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Cooling and localization of atoms in laser-induced potential wells
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We discuss theoretically the cooling and localization of atoms in deep potentials induced by a
far-off-resonant standing-wave laser. For a two-level atom cooling occurs via a Sisyphus mechanism.
For a A system we discuss a Raman cooling scheme similar to the one proposed for laser cooling in
ion traps.

PACS number(s): 32.80.Pj, 42.50.Ar

I. INTRODUCTION

Laser cooling of neutral atoms is typically accom-
plished in optical molasses, employing a con6guration of
counterpropagating laser beams. The role of the laser is
twofold: it provides a damping mechanism, and leads to
the formation of optical potentials (the ac Stark shift of
the atomic ground states). Energies achieved in these ex-
periments can be lower than the depth of the optical po-
tential, so that significant numbers of atoms are trapped
and localized in the minima of the wells. Atomic mo-
tion in the laser-induced potentials is quantized. Raman
transitions between the vibrational levels in the optical
potential (band structure) have been observed in recent
experiments [1], and have been studied theoretically in
Refs. [2,3].

The purpose of this paper is to investigate a config-
uration for laser cooling and strong atomic localization
where two lasers, a "trapping laser" and a "cooling laser, "
are employed. The role of the trapping laser is to provide
"deep" potential wells for the atoms without, however,
scattering photons; this is achieved by strongly detuning
this laser from the atomic resonances [see Fig. 1(a)]. The
depth of the potential will be proportional to the light
intensity of this laser. In contrast to a "dipole trap" [4]
where a nonresonant running-wave laser is focused down
to a few wavelengths, we will study a situation where the
trapping laser is a standing-wave configuration (which
leads to periodic potential wells on the scale given by the
laser wavelength). The purpose of the second laser is to
provide cooling of atoms in the optical potential formed
by the trapping laser. This laser will be tuned near an
atomic resonance transition.

In the simplest case of an atomic transition de-
scribed by a two-level atom, the ground state ~g)
and excited state ie) of the atom in the nonresonant

standing-wave (SW) light field of the trapping laser

ET'(z, t) = ZT'(z) eTe ' r'+c c w. i.ll experience a
position-dependent ac Stark shift,

V*(z) = a*(~oT)ET(z) = n'(urT')CT sin (kT z)

(i =g e) (1)
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(see Fig. 1). Here us, (uT) is the dynamic atomic polar-
izability of the atomic ground state (excited state) at the
frequency of the trapping laser urz, tT (z) = ZT sin(kT z)
is the position-dependent laser amplitude. The ac Stark
shift V, (z) (i = g, e) provides an optical potential with
periodicity of half of the wavelength AT/2 (where kT
2vr/AT ) which depends on the internal state of the atom.
The corresponding atomic Hamiltonian is
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FIG. 1. (a) Dressing and cooling scheme for a two-level

system. (b) The laser-induced spatially varying Stark shift of
the ground and excited states are plotted for v, ) v~.
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a=g, e
(2)

where the first term is the kinetic energy of the atom.
The depth of the potential is proportional to the laser
intensity. We note that, depending on the sign of the
atomic polarizabilities cx; ) 0 (( 0) (i.e., depending on
the frequency ~z ), the minima of the potential V, (x) will
be at the nodes (antinodes) of the standing-wave field.
Laser cooling by the second laser, which is near resonant
with the ~g)

—~e) transition, will localize the atoms near
the potential minima. Thus localization near the nodes of
the trapping field has the advantage that light scattering
involving the trapping beams (a heating mechanism) will
be strongly suppressed.

In the initial stages of the cooling process the atoms
will have a homogeneous spatial distribution on the scale
of the wavelength of the trapping laser. A typical con-
figuration for the cooling laser would then consist of a
pair of counterpropagating light waves (SW) similar to
the laser configurations in optical molasses. In contrast,
a running wave (RW) would lead to an unbalanced radi-
ation pressure. In the final stages of the cooling process
when the atoms are already well localized near the po-
tential minima, the details of the laser configuration (SW
vs RW) are unimportant. In our models in Secs. II and
III, which describe the final stages of cooling and local-
ization, we will assume for simplicity a RW cooling laser.
Quantum Monte Carlo simulations for a SW configura-
tion will be discussed in Sec. IV.

To the extent that the atoms are well localized near
the potential minima (Lamb-Dicke limit) we can approx-
imate the potentials by harmonic oscillators,

V;(z) n;((ur)tzkzz = —Mv;z (i = g, e)
2

(assuming a; ) 0). The oscillator frequency is

v;= 2o.; ~z E'gkz M i=g, e (4)

which scales with the square root of the trapping laser in-
tensity. In the harmonic approximation the energy spac-
ing between the vibrational levels is hv;, and the width of
the ground-state wave function (the optimum achievable
atomic localization) is bz = 5/(2Mv~) (assuming that
the dominant parts of the atoxns are in state ~g)). We will
show below that for alkali atoms the typical localization
that can be achieved is on the order of a few percent of
the optical wavelength for trapping intensities of a few
MW/cm [5].

