recognize that the matrix elements entering (10) are well known from other contexts. The ex-
—i (~/2) J2

pression (n1, n2le 'ln', , n2 ) are the Wigner matrix elements [12] familiar from the quantum theory of angular

momentum:

—i(vr!2)J2(n, , n2le 'ln', , n2 ) =dj ~
—=d~ ~
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where

j=(n', +n2)/2=(n, +n2)/2, m =(n, n2—)/2, m'=(n', —n2)/2;

d' ~ =( —1) d'm'm

(1}2)g(1)p[(j+m')!(j—m')!(j+m)!(j—m)!]
(j m—' p—)!(j+m+p)lpl(m' m—+p }!

(12)

The other expression in (10) is product of the Yuen matrix elements of single-mode squeeze operators between coherent
states and Fock states [6,3],

Q ) +CX2 CXp Q )
n 1 n 2 IS.(z )Sb( —z)

I

2
'

2

+&++2, , /2n 1 IS, (z)I — =(n I!p)v'2 '
2p

n', IS,(z)I — n' IS (
—z)I

n ) /2

H„[(~r+122)(4pv) '"]exp —
—,'l(~r+rz2)l'+ '

(Crr+~2)'
4p

(13)

And ( n 2 ISb( —z )I I/&2(a2 —ar ) ) has an expression similar to (13) with (ar+a2) replaced by (a2 —ar) and v by —v.
For our final step, we need the important identity [11,13]

+j
QJ ~ [2 ~(j+m')!(j—m')!] ' H + (x)HJ (y)

m'= —j 1/2

=exp[ —i—[2(j—ImI) —(j—m)]] J (x2+y2)2I~IL21~1 (x2+y2)e2'(j—Im I
)!

2 (j+ImI)r
(14)

gj ~ m' —
md j

m'm m'm (15)

The above identity has played an important role in con-
structing the normal-mode spectrum of the twisted
Gaussian Schell model beam in classical optics [11]. Its
derivation is straightforward and brings out the power of
viewing SU(2) described in [4] as the dynamical symme-
try of the two-dimensional isotropic oscillator in the x-y
plane. Eigenstates of such an oscillator can be construct-
ed by either diagonalizing J3, in which case the eigen-
states will be products of Hermite polynomials in x and y,
or by diagonalizing J2, which generates rotations in the
x-y plane in which case the eigenstates will be the rota-
tionally covariant associated Laguerre polynomials in
x +y . The identity (15) is a consequence of the fact
that J2 and J3 are related through conjugation by
exp[ —i(1r/2)Jr]. In fact, QJ are the matrix elements
of exp[ i(1r/2)J,—] and the factor i in the relation-

I

ship (15), arising from the fact that

~ ~ — ~ ~ ~ ~
exp —i—J, =exp i—J3 exp —i—J2

X exp —i—J3 (16)

It is important to appreciate that the identity (14) con-
necting the Hermite polynomials and the associated
Laguerre polynomials is valid not only for real x,y but
also for complex values of x,y with p, 8, defined, in either
case, through x+iy =pe' so that p =x +y,
e2'e=(x y+2i—xy)/( x+y )

Using the expressions (12) and (13) in (10) and making
use of the identity (14), we have our final expression,

C(111 112 } C(J+m J m

=exp i (j——Im—
I )

2

r /2
(j—m }!
(j+ Im I }!

