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Generalization of the Maxwell-Bloch equations to the case of strong atom-field coupling
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We derive the generalized set of Maxwell-Bloch equations which takes into account the dependence of
relaxation coefficients on the amplitude and frequency of the coherent field. This has interesting implica-
tions in many problems in quantum optics and laser physics, e.g. , the problem of lasing without inversion

due to a strong coherent generating field.

PACS number(s): 42.50.—p

I. INTRODUCTION

The Maxwell-Bloch equations are the basis for the
analysis of many processes and problems in quantum op-
tics and laser dynamics. As is well known, the interac-
tion of atoms with a reservoir is introduced into this set
of equations [1]of the density matrix

p(0) +i~ (0) + t
[ y(t) (0)]

n', n

phenomenologically via the supermatrix of relaxation
constants R ' ', which has the simplest form in the secular
approximation

, n

(0) (0)X (tot mpkt ~~t p~~ )
, kWm

m'mn'nPn'n
I

&m'mPm'm

m =m'

(2)

Here co is the transition frequency between atomic
level m' and m, V(t) is the interaction Hamiltonian be-
tween atoms and field, w k is a relaxation rate from level

m to level k, and y ~ is a linewidth. Conversely, if we
take into account that the master equation for an atomic
system in the Born and Markovian approximations has
indeed the form (1), in the absence of any coherent field
we can say with the same success that it is the coupling
with the coherent field which was introduced into the
master equation for atomic system as a dynamical term.
In other words, the influence of the coherent field on the
interaction of the atoms with the reservoir is completely
ignored by Eq. (1). (We use the index zero in these equa-
tions to note that they are only the zeroth-order approxi-
mation with respect to the dependence of the relaxation

coefficients on field amplitude. ) As a matter of fact, such
an influence is there and its study has a long history ris-
ing from the earlier works of Redfield [2] and Argyres
and Kelly [3] on the relaxation of spin systems in nuclear
magnetic resonance. Many later papers have also been
devoted to the influence of the strong field on the relaxa-
tion process in optics [4—13].

However, the appearance of the relaxation coeScients
dependence on the amplitude and frequency of the field
has been connected mainly with the violation of the Born
and Markovian approximations. In this sense, Eq. (1)
seems to be intrinsically consistent.

Here we show that even in the Born and Markovian
approximation the coherent field influences the, relaxation
and incoherent pumping processes in atomic systems. As
a result, the structure of the relaxation supermatrix under
the action of the coherent field is essentially changed as
compared to Eqs. (1) and (2). Even in the secular approxi
mation there appear cross-relaxation terms (diagonal ele-
ments of a density matrix in the right-hand side of the
equations for off-diagonal elements and vice versa).

In Sec. II we establish the general connection between
the relaxation supermatrices of the multilevel atomic sys-
tem in the absence of any field and under the action of
the multifrequency resonant coherent field; this allows for
the possibility of obtaining an exact generalized master
equation in the presence of the field. As an illustration of
the general approach we consider in Secs. III and IV the
particular cases of the two-level and three-level systems
driven by the resonant coherent field and interacting with
the noncoherent field reservoir.

II. GENERAL APPROACH

Let us consider M-level atoms which are described by
the Hamiltonian H, and interact with the reservoir H„
via II;„,. As is well known, in the Born and Markovian
approximations, and in the absence of any coherent field,
the behavior of these atoms is described by the master
equation (1) with
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where the basis of bare atomic states
~ f„)has been used:

H, gk =Ekpk, Hl„=(E( E„—)/A
U~(t, O)BU„)(t,O) = U(t)exp —Hd—(t —t, )

and the trace has been taken over the reservoir variables
[p„(0) is the density matrix of the reservoir in the absence
of interaction with the atoms]. Now, let us suppose that
apart from the interaction with the reservoir the atoms
are driven by the resonant M —1 frequency field. Then
the Hamiltonian of our dynamical system (atomic system
driven by the field) depends on time via Hd(t)
=H, + V(t} Th.e straightforward generalization of the
traditional method of derivation of the master equation
in the Born and Markovian approximations for this case
[1] leads to the same form of the master equation

+ice ~'pm' +—[V(t),p]m'dt

XB exp H~(—t to) —U '(t) .