Laser cooling by a running-wave laser for the two-level
system described by the atomic Hamiltonian (2) is remi-
niscent of laser cooling of trapped ions in the Lamb-Dicke
limit, i.e., in the limit where the localization of the atoms
(as given by the ground state of the harmonic oscillator
potential) is much smaller than the wavelength of the
cooling laser [6]. Thus one expects that laser cooling
mechanisms known from ion traps, in particular side-

band cooling, can be applied to the present configura-
tion. Sideband cooling in an ion trap allows cooling of
ions to the vibrational ground state [6,7]. The condition
for sideband cooling is that the trap frequency is larger
than the radiative linewidth I' of the atom so that the
motional sidebands of the ion in the trap are well resolved
(strong-binding limit). Tuning of the cooling laser to the
(well-resolved) lower motional sideband then leads to op-
tical pumping to the ground state of the trap. In the case
of optical potentials [compare Eq. (I)] the strong-binding
limit will be reached for suKciently high intensities of the
trapping laser (typically a few MW/cm ) [5]. Thus to the
extent that the optical potential (1) can be made much

deeper than in the usual optical molasses, in the present
scheme we expect better localization of the atoms and a
larger fraction of atoms in the vibrational ground state.
The important diH'erence between laser cooling of neutral
atoms in laser-induced potentials (the model studied in
this paper) and laser cooling in an ion trap is, however,
that for an ion trap the ground and excited state poten-
tials are identical, vg = v„while in the present situation
we typically have v~gv, due to different dynamic polar-
izabilities of the states. We will show below that for the
model studied in this paper, laser cooling can only be ob-
tained for v, & v~ (v, ( v~ leads to heating). For v, ) v~
we find a novel "Sisyphus cooling" mechanism which pro-
duces cooling rates much faster than those known from
laser cooling of trapped ions. In addition, for v, ) vg a
detuning of the laser to the blue side of the atomic tran-
sition will be shown to result in accumulation of atoms in
a few excited states of the trap, corresponding to prepa-
ration of nonclassical states of motion.

The sideband cooling condition for a two-level atom,
vg, ) I', requires high trapping laser intensities; in the
case of ions this condition can only be fulfilled with
metastable levels with long radiative lifetimes [6,7]. In
the context of ion traps, Raman cooling schemes have
been discussed where Raman transitions are induced be-
tween two atomic ground states [8], i.e. , two ground state
levels play the role of the ground state ~g) and excited
state ~e) of the two-level system discussed above, with
the optical pumping rate I' playing the role of the ra-
diative decay rate I'. Since the optical pumping time for
Raman transitions can be much longer than the radiative
lifetime, the sideband cooling condition vg, ) I' is easier
to satisfy in this case. A similar Raman scheme can be
employed in the present case of laser-induced potentials,
inducing, for example, Raman transitions between dif-
ferent Zeeman levels or hyperfine-structure components
of the atomic ground state. For alkali atoms the ground
states are s states. In this particular case the ac Stark
shifts induced by the trapping laser are identical (within
a few percent) so that v~ = v„and we have a complete
analogy to Raman cooling in an ion trap.

The paper is organized as follows. In Sec. II we discuss
cooling mechanisms in laser-induced potentials within a
two-level model in the harmonic potential approximation.
Section III is devoted to Raman cooling. In Sec. IV we

compare the results of the harmonic trapping potential
approximation with a full quantum Monte Carlo simula-
tion periodic laser potential.
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II. T%'O-LEVEL SYSTEM

A. The model

q, = k /(2Mv, g)

is much smaller than 1. This approximation neglects tun-
neling between neighboring potential wells and e8'ects
near the barrier of the trapping potential. In Sec. IV
we will compare the results of the present model with
quantum simulation results of the full quantum master
equation based on the potential (1) and a standing-wave
cooling laser. The atomic Harniltonian describing the
motion in the trapping potential in the presence of a cool-
ing laser is (h = 1)

2

H~ =
I g )( g I

+ —mv'z'
W

+I e)(e I
+ —mv,'z'p' 1

2m 2

——
(I ~ )( ~

I

—
I »(g I)2

0
+—, (e*"*I~ )( g + e '"*I g )( e I) (6)

with Ii) (g atomic projectors, 6 = at —u, g the laser-atom
detuning, and 0 the Rabi frequency for the cooling laser.