[ara2/(pv)]' 'p '(v/rM)'

XL 2Im Ij—Im I pv

'm

exp
CX ) CX2

exp
V CX )CK2

(17)

The double sum over n 1, n2 in (10) reduced to a single
sum over m'=(n', n2)/2 owing to the—fact that the ro-—i m/2J&tation matrix element ( n „n2 I

e '
I n ', , n 2 ) in (10) is

nonzero only when n, +n2 =n ', +n z, thus enabling us to

use the identity (15).
To relate our final expression to that of Caves et al. ,

we note that p=j —Im I is the smaller of n„n2 and

q =j+ Im I
is the larger. Thus substituting for rM, v from
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(2), we can rewrite (17) as

c(n, ,nz)=( —1)I'

1/2
n] I —~, —~ (tanhr), z;&&

CX1 CX2 ~e
'

coshr

we have 0 ~0 +g, vive ' ', and 2/~2/+(]+gz.J J J' ij.
Further, it is clear from (2) that a ~a e ' under (21).
Thus,

2 Tt] p — I P- '- P 2iy p 1~1+"2~2

XI.~-P
P

2(X 10!2 —2I (t]

sinh2r

X exp
—(a] a, +az az)

2 coshr
(18)

III. U(1) X U(1) INVARIANCE AND GUOY EFFECT

It is seen that (18}, for real values of the parameters,
indeed reproduces Eq. (2.14) of Caves et al. , since their

p =a lcoshr.
a;a, +azaz=(la, + lazl }coshr+2la, azlsinhr cosy

—i2 la]az l
sinhr sing .

We further deduce from (2),

(22)

To complete the verification we will now show that the
argument of the associated Laguerre polynominal
as well as the exponent in the last factor in (18) are
functions of only the U(1)XU(1) invariant combination
y=0, +0z —2]t]. From (2) connecting the a's to the a' s

we have

c(n ],nz,'z;a], az) —( n ],nz z;a],az)

Now note that

exp(ig]a a )exp(igzb "b ) lz;a„az)

(19)

i (pi+ g~) i () ij2= ze ' ';a1e ', a2e

Projecting onto the Fock state
l
n „n z ) we have

i(pl+(2) i(i ij2c(n „nz;ze;a,e,aze )

i(n
i p]+11pp2)

We have three complex parameters in the problem.
ii9i i9&These are z=lzle '~, a, = a, le ', and az=laz e

However, symmetry considerations should convince one
that the phases 0], 0z, (() will not enter the photon distri-
bution independently. To see this, let us write c(n„nz)
in more detail as

a]aze ' =
—,'( a] l

+ az )sinh2r

+2la, az (cosh2r cosy+i sing) . (23)

Thus, the expression (17) has the behavior required by
(19) under the U(1)XU(1) transformation (21), showing
explicitly that our photon distribution is indeed
U(l) XU(1) invariant. Having appreciated this fact, we
switch for brevity to use of P(n„nz), rather than
P(n „nz;z; a„az), to denote the photon distribution.

Our analysis in the foregoing paragraphs shows that
there are only two ways in which y, the U(1) XU(1) in-
variant combination of the phases of e1, a2, and z, enters
the photon number distribution: through the exponent as
in (22), and through the associated Laguerre polynomial
as in (23). The former one is independent of n „nz and
hence contributes to the overall amplitude of the distribu-
tion. That is, it just ensures the fact that P(n, , nz)

We see that under the U(1) X U(1) transformations gen-
erated by exp(ig]a a), exp(igzb b), the probability am-

plitude c(n „nz', z;a„az) defined in (18) changes only by a
phase. Since the photon distribution is given by the
square of the absolute value of this amplitude, we see that
it has U(1) X U(l) invariance:

I I T, T I T I I j I I I I
t

I I I i

l

I

i(g|+g&) i g& i g2P(n], nz,'ze, a]e, aze )=P(n], nz;z;a], az) .

(20)

ig. i(pl+ g2)a ~ae ', z —+ze (21)

This U(l) XU(1) invariance is analogous to the U(1) in-
variance in the single-mode case [3j and implies that our
photon distribution will depend on the three phases 0, , 02
and P only through the U(1) X U(1)-invariant combination
0, +0z —2P.

It may be instructive to verify that the photon distribu-
tion described by the probability amplitude given in (18)
indeed possesses this U(1) XU(1) invariance. To this end,
note that under the transformation

0—
l

0 1 2;3
U(1) x]J( I ) ir&var inn].