Here U(t) is a unitary operator of transformation to the
basis of rotating states which transforms the Hamiltonian
of the dynamical system Hd(kt) to the time independent
one: Hd = U '(t) [Hd(t) i'(d—U/dt) U ']U(t) with
U(t =0)=1. Applying twice the lemma (8) to (7) we

have
—((le)(Hd +H„)t

H;„, U t e — ' " U t t')—
(9)

= g R ~ „„(t)p„.„,
n', n

where the supermatrix R is expressed via I'„„~by the
same way as R ' ' is expressed via I'„'„~in Eq. (3) and

For simplicity we restrict ourselves to the rotating-
wave approximation (RWA), i.e., use an effective interac-
tion Hamiltonian

V(t)= —
—,
' g [( „exp( —iQ„t)p ( ) f( )~lj) ( ))

X(g ~H,'„,(t t', t)~f„—)
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X (ff( )/+H. c. ]

where 8„ is a complex amplitude of the nth component
of the field and pg( ) f ( )

is a dipole moment at the transi-
tion g(n) to f (n). This approximation, as is well known

[1], implies small values of the Rabi frequency compared
with the corresponding atomic frequency. We consider
the situation when at least one in each couple of levels ei-
ther does not interact with the field at all or interacts
only with one component of the field. [The integer func-
tions f (n) and g(n) enumerate the lower and upper lev-
els of the transition coupled to the nthe component of the
field correspondingly. ] In this case the unitary transfor-
mation matrix U(t) is a diagonal one:

Thus the only difference, as compared with the case
V =0, is the coupling Hamiltonian with the reservoir in
the interaction picture H;„,(t t, t), which is d—efined in
general by the evolution operator of the dynamical sys-
tem Ud(t, O)=Texp[[ i f+d(t—')dt'/fi]], where T is a
chronological operator, ordering the products of succes-
sive operators in accordance with the decreasing of the
time from the left to the right. In the case V =0 the evo-
lution operator takes a simple form Ud(t, 0)
=exp[( iH, t/fi)] and, as —a result, Eq. (6) becomes Eq.
(4). In order to express R via I' we use the lemma of
"effective evolution" which allows us to reduce the evolu-
tion operator Ud(t, O) acting on any hermitian operator B
to the successive operation of exp[(iHdt/A')] and U(t):

U (t)=5,exp(iS Q)tl)}1), (10)

r„,„.= y g";g'„,g"„,g', ,*r(„0)„,, (a„,—S„,Q„,+S,,Q, , )
k, k', I, I'

Xexp[it(S .Q .—S„,Q„.

S),.Q„.+S(.—Q

where S =1 if level j interacts only with the nth mono-
chromatic component of the field and j=f(n); SJ=—1

if level j interacts only with the nth monochromatic com-
ponent of the field and j=g(n) and Sf(„)=0;it vanishes
in all other cases. Substitution of (10) into (9) and in turn
(9) into (6) leads to our main formula:
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which expresses the new relaxation coeIIicients (in the
presence of the coherent field) via the old ones (in the ab-
sence of coherent field) and via the matrix of transforma-
tion from the basis of depressed states to the basis of bare
states g':

H;„,= —g "i/2vrficoi, g [(p '.ek)l1(

x(y, ,
l A„b„+H.c.], (14)

H, f =E Q, co,"=(E, E—)/A' .
J

(12)

Obviously, in the absence of the field we get the usual
master equation since in the limit 6„~0the transforma-
tion matrix becomes the unit matrix.