The interaction of the atom with the vacuum modes
of the radiation (spontaneous emission) can be described
in terms of a master equation,

p = i (H,s p —pH, &) + L"—p

with p(t) the reduced atomic density operator and H,~ =
H~ —iI'/2I e )( e

I
an e8'ective non-Hermitian Hamilto-

nian which includes the radiative damping. The term

l. @=-A =r
2 1

duN(u)I g )( e Ie
'""*

p
e'""

I
e )( g I (8)

describes the return of the atomic electron to the ground
state with each photon emission, including the associated
momentum transfer; N(u) = 3(1 + u )/8 is the angular

We consider a two-level system with ground level Ig)
and excited level Ie) (Fig. 1). The transition frequency is
~ g. The cooling laser light is assumed to have the form
of a traveling wave where the positive frequency part of

-(+)
the electric field is given by E, (x, t) = Ee'l"* 'le with
frequency w, k = 2vr/A the wave vector with A the wave-

length of the laser light, and e the polarization vector.
In this section we discuss a model where the "trapping
laser" induced periodic potential (1) is approximated by
harmonic oscillator potentials with oscillation frequencies
vg and v, for the ground and excited states, respectively.
%e expect this to be a good approximation in the final
stages of the cooling process when the atomic center-of-
mass distribution is well localized on the scale given by
the wavelength A~ (Lamb-Dicke limit), i.e. , the dimen-
sionless parameter il, g defined by (5 = 1)

distribution of the emitted light [9].
In the following subsections we discuss the quantum

master equation with adiabatic elimination of the ex-
cited state, a semiclassical picture of the Sisyphus cooling
mechanism [10] in the optical potential with vsgv„and
the numerical results.

B. Quantum master equation: Adiabatic elimination
of the excited state

For a solution of the quantum master equation (7) it is

convenient to work in a mixed basis of harmonic oscillator
eigenstates In) of the ground state potential, and In),
for the excited states (n = 0, 1, . . .). These states are
defined by

ata, In),. = nIn), (i = g, e),

where at and a~ are raising and lowering operator for the

ground state harmonic oscillator (frequency vs), and at
and c, are the corresponding operators for the excited
state (frequency v, ). The two sets of operators at „as„
and the eigenstates In), are related by a Bogoliubov

transform (see Appendix A).
The dipole coupling between the ground state and ex-

cited state involves matrix elements of the form

, (mIe'"*In)g ——,(mIn)g + i, (mIkiIn)g + . (10)

The operator exp(iki) describes the momentum trans-
fer associated with the transition. In the Lamb-Dicke
limit the exponential can be expanded. The first, sec-

ond, etc. terms on the right-hand side (RHS) of Eq.
(10) correspond to terms that are zero, first, etc. , order
in the small Lamb-Dicke parameter q (& 1. For an ion

trap we have vg = v, and thus In) = In), , so that the

first term on the RHS of (10) is a Kronecker delta 8

and only the higher order Lamb-Dicke terms will couple
states with different motional quantum numbers num.
As a consequence, for an ion trap there is no cooling in

zeroth order in the Lamb-Dicke parameter; the coolirig
rate is proportional to g, and is thus much slower than
the time scale of the internal transition (I') which is the
basis for the adiabatic elimination scheme employed iri

Ref. [6].
In the present case (vggv, ) there is a zeroth-order cou-

pling (overlap) between the even (odd) states (,(mIn)g$0
for n = m, m 6 2, . . .), while matrix elements connecting
the even to the odd oscillator states are smaller by a fac-
tor g. Thus in the master equation the even (odd) states
are coupled by rates comparable to the time scale of the
internal atomic transition rates ( 1/I'), while the cou-

pling between even and odd states occurs on a time scale
of order g I . This fast time scale of cooling (in order g )
is related to the (induced) Sisyphus cooling mechanism

discussed in Sec. II C and does not exist in this form in

ordinary ion traps.
In order to And the steady state solution of master

equation (7) one can use a truncated basis of Fock states.
In Fig. 2 we have plotted the final energy of the atom as
a function of the Rabi frequency for v~ = 3I', v,. == 6I .
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and 6 = —5I'. Note that the lowest energies are found
for small Rabi &equencies, i.e., for low intensities. In this
case the saturation parameter s = 0 /2(A +I' /4) «1,
and therefore the excitation rate &om the ground to the
excited state ( sI') is much smaller than the sponta-
neous transition rate I'. This allows us to eliminate the

excited state adiabatically. Furthermore, we assume that
the excitation rate is slow on the time scale of oscilla-
tions 8I' (( v~, which allows a secular approximation by
decoupling trap coherences &om trap population terms
[11]. The result is a rate equation for the populations
"-=, ( I( I (t)l )I )„

2.( I
."

I ),
4 -(E . —E —6)'+ —'

2+'„--,(n
~

e-*""*
~

m ).(m ~

e'"*
~

t ),
~ r II

4 i, (E .—E,, —6) —t2

The Grst term on the RHS of this equation is a loss
term for level ~g) ~n) due to transitions to states ~g) ~m)
while the second term describes the population trans-
fer ~g)~l) ~ ~g)~n) by absorption of a laser photon

(~g) ~l) ~ ~e)]m), ) followed by a spontaneous emission
where a photon is emitted in the direction u = cos 0.
In writing this equation we have not (yet) explicitly per-
formed the Lamb-Dicke expansion although the assump-
tion of a harmonic trapping potential implies this ap-
proximation.