FIG. 1. The Gouy phase 4 for different values of the
U(1}XU(1}invariant phase g. Both 4 and y are in units of m.

and ai =a&=7.
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Lq p 1 2 —2ig q
—p 1 2 i42a a, 2~a&az~

sinh2r P sinh2r
(24)

From (23) we see that

4 =arctan
—,'(~a,

~
+ ~az~ )sinh2r+ ~a&a2~cosh2r cosy

(25)

We show in Fig. 1. the behavior of 4 as a function of g
for the case ~a, ~

= ~a2~. It is seen that while 4 is linear in

y for r =0, with increasing value of the squeeze parame-
ter r, 4 becomes a highly nonlinear function of y. This is
the Gouy effect for two-mode squeezed coherent states.
The Gouy effect for (focused) light beams has been known
for a long time, [14,15] and recently the Gouy effect for
single-mode squeezed light has also been studied [16].

We note in passing that if either a, or a2 equals zero,
then the argument of the associated Laguerre polynomial
becomes real positive irrespective of the phase of the
squeeze parameter z.

summed over n &, n2 is normalized to unity. Thus it need
not be pursued any further. The role of g in the latter
however, is nontrivial.

We will see in the next section that the dependence of
the argument of the associated Laguerre polynominal on

y leads to a sensitive y dependence of P(n „n2). But here
we wish to note the interesting manner in which the
phase of the argument of the associated Laguerre polyno-
mial depends on y. To this end let 4 be the phase of the
argument of the associated Laguerre polynomial in (18):

crease in number, the period parallel to the diagonal in-
creases, and the distribution pulls itself towards
(n &, n2 ) = (0,0). With further increase, the strength of the
distribution falls rapidly as one moves away from the di-
agonal so that when y=180 is reached, one is left with
essentially a diagonal distribution. Thus, our Fig. 2 gives
insight into the manner in which the photon distribution
interpolates between the two extreme limits studied in
[5].

To gain further understanding of the photon distribu-
tion, we probe the diagonal distribution P(n, n) in some
detail. In Fig. 3 we present P(n, n) for the same values of
~a& ~

=
~a2~ and r as in Fig. 2, and for various values of y.

Collapses and revivals in the oscillation may be noticed.
This result is reminiscent of the findings of Dutta et al.
for the single-mode case. The major departure from the
single-mode case is that in the present case the collapses
and revivals are persistent for a wider range of the pa-
rameter y. In particular, they survive even in the limit
X=O'

It may be noticed that the oscillations in P(n, n) are
most rapid at y=O'; and the period of oscillation steadily
increases as g goes to the limit 180', where the diagonal
distribution becomes essentially a constant. The region
near y= 180' is further explored in Fig. 4.

It is of interest to analyze the photon distribution in n,
for fixed n2. This corresponds to state reduction, which
has received considerable interest recently [17]. In Fig. 5,
we show P(n, ) =P(n „n2) for constant n2 (i.e., the distri-
bution as a function of n& for fixed nz} for the same
values of parameters ~a, ~

=
~a2~ and r, as in Figs. 2 —4 and

for selected values of y. Again, collapses and revivals can
be noticed. But the structure of this phenomenon is now
quite different from the diagonal case and much richer.

IV. EXAMPLES OF PHOTON DISTRIBUTIONS

We have given in (18) the probability amplitude
c(n„n2} for the two-mode squeezed coherent state; the
square of the absolute value of this expression gives the
photon distribution P(n t, nz}. We are primarily interest-
ed in the effect of the phases 8„82,2P of the complex pa-
rameters a&, a2, z. We have already shown that these
phases enter the photon distribution only through the ar-
gument of the associated Laguerre polynomial, and that
also in the U(1)XU(1) invariant combination y=8&
+ 82 —2P. We give in Fig. 2 the distribution P(n „n2) for
fixed ~a&~ =~a&~ and fixed r, and selected values of y in

the range 0 &y (~.
It should be appreciated that the effective range of g,

as far as P(n&, n2) in (18) is concerned, is 0~y» n rather
than the full O~y(2+. This comes about from the fact
that P(n, ,n2) is invariant under y~2m —y.