The coherent field action not only incorporates the
dynamical term i [V(t),p]/A to the Bloch equation as it
was done usually, but also inc1udes the action of the field
on the structure of the relaxation supermatrix, i.e., intro-
duces new nonzero elements. Moreover, all supermatrix
elements become the functions of the amplitudes and fre-
quencies of the field via the dressing frequency shift men-
tioned above transformation matrix g~. This dependence
vanishes only in a very particular case when the relaxa-
tion rates at the all transitions do not depend on the fre-
quencies of these transitions. In general this dependence
appears via (a) the shift of the energy levels; (b) the mix-

ing of the relaxation coefficients of different energy levels
coupled by the external fields; and (c) the dependence of
the efficiency of incoherent pumping process on the posi-
tion of the quasienergy levels relative to the distribution
of the energy levels of the reservoir (in particular, the
density modes and the number of photons in these
modes). This dependence can be especially important
when we are interested in self-consistent lasing problems
and hence have to add the equations for the field ampli-
tudes

8„+i(0„—co„)A„+
2T.

nPg(, n) f(n)++n

co
(13)

to the set of equations (5). Here Q„and T, are the cavity
resonant frequencies and relaxation time, E is an atomic
density, and co is the light velocity. The changes in the
master equation structures as well as the nonlinear
dependence of the relaxation supermatrix R, even when
weak (for example, if it is of the order of the ratio of the
Rabi frequencies to the transition frequencies), introduces
a new nonlinearity into the set of generalized Maxwell-
Bloch equations (5) and (13), and therefore can substan-
tially influence the nonlinear dynamics of systems under
consideration.

III. T%'(3-I.KVKI. SYSTEM

In order to illustrate the general results let us consider
the case of a two-level system driven by a strong field
with a Rabi frequency a and interacting with the field
reservoir.

In the representation of the second quantization in the
dipole and RWA approximation the interaction Hamil-
tonian is

I'~pi„(oui„) = J,l
A k l'))(~g)

2 o

x I n (co„)6(co,„—co„)

+ [n (coq)+ 1]5(o~i„+coq) ]

X dQ)i ) (15)

where A ~,,„=4~p,pt„ l ~i„ l /3«o At, = A yarn

Einstein coefficient of the spontaneous emission in the
absence of the coherent field, g(co&„) =cok (~l„)/
co&„(desk /dk) is a dimensionless parameter characterizing

the distinction of the mode density of the reservoir from

the vacuum (in vacuum )I(r~t„)=1), n (cok ) is the average

number of photons in the k mode of the reservoir, and

l
A & l

=1 for running plane waves. In Eq. (15) the Lamb

shift has been neglected. The transformation matrix to
the basis of dressed states is

—se'&
0C=

&e'+l l'

aS
s=, s=sgn5, a= lale

&e'+ lal'

e=-,'(lnl+&S'+4lal'), S=~» n. —

(16)

If we substitute (1S) and (16) into (11) and then (11) into
(5) we immediately obtain the generalized set of the Bloch
equations. For simplicity we write these equations in the
secular approximation. This means that we keep on the
right-hand side only the terms which give the same time
dependence as we have on the left-hand side supposing

that ph„=o l„e '", where o.h„are the slow varying func-

tions of time in the scale co&„'. In the absence of the
coherent field, this approximation implies mell-separated
levels (co ~ »y ~ ) and leads to the simplest form (1)
to (2) of the master equation because the relaxation super-
matrix (3) or (4) does not depend on time. without this

approximation, the cross-relaxation terms (i.e., off-

diagonal density matrix elements p," in the equations for
populations p;, and vice versa) could appear in the master

equation (1) and (5) even under the RWA. In the pres-
ence of the field, R depends on time and as a result the
structure of the Bloch equations is essentially changed.
They are

where p - is a dipole momentum at the transition j~j';
j,j =1,2; 6& is an annihilation operator in the mode k;
ek is a unit polarization vector; and 3k is an amplitude of
the co& mode at the atom's position. Then in the Born
and Markovian approximation, and in accordance with
(4), we have, as is well known,
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(17)