Figure 3 shows results for the trap populations II„
and the corresponding spatial distribution P(x)
(x~(g~p(t) [g)]x) which were obtained by numerical solu-
tion of the rate equation (11). We note that for low
intensities the steady state is independent of the Rabi
frequency of the exciting laser. The trap &equencies in
Fig. 3 are vs = 1.5I', v, = 3I'. For b, = —4I' & O (red
detunings) we find that the populations obey approx-
imately a Maxwell-Boltzmann distribution [Fig. 3(a)].
In the limit v, ) v~ ) I' practically all of the pop-
ulation is in the trap ground state. This situation is

0.8

0.6-
0.4-
0.2-

4 6 10

-10 -8 -6 -4 -2 0 2 4 6 8 10

X/Xp

0.3

reminiscent of sideband cooling in ion traps, where the
atom is in the state ~n = 0) ~g) and can no longer be ex-
cited [6]. In our case this corresponds to laser detun-
ings 6 —vz, —v, . The spatial distribution in this
case is a Gaussian [Fig. 3(b), solid line] with xo the
size of the ground state. For b, = I' (blue detuning) we

5.5 0.2- (c)

0.1-
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FIG. 2. Final energy as a function of the Rabi frequency
obtained by solving numerically the full master equation. Pa-
rameters are v~ = 3I', v, = 6I', and E = —5r.

FIG. 3. Population II of the oscillator levels of the ground
state (a),(c) and position distribution (b),(d) for b, = —4I'

(a),(b) and b. = 4I'(c),(d) and v, = 3I', vs =1.5I'. The scale
of position is in units of xo ——bx(n = 0) (the ground state
of the harmonic oscillator in state ~g)). Dashed lines in (b)
and (d) are the semiclassical result obtained by simulating
the rate equations given in Sec. II C.
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have heating for the low-lying trap states and cooling for
the higher-lying states (see also the Sisyphus picture de-
scribed in Sec. II C). This is re8ected in the non-Maxwell-
Boltzmann distribution of Fig. 3(c). We see that the
corresponding spatial distribution [Fig. 3(d), solid line]
has a multipeaked structure that refiects the spatial dis-
tribution of excited harmonic oscillator eigenfunctions.
These oscillations are not present in the spatial distribu-
tions obtained in a semiclassical approximation (cf. Sec.
II C) and thus represent quantum features ("preparation
of nonclassical states of motion"). By modifying the pa-
rameters one can obtain a distribution that is sharply
peaked at a certain n quantum number and in this sense
prepare an approximate (excited) Fock state of motion
in) (n & 0).

Red laser detunings and low Rabi frequencies lead to
the lowest temperatures and thus optimum localization
of the atoms in the potential wells, while larger Rabi
frequencies lead to a faster cooling rate (for a discussion
of the intensity dependence refer to Sec. II C). In terms
of oscillator eigenfunctions an estimate of the localization
is given by

((")+-).
fAvg

6 (z) = 4 ——m(v —v )xl 2 2 2
C g

I+) = sin 8(x) Ig) + cos 8(z) Ie),

I

—) = cos 8(z) Ig) —sin 8(x) Ie),

(15)
(16)

with

&'(z) 7r
cotan20(x) = — 0 & 0 &—

0 2

In this basis, the Hamiltonian can be written as

resulting from the different oscillation frequencies for the
ground and excited state [see Fig. 1(b)]. The situa-
tion described by the Hamiltonian (12) is reminiscent of
the well-known Sisyphus-type cooling in optical molasses,
where the spatial dependence of the Rabi frequency pro-
vides an effective potential in which the atom is cooled
[10]. In the present situation, however, this familiar spa-
tial dependence of the Rabi frequency is replaced by a
position dependence of the detuning. In order to give a
physical picture of this cooling mechanism, we use the
same approach as that for optical molasses. We first di-

agonalize the Hamiltonian (12) using the dressed atom
basis,

The ground state as a minimum-uncertainty state gives a
lower bound to the possible localization. For alkali atoms
and trap frequencies vg of the order of I', the localization
results in about 1% of the optical wavelength. Finally, we
wish to stress the fact that bx is inversely proportional
to the square root of the trapping laser intensity.

+v+(*) I+)
p'

(+ I+ + v-(*)
I
-)(-

I2m

where the dressed-state-dependent potentials are

C. Semiclassical treatment: Sisyphus cooling

In contrast to the well-known cooling mechanisms in
ion traps (see the Introduction), the fact that the trap
frequencies of the ground and excited state are different
leads to a new type of cooling, similar to Sisyphus cool-
ing of atoms in a standing light wave [10]. This mecha-
nism does not depend on the momentum exchange due
to photon recoil. We describe qualitatively this cooling
mechanism from the semiclassical point of view, where
the position and momentum of the atom are described
as classical variables.