It is easy to see that Fig. 1(b) and Fig. 2(b) of Caves
et al. correspond to y=O and ~, respectively. And for
these values of y our results in Fig. 2 are clearly in agree-
ment with theirs. But from y=O to y=m the distribution
"evolves" in an interesting manner. As g is increased
from zero, the ripple perpendicular to the diagonal starts
breaking. With increasing value of y these breaks in-
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FIG. 4. A closer look at the diagonal distribution in the re-
gion around y= 180'. It can be seen that the amplitude and the
period of the oscillations decrease as y decreases.
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V. PROPERTIES INSENSITIVE TO PHASE

We have shown in the preceding two sections that the
photon distributions in the two-mode squeezed coherent
state ~z;a„az) is quite sensitive to the U(1) XU(1)-
invariant combination of the phases of the squeeze and
displacement parameters. But there are properties of this
state which are insensitive to the phases of these opera-
tors. We present in this section examples of two such
properties.

The first such property we consider is the total energy
E in the state ~z;aI, az). This is given by the expectation
value of (a a+b b). The computation is straightfor-
ward:

E=(z;a&, az~(a a+b b)~z; a&, az)

=(vac~S (z)D (a„az)(a a+b b)D(a&, az)S(z)~vac) .

(26)

The contribution from the a ~a term is

(vac~S (z}(a +a]}(a+a&)S(z)~vac)

=~a&~ +(vac~St(z}a aS(z)~vac)

exp
~cosh2r cosh2r

(31)

which corresponds to a displaced, but not squeezed,
thermal state. We see that the phase of the squeeze
operator does not enter this reduced Wigner distribution.
In fact, the P distribution corresponding to (31) can be
written down by inspection. We have

P(g, ) = exp
vrsinh r sinh r

(32)

which coincides with the result of Caves et al. , consistent
with its insensitiveness to phase.

While the two-mode squeezed coherent state ~z;a&, az)
has such a nice Gaussian Wigner distribution, it is well
known that this state, being nonclassical, has no P-
distribution function in the familiar sense of the term
function.

The single-mode Wigner distribution corresponding to
the reduced density operator for mode 1 is now obtained
by taking the marginal fd gz W(g„gz), where we have

W(g()= Jd

/zan(gl,

gz)

=~a,
~

+sinh r,
where we make use of the fact,

(27)
VI. SECOND-ORDER COHERENCE FUNCTION

S (z)aS (z) =a coshr —b e z'~sinhr . (28)

The expression (27) is similar to the one in the single-
mode case, but the sinh r term comes from the expecta-
tion value of b~b. It is easy to see that the contribution
from the blab term in (27) equals ~az~ +sinh r. Hence,
the energy of the state ~z; a„az ) is [5].

E=/ z/a+/az/ +2sinh r . (29)

Thus the total-energy content of ~z;a, ,az) is insensitive
even to the invariant combination y, even though the
photon distribution itself is phase sensitive. That is,
changing the value of y simply redistributes the photons
in the various two-mode Pock states without changing
the total number of photons.

The next quantity we consider is the reduced density
operator for mode 1. Caves et al. compute this through
the P distribution. Our computation is based on the
equivalent two-mode Wigner distribution W(g„gz). The
advantage of the Wigner distribution over the P distribu-
tion arises from the fact that squeezing transformations
simply act as linear transformations on the arguments of
this distribution. Displacement operators act as rigid
translations as in the P distribution case. Using these
facts and the fact that the Wigner distribution for

~
vac )

is given by 8'(g„gz)=4/m exp[ —2(~(, ~ +~gz~ )], the
Wigner distribution for the state ~z;a&, az) is easily com-
puted to be

W(g'&, gz) = exp[ —2[(~g, —a&~ + ~gz
—

az~ )cosh2r
4

In the last section, we considered examples of proper-
ties of ~z;a, ,az) which are insensitive to the phase of the
squeeze parameter. We now turn briefly to some coher-
ence properties which turn out to be sensitive to the
phase.