0 21
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2

d dp

T1
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If we neglect everywhere the frequency shift, Eq. (17)
returns to the traditional Eq. (1). Strictly speaking it is
cumbersome to define the order of corrections in Eq. (17)
as compared to (1). Taking into account that

lsl, lcl, lp„ I
& 1 we can estimate it very roughly as

co&&/F2&. However, taking into account that the

coefficients c and s vary from 0 to —,
' and from 1 to —,

' with

the increasing of the field amplitude, and that in the ab-
sence of the field cross-relaxation terms were absent, and
that apart from comparison with the old relaxation terms
we have to compare the additional terms also with the
dynamical terms 02,a*, we can conclude that our estima-
tion certainly is not correct in general. The only correct
way to estimate the order of corrections would be to solve
the Eq. (17). The influence of the additional terms can be
quite different depending on the problem under con-
sideration: the steady-state regime, its stability analysis,
transient effects, the behavior of atoms driven by the field

or self-consistent laser problem, etc.
However, to demonstrate the possibility of new effects,

we consider the atoms behavior in the simplest resonant
case when ran =1 and n (Q+ jcoz&) =const. It is worth not-

ing that even under these conditions, moreover even at
n (Q+j co») =0 for large Q+ jcoz„ field-dependent relax-
ation rate depends on the frequency [see Eq. (18)] and
hence on the amplitude of the coherent field a. Keeping
the linear and second-order terms with respect to
x =2la

I /co2~ we obtain from (17)

021 dp
c'r2, = — iad ——x(3+x )e'~

T2 2T2

a!"=a (n =0),J

co&& =S+5 +4lal

(18)

aj=
3 (Q+jc02]) 7/(Q+jc02, )[n(Q+jm2])+ —,'],

C021

z, Re(e' oz&)
3x e

2

d ——(d —do) (1+—', x )
1

+4Im(a o2&) —x(3+x )Re(e'~o'2&)/T~,

(21)

There appears the cross-relaxation terms, i.e., terms
which are proportional to 0.

21 and 0.,2 in the equations
for p» and p22 and vice versa. The elements of the relax-
ation supermatrix depend on the amplitude and frequen-
cy of the field via the dependence of the mode density g,
number of photons in the modes, transformation
coefficients c and s, as well as via the coefficient
(Q+ jco2, } . In the absence of the field (a=0) we obtain
from (17) the usual Bloch equations in the form

&21 &21(W 21 +w 12 ) /2,

p11 W12p11+ W21p22

P22 21P22+ 12P11

(19)

where w2&
= A2&[n(coq&)+ I], w&2= A2&n(co )2, or taking

into account p11+p22=1, w21=p11/T1, w12 =p22/T1,(o) —(o)

(wz&+w, 2)/2=1/2T, =1/T2, d=p22 —p», and
do A21T1 in the form

and the steady-state solution of (21) is

021 . dp
iT d — —(3—8x ),a 2

21
dp

I+4lal'T) T~+»x'(lal'T) T~+-', }

(22)

Thus in a steady state there is a saturation of population
difference but with a slightly reduced saturation intensity.
But it is important that the magnitude Reo.2, /a, which
characterizes the dispersion, is not zero as it was in Eq.
(1). It was noticed also in Refs. [4,5] on the basis of a
different approach. If we look to the origin of this term
we can see that it appeared because we took first the reso-
nant case 5=0 and only then the limit ca~0. If we use
the opposite sequence (first take a~O and then the limit
5~0, supposing a &&5) we would get the usual result.
This means that under the action of even a weak field
there appears a dispersion (frequency shift) in the case of
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very small detunings (5 «a). This effect has been com-
pletely ignored in the usual Eq. (1). R3232 = R 2222 +R 3333

R 2121

R 1111 2222

IV. THREE-LEVEL SYSTEM

Using the expression for unperturbed coefficients (15)
as well as the connection between perturbed and unper-
turbed relaxation supermatrices (11) and following the
same procedure as for a two-level case, we obtain a mas-
ter equation in the secular approximation for three-level
atoms driven by the monochromatic Beld resonant to the
transition between upper levels 2 and 3:

P22+2 lm(a32a ) R221]P]1+R2222P22

+R 2233P 33+2 Re( R 2223P23 ),
p33 2 Im(cr32a*)=R33]]p]'1+R3322pzz

R»» +R 3333R 3131

SC

+w]3(cU2])