The Hamiltonian part of the interaction neglecting
photon recoil [i.e. , in zeroth order in g as given in Eq.

Vg = —mv z + —QA'(z)z+ Oz.
1 2 2 1

2 2

dIIy
dt

= -r, (z)II, + I', ,(x)11,

dO(z)
(P+, +P , +). ——

dx
(20)

Here

I'+ (z) = I'cos [0(x)],
I' +(x) = I sin'[0(z)]

The dressed state picture is particularly suited for sit-
uations in which gb, '(z)z + Az )) I'. In this case, one
can perform a secular approximation in the equations for
the dressed-state populations II+ and II, obtaining

+ mv * —
(I ~ )( ~

I

—Ig)(g I)
&'(*)

2m 2 2

+ 2(l ~ )(g I+ I g)( ~ I) (12)

2 v, +v
2

and a position-dependent detuning

Here, we have defined an average trap frequency

are the transition rates due to spontaneous emission be-
tween dressed levels, and v is the velocity of the atom.
The last term in Eq. (20) expresses the possible modi-
fication of the dressed-state populations due to the spa-
tial variation of the dressed levels, and is usually termed
nonadiabatic kinetic coupling since it describes the pos-
sibility of changing from one dressed state to the other
in the absence of spontaneous emission. As in the case
of a free particle, and for the qualitative picture given in
this section, we omit the nonadiabatic kinetic coupling in
the evolution equations of the dressed-state populations



49 COOLING AND LOCALIZATION OF ATOMS IN LASER-. . . 4881

(the validity of this assumption is discussed in Appendix
B). Hence, we finally get a rate equation for transitions
of the atom between diH'erent state-dependent potentials
(bipotential motion).

We have plotted in Figs. 4 and 5 the trapping poten-
tials V~, as well as the transition rates as a function of
the position for v, ) v~ and two situations of interest:
4 & 0 (Fig. 4) and b, ) 0 (Fig. 5). From these figures
the cooling process can be explained as follows. In the
first case (b, & 0), when the atom is in the state

~

—) it
is preferably transferred to the state ~+) when it is close
to the position x —0, since the transition rate I' + is
maximum at this point (note that it is precisely at z = 0
where the state

~

—) is more "contaminated" by the in-
ternal excited state ~e)). On the other hand, once the
atom is in ~+) it is preferentially transferred to

~

—) for

~z~ ) 0, since I'+ is an increasing function of z2. As
can be seen from Fig. 4, in a cycle

~

—) ~ ~+) m
~

—) the
atomic energy decreases, and therefore the atom is cooled
very eKciently. This is analogous to the well-known Sisy-
phus mechanism found in polarization gradient cooling
[10]. In the case 6 ) 0, and if the ion is oscillating with
high energy, the same argument applies. However, at the
end of the process (low energies), when the amplitudes
of the oscillations are close to the avoided crossing be-
tween the two potentials, the situation is reversed: now
the atom climbs a less steep potential hill when it is in

~+) rather than when it is in
~

—), and therefore the atom
tends to heat up. Consequently, the atom tends to oscil-
late with the amplitude corresponding to the position of
anticrossing of the two potentials. We note that this is
what also results &om the quantum calculation Sec. IIB
[see Fig. 3(d)]. However, the wiggles appearing in the
6gure cannot be explained within this semiclassical pic-
ture; they reQect the node structure of the quantum me-
chanical wave functions of the harmonic oscillator states.

0
x (arb. units)

FIG. 5. Same as Fig. 4 with a blue detuned laser (b, ) 0).

Using similar arguments one can show that cooling is not
possible for vg & v„since for sufBciently high energies
the potential V (z) ) V+(z) (z ~ oo) and therefore the
transitions from ~+) ~

~

—) also increase the energy of
the atom.

Following Ref. [15], we have performed Monte Carlo
simulations of the rate equations (20). Results are plot-
ted in Figs. 3(b) and 3(d). Note that in the red detuning
case, the result is basically the same as that obtained
with a quantum calculation. In contrast, for positive de-

tunings, the quantum calculation displays wiggles in the
position distribution, which are absent with the semiclas-
sical model.

We wish to stress the fact that this cooling mechanism
does not depend on the transfer of the recoil energy due
to atomic transitions, and therefore the cooling can be
very eKcient provided transitions between the dressed
states take place very rapidly. The above qualitative pic-
ture permits an estimate of the cooling time (see Ap-
pendix B). As shown in the Appendix, in the low ex-
citation limit 0 & ~b,

~

the cooling rate is proportional

0.04
x10-5

3

0.02- 0-

V
a5

ccj
-0.02-

0 50 100

n =6r

Q=12I
0
-3 -1 0 1

x (arb. units)

FIG. 4. Dressed state potentials (upper panel) and transi-
tion rates (lower panel) as a function of position for v, ) vs
and a red detuning (b, & 0). The solid (dashed) lines cor-
respond to the potential of state ~+)(~—)) and the transition
rates I'+, (I' +), respectively.