We consider the Glauber coherence functions g,'b'(0)
and g~ '(0). These are defined through

(e.e, ) —(e.)(fi, )
g.',"(0)=1+ (33)

(e.

0
~ P&4

O
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Q

0
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I i & i & I I i I i I

0 0.5 1 1.5
squeeze parameter r

+sinh2r(g& —a& )(g'z —az)e

+(P —a', )(g*—a')e '~]] . (30)

FIG. 6. The Glauber coherence function G,b as a function of
the squeeze parameter r. Nonclassical behavior is seen for

y & 90 . Here, a
&

= 1 and a2 =2.
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0

g 1.1

0

0
O

1

U

classical

i

nonclassical-

0 0.5 1
squeeze parameter r

(34)

Motivation for these definitions can be found in Gilles
and Knight [18] and Agarwal [19]. Since these functions
depend only on the photon distribution, it is clear that
they can depend on the phases of z, a&, a2 atmost through
the U(1) X U(1) invariant combination y.

Classical values of these functions are bounded from
below by unity. It is seen from Figs. 6 and 7 that these
coherence functions take nonclassical values for some
range of values of r whenever y) 90'.

FIG. 7. The Glauber coherence function G~ as a function of
the squeeze parameter r. Nonclassical behavior is seen for
g) 90'. Here a&= 1 and a2=2.

plitude for photon distribution using the well known
Yuen results for the matrix elements in the single-mode
case and the matrix elements of a particular SU(2) rota-
tion. Finally, the SU(2) identity given in (14) enabled us
to write the photon distribution in the compact close
form (18).

The U(1) X U(1) invariance of the photon distribution
helped in simplifying the analysis, particularly in respect
of numerical studies. That is, even though there were
three phases in the problem to begin with, it turned out
that there is only one nontrivial phase [the U(l) XU(1)-
invariant linear combination y] which we have to consid-
er as far as photon distribution is concerned. Our numer-
ical analysis concentrated on the effect of this phase on
various properties.

In all our examples we have taken a&l = la&I. To keep
the length of the paper within reasonable limits, we have
not included numerical examples for the case la&l@lazl.
Nevertheless, it is useful to conclude with some general
observations on this issue.

The defining relations (2) can be written as

a, =e '(la, I@+la,vie '"),

a, =e '( la, @I+la, vie 'r) .
(35)

It is now transparent that Ia, l =la@I implies la, I =la@I.
It may further be noted that q,p in (18) are invariant un-
der interchange of n, and n2 Thus, . it follows from (18)
that P(n„n2)=P(n2, n, ) whenever la, l=la2I. That is,
the photon distribution is invariant under reflection
about the diagonal n, =n2. This property is manifest in

Fig. 2.
If a, IW la&, then P(n „n2) will be expected to become

asymmetric with respect to the diagonal. From (18) we
see that the only source of asymmetry in n „n2 is the fac-

2(~, —p) 2(n2 —p)
tor la, l

' ln, l

' . Since

VII. CONCLUDING REMARKS

%e have studied the photon distribution in two-mode
squeezed coherent states with complex squeeze and dis-
placement parameters. The entire analysis was guided,
often explicitly and sometimes implicitly, by an apprecia-
tion of the SU(2) structure underlying two-mode systems
as a dynamical symmetry. Thus, realization of the fact
that the two-mode squeeze operator is essentially a prod-
uct of two correlated (in fact, reciprocal) single-mode
squeeze operators allowed us to write the probability am-

(36)
& = ( I ~) I'+

I ~~ I')cosh2r +
I ~,~~ lcosy»nh2r,

as can be seen from (35), one will expect the asymmetry
to become less and less prominent with increasing value
of the squeeze parameter r = lzl.
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