R3222=e '~—[(c —s )[W23(Q) —
W32(

—0)]

+s [W23($23+0) W3 2( cd 2 0)]
C [W23(&32+0) W32(&23 fl)]

(24)

+R»»p»+2 Re(R»z, pz3),

32 ~a32 23 3232 32 321]P]1

R 3222P22+ 3233P33+R 3223 +23

CT 3 1 l (X0 2 1
+R 3 1 3 1 0 3 1 +R 3 1 2 1 0 2 1

+21 ~~+21 + +31+ 2121+21+ 2131~31

(23)
R3z»=e ' —[(s —c )[w32( —0)—W23(Q)]

23(~23 ) W32( 32

+C [W32(&23 0) W23(c032+0)]

+ Mz (]N 2]+0) W21(M]2+0) I

2 2

R3223 e ' [2W»( —0)+2W23(fl)

—i (co31
—O)t

P21 +21 ~ 32

R2211 —C W]2(&2] 0)+S W]2(&31 ),2 — 2

2 — 2

2222 ( 3322 + 1122 )

R 3333 ( R ]]33+R 2233 )

R]]zz =C wz](cU]2+0, )+s Wz](cU]3 ),2 2

R]133 C W3](cc]]3)+S W3](cU]2)

R3322 C W23(cU32+fl, )+S W23( 23 Q)

+2s c wz3(A),

W32(&32 0 ) W23(&23+ 0 )

W32(&23 0) W23(&32+0)]

R2, 3, =e '~—[(c —s )w23(Q) —
C W23(cU32+0)

+ s w23(c023+ 0 ) ™21(&]3+0 )

—wz, (cU]2+0)I,
fy SC

R3121
2

[W3](@]2) W3](~]3)

+(C' —s )w32( —0)—c w32(cU23
—0)

+s M32(cU32
—fl)]

3

Rzz33=2s c (W3z
—Q)+s w32(cU32 0)

+C W32(]82, —0)

Rzzz3=e '~—[(c —s )[w3z( —0)+W23(Q)]

w k(cU;, )= .

CONJ

~mk

mk
~mk

3

21(co; )n( )coif cU;, )0,

21(cU,, )[n(cU;)+1] ]f cU;J &0 .

+S [W32(CU32 0)+W23(CU23+0)]

—c [w32(cU23 0)™23(cU32+0)]
+wz] (co]3+0)—wz] (co]2+0)I,

R3,23=e '~—[(s —c )[w23(Q)+W32( —0)]

+C [W32(&23 0)+ W23(&32+ 0) ]
—S [W32(CU32 0)+W23(CO23+ )

—W» (~»)+ W» (~»)1]

The first three equations of the set (23) describe a two
level system (levels 2 and 3) with different decays from
the levels 2 and 3 if we substitute everywhere
P» = 1 —

p22 P33 In our case the dressed frequencies are
cU32=S3/|]'+4lal', coz] =cU3] (h+CO32)/2, and cU3] =
co3] —( b —

@32) /2.
One can see that relaxation rates depend not only on

the ratio of the Rabi frequency to the frequency of the
resonant transition (as was the case in a two-level prob-
lem) but also on the ratio of the Rabi frequency to the
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frequency of the adjacent transition. Even in the Marko-
vian approximation and the RWA the large values of this
parameter are allowed. Physically it corresponds to the
situation when the splitted sublevels (as a result of an ac
Stark effect) cross the unperturbed atomic levels adjacent
to the resonant one. Consequently, the scheme of the re-
laxation processes and the structure of the master equa-
tion are essentially modified. It leads to new field-
dependent relaxation effects in a three-level systems (in
particular, under definite conditions to the large value
Re[a 2iexp( i/—) ] ——,', characterizing resonant disper-
sion }. These effects will be considered in detail elsewhere.