Q =20I
-0.04

0 10 20 30 40 50 60 70 80 90 100
E/I

FIG. 6. Cooling rate in a semiclassical approximation as a
function of energy for v = 6I', v~ = 3I', and A = —5I'. The
different curves correspond to changing Rabi frequencies. The
inset shows the cooling rate for 0 = I' on a different scale.
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to the fourth power of the Rabi frequency, and there-
fore the larger the Rabi frequency, the more efBcient the
cooling results. In Fig. 6 we have plotted the cooling
rate given by (B3) of Appendix B as a function of the
energy E [as given in Eq. (18)] for different values of the
Rabi frequency. At high energies the cooling is faster
and increases with the Rabi frequency. Note that for
0 I' ( ~A~ the cooling rate is very small (inset of
Fig. 6). However, for 0 ~A~ 5I' the cooling rate
increases dramatically. For higher Rabi frequencies, the
cooling is faster, but, as we have discussed in Sec. IIB,
the final energy increases. We note that these results for
the cooling time are based on the neglecting of the nona-
diabatic kinetic coupling. We have verified these results
by comparing semiclassical simulations according to (20)
with full quantum simulations performed in Sec. IV.

III. RAMAN COOLING

of the magnetic quantum number [4,12]. Thus the oscil-
lation frequencies of the two states are identical and we
have a complete analogy to an ion trap.

A. The model: Three-level A system

A 2

H.~ =
2M

+ ) [V-(~)+&2-]
I
~)(~ I

o.=1,3

( . 11
+

i
V.(*) —'- if 2 )& 2

I2)

+ ) (e '
I

2 )( ~
I
+ H c)

et= 1)3

(22)

We consider a three-level system interacting with two
counterpropagating laser beams. The level configuration
and the notation are shown in Fig. 7. The master equa-
tion for such a system has the form of Eq. (7) where

For a two-level system, cooling to the vibrational
ground state of the optical potential is obtained in the
strong-binding limit v, & v~ ) I'. For alkali atoms this
typically requires trapping laser intensities of the order of
a few MW/cm [5], or higher. In the context of laser cool-
ing of trapped ions it has been suggested that we reach
the sideband cooling limit in a three-level system where
two counterpropagating lasers induce Raman transitions
between two atomic ground states ~1) and ~3) (see Fig.
7) [8]. If one of the lasers, say the laser coupling the 1 —2
transition, is much stronger than the laser on the 2 —3
transition, optical pumping will accumulate atoms pre-
dominantly in level ~3). Thus for low laser intensities and
near-resonant Raman detunings the two ground states
form an effective two-level system ~g) = ~3), ~e)—:~1) with
the optical pumping rate ~l) ~ ]3) playing a role similar
to a spontaneous decay constant in the two-level atom.
Sideband cooling is obtained when the trap frequency is
larger than the optical pumping rate, a condition which
is easily satisfied for low laser intensities.

In the typical case of alkali atoms, the two ground
states ~1) and ~3) will be Zeeman states in the mani-
fold of ground 8-state hyperfine levels. In this case the
ac Stark shift and the trapping potential is independent

and

Zgp=i' )
=i,3

&~ [I »( ~
I

"*"*]

«&-(u)[e '"'I ~)(2 I]

(23)

B. Reduction to an efFective two-level system

with N (u) angular distributions and
(w2 —a ) detunings (o. = 1,3). We take the laser wave
vectors ~kqq

~

= ~k2s
~

= k and assume a symmetric decay
I'2s = I'2i = I'/2.

We study in the following a configuration where the
trapping potentials of the two ground states are identi-
cal, Vq(z) = V2(x). As noted before, this is realized to
a good approximation when the levels ~1), ~3) are Zee-
man hyperfine structure states with zero orbital angular
momentum (s states) [12]. Furthermore, we assume the
validity of the harmoruc approximation (3) for the trap-
ping potentials (oscillator frequencies v~ = vs =—v, v2).
In the limit of identical trap frequencies, v; = v for all
i = 1, 2, 3, this model is equivalent to the model of Raman
cooling in ion traps studied by Lindberg and Javanainen

/

/ n„,n„,r, v, «a„=W„—= W (24)

For low intensities and large detunings from the excited
state

and two-photon detunings not too far &om the Raman
resonance, ~A2q —A2s~ & + v, we can adiabatically elim-
inate the excited state and reduce the three-level system
to an effective two-level atom (~1), ~3)). The master equa-
tion again has the form (7) with

FIG. 7. Level scheme and notations for Raman cooling in
a A-system.

- y
H~g —— + —mv x — b+ s — Pyi
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gd~ ) 2a p dtl+ (&)e
—i(u k+kq~) z

I' . 02

a,P=1,3 —1

i(u &+kg ) x ~aP- {26)

In these equations we have Oo ——02s02q/(4b, ) the two-
photon Rabi frequency,

& = n'„r/(4~') (27)

the pumping rate from level 1 to level 3, and

b = b, 2s —62t —02„/(4b, ) (2S)

—II„=(n+ 1)A II„+g —[(n+ 1)A+ + nA ]II„
+A+ (29)

is the Raman detuning containing the Stark shift due
to the cooling lasers. Note that k = k2~ —k23, the ef-
fective two-photon wave vector, is nonzero only for two
counterpropagating laser beams. Identical equations are
obtained in this limit for Raman cooling of a trapped ion
(since v2 no longer enters into the equations).

We take the limit 02' )) 023 which results in a popu-
lation asymmetry IIq &( II3 and therefore in an enhance-
ment of transitions 1 m 3 over the reverse process. The
state ~1) corresponds now to the weakly populated "ex-
cited state, " whereas ]3) is the "ground state" of the two-
level atom with the two-photon pumping rate p ((( I')
playing the role of a spontaneous rate. Thus for v )) p
we expect a sideband cooling when the Raman transition
is tuned to b = v.

Following the standard theory of laser cooling of
trapped two-level ions [6,13] in the present problem we
obtain rate equations for the populations II„ in the os-
cillator basis,

and downward transitions. In Fig. 8 we show the ra-
tio q as a function of the detuning A2q of the strong
laser for a fixed detuning A23 of the weak laser. We
choose 42s ———10I', v = I'/10, 02s ——3 x 10 I', and
02' ——0.3I'. The dips (peaks) in this plot correspond
to two-photon resonances of transitions ~3) m ~1) and
n ~ n, n+ 1. This corresponds to choosing the effective
detuning near the lower motional sidebands (b = 0, kv).
The Raman cooling resonance is given by the usual side-
band cooling condition b = —v and the width of these
narrow resonances are given by the optical pumping rate
p. We emphasize that the Stark shift is much larger than
the width given by the pumping rate and consequently
cannot be neglected.

The inset in Fig. 8 shows the inHuence of a varia-
tion of the oscillation frequency of the state ~2) which is
neglected in the adiabatic elimination discussed in Sec.
III B. From the inset we see that changing v2 affects the
shape but not the position of the Raman resonance.

In Fig. 9 we compare the cooling rate TV = A —A+
obtained within the adiabatic approximation (solid line)
and the one from a standard ion trap, keeping in the
theoretical formulation the excited state (dashed line)
for the parameters of Fig. 8. The shift between the two
curves corresponds to neglecting the Doppler shift (of the
order of the trap frequency v2) in the excited state in the
adiabatic elimination. The Raman cooling scheme allows
cooling of almost all of the population into the ground
state for experimentally more favorable conditions than
the two-level scheme presented before, i.e., the sideband
cooling condition v )) I' is replaced by the much less
restrictive inequality v )) p. We note, however, that in
the Raman system the cooling rate is significantly slower
than for the Sisyphus cooling discussed in Sec. IIC for
the two-level system.

with Ag transition rates n —+ n 6 1 due to absorption
of a photon and subsequent spontaneous emission. In
the steady state the populations obey the Bose-Einstein
distribution II„= (1 —q)q" with

0.5
q = A+/A (q(1) (30)

the ratio between upward and downward transitions, and
the total energy is

0
0. 1 0.1 1 0.12 0.13

Et t ——hv ) nII„+1/2 =hv
~

+1/2
~

r q

(I —q

(31)

To calculate the rates A~ we followed the theory de-
veloped in Ref. [13]. Results of these calculations are
discussed in Sec. III C.

0
-0.15 -0.1

I

-0.05 0 0.05

h, 2,
—523 (units of I )

0.1 0.15

C. Discussion

According to Eq. (31) cooling is achieved for q ( 1.
The parameter q Ineasures the ratio between the upward

FIG. 8. The ratio q of the transition rates A~ as a func-
tion A2q —A23. The transition rates Ay as a function A2q.
The parameters are v = I'/10, b, 23 — 10I 02$ —0.31,
and Os&/Bzs = 100. The inset shows the parameter q for a
A-system where v2 ——vq/2 (solid line), v2 ——2vq (dashed line),
and vs = vq (dot-dashed line).
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FIG. 9. Cooling rate W as a function of b —v for the same
parameters as in Fig. 8. The solid line corresponds to the
approximate result of Sec. III B, the dashed line is the result
of a full calculation for v2 ——v~.