V. DISCUSSION

We demonstrated that even in the simplest Born, Mar-
kovian, RWA, and secular approximations there is an
influence of the coherent field on the relaxation processed
in the atomic system. The important parameter which
often (but by no means always) defines the order of the
additional terms in the master equation, as compared to
the traditional relaxation terms, is the ratio of the Rabi
frequency to the frequency of the resonant transition
( ~a~ /co2, ). Since we used the RWA, secular, and Markov
approximations we have to consider this parameter as a
small one. However, we should note that (a) for a circu-
lar polarized transitions we do not need the RWA if the
magnetic sublevels are well resolved, (b) the major formu-
la (11) does not imply a secular approximation and hence
we can easily avoid it also in concrete applications, (c)
non-Markovian terms do not influence some steady state
processes [14], and (d) in a multilevel system (beginning
with the three-level one) there is a new important param-
eter which is a ratio of the Rabi frequency to the frequen-
cy of the adjacent transition. This last parameter also
defines the order of the corrections and in comparison
with ~a~/co&„ it can be quite large. Apart from that, the
influence of the coherent fields on the relaxation process-
es is important because (a) it introduces a new nonlineari-
ty into the Maxwell-Bloch equations and (b) it essentially
changes the structure of the master equation. As a result
it is difficult to define the order of the corrections in ad-
vance (i.e., before the solution of the master equation).
Essential corrections are possible even when ~a /co2, && 1.

It is worth mentioning that all the corrections in the
master equation which are due to the influence of the
coherent field on the relaxation supermatrix depend on
the form of the Hamiltonian which we have chosen for
the interaction of atoms with the field reservoir. Every-
where above we used the following form of the Hamil-
tonian: H;„,= —d C. If we would use the form
H;„,= —ep. A/mc, then instead of the coefficient
"l/ 2trcok in Eq. (14) we had the coefficient +2m/cokco2&.

It does not influence, in fact, the relaxation coefficients in
the absence of the field I' 'I„since anyway we have

5(co2i+cok ) under the integral on the right-hand side of
Eq. (15}. But it does influence the relaxation coefficients
under the action of the field since we have to change
everywhere co& (but not co2, }by the dressed frequencies in
accordance with Eq. (11). As a result, in a two-level sys-
tem the expression for a. (18) will contain the coefficient

(Q+jcozi)/co2i (for H;„,= e—p A/mc) instead of the
coefficient (Q+ jco2, ) /co2„which we had for

H;„,= —d C.
In particular, in the last case if we would keep just the

linear terms with respect to the ratio co&, /Q we would ob-
tain three times smaller coefficients as compared to the
case H;„,= —ep A/mc. [Let us also note that in this
linear approximation at n(co) =const, rl(co) =1, the relax-
ation coefficients depend only on the amplitude but not
on the frequency of the field. ]

However, the above-mentioned difference becomes
nonessential when the scale b,co of the functions n(co)
and/or rl(co) is much smaller than co2i and an increasing
parameter (co2, /Aco))) 1 defines a more abrupt behavior
of these functions as compared to the smooth behavior of
the coupling constants (co or co). As a result, strong
effects which are due to the dependence of relaxation
coefficients on the coherent field via n(Q+jco2, ) and
rl(Q+ jco2, ) play the dominant role.

Finally we found a generalized set of Maxwell-Bloch
equations which possesses a new nonlinearity. Many pro-
cesses in quantum optics and laser dynamics will be
influenced by these results. One important application
refers to the problem of amplification without population
inversion in schemes involving strong coherent pumping
[15—17]. Until now the analysis of this problem has been
based on the traditional set of Maxwell-Bloch equations.
Since the action of the coherent pumping leads to the ap-
pearance of new cross-relaxation terms in the master
equation, it can essentially modify the conditions of in-
versionless amplification.

It is worth mentioning once again that the connection
between the relaxation supermatrix in the presence and in
the absence of the field has been obtained in the Born-
Markovian approximation. At the same time the theory
of the interaction of the atomic system with the reservoir
has been developed beyond this approximation. It would
be of interest to generalize this situation especially as it
concerns our main result Eq. (11).
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