IV. QUANTUM MONTE CARLO SIMULATIONS

In this section we discuss results from quantum Monte
Carlo simulations for (i) the initial stages of the cooling
process of a two-level atom in a SW configuration for the
cooling laser, and (ii) Raman cooling in an F = 2 to F' =
2 hyperfine structure transition with counterpropagating
0.~ waves.

The models developed in Sec. III are based on a har-
monic oscillator approximation for the trapping poten-
tial and a RW configuration for the cooling laser. These
approximations are valid in the final stages of the cool-
ing process when the atoms are already well localized.
For atoms initially close to or above the potential barrier
of the trapping potential, a RW would push the atoms
out of the interaction region due to the unbalanced ra-
diation pressure. In the final stages of cooling, on the
other hand, i.e., with the atoms already near the bottom
of the trapping potential, the trapping potential keeps
the atoms from escaping (analogous to an ion trap). To
study cooling near the barrier we must choose a SW laser
configuration. We emphasize that the conclusions of the
previous sections remain valid for SW cooling lasers.

Our model assumes a two-level system in the anhar-
monic potential (1) and in the presence of a SW laser
which is near resonant with the transition ~g)

—~e). To
solve the resulting master equations we used the tech-
nique of Monte Carlo wave function simulations in the
form given in Refs. [14,15]. For a SW cooling laser there
are now two difFerent spatial periods in our model, the
first related to the wavelength of the cooling laser and
the second given by the wavelength of the far-ofF-resonant
laser. For simplicity we have neglected this double peri-
odicity. For the initial condition we take an initially flat
distribution for the atoms. Periodicity on the wavelength
allows us to restrict the calculation to one unit cell the
size of the laser wavelength, i.e. , we assume periodic ini-
tial conditions [15]. Apart from these assumptions, no
further approximations are made.

In Fig. 10 we show the temporal evolution of an ini-
tially delocalized ensemble of atoms. The depth of the
ground state potential is chosen to get a harmonic fre-
quency v~ = 0.5I' near the bottom of the well. The
excited potential frequency is chosen as v, = v 2vs. The
Rabi frequency is 0 = 121', and the detuning of the cool-
ing laser is 6 = —5I. From Fig. 11 we see that in the
present example the time scale to reach the steady state
is of the order of 400I' which corresponds for cesium
(on the 6Sq~2 m 6P3/2 transition) to a time of 13ps. This
demonstrates the experimental feasibility of our localiza-
tion scheme. Initially delocalized atoms become localized
on a time scale that agrees with the cooling rates derived
from our semiclassical analysis of Sec. II.

Furthermore we have studied numerically a scheme to
realize the A configuration used in our discussion of Ra-
man cooling with an I" = 2 —+ I"' = 2 transition. We
restrict the discussion again to the final stages of cool-
ing, i.e. , we assume the atoms are already localized near
the bottom of the potential well and make again a har-
monic approximation. By choosing a laser configuration
of two counterpropagating beams with o.+ and 0 po-
larization, respectively, and by unbalancing the Rabi fre-
quencies of these two beams we achieve optical pump-
ing of the atom to a A system formed by the states
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FIG. 10. Transient calculation for a two-level system in
the presence of a trapping potential. The parameters are
0 = 121', A = —51', vs = 3I', and v = 2vs. (a) Position
distribution for different times: initially Bat distribution be-
comes localized; the chosen times are t = 0, 100,400 in units
of 1. (b) Time evolution of the position mean square.
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FIG. 11. Steady state momentum (a) and position (b) dis-

tribution for Raman cooling in an I' = 2 ~ I' ' = 2 transition.
The solid line is the trace over the Zeeman sublevels, the dot-
ted (dashed, dot-dashed) lines correspond to the distribution
of the M~ = 0 (+1,+2) states, respectively. The parameters
are v = r/5, ass ——101', 02' ——2.6I', and Asg/02s ——10.
Az& is chosen to match the Raman cooling condition given by
6 = —v. The inset of (b) shows the steady state population.
cr and O.„correspond to the half-width at e of the space
and momentum distribution, respectively.

off-resonant standing-wave laser. For a two-level atom
we find that laser cooling occurs via a Sisyphus cooling
mechanism which requires vz ( v, with vz, the oscil-

lation frequency of the atom in the trapping potential
for the atom in the ground (excited) state. This cor-

responds to an "induced" cooling scheme with cooling
times significantly faster than the cooling time scale in

ion traps. Optimum localization occurs if the atoms are
cooled to the vibrational ground state. This requires
that the atomic oscillation &equencies are larger than the
spontaneous decay width, vg, ) I'. Typically this can
be achieved with trapping laser intensities of the order
of a few MW/cm2 [4,5]. If the trapping laser is detuned
to the blue, atoms will localize near the nodes of the
laser light which strongly suppresses spontaneous emis-

sions due to excitation by the nonresonant light field. As

a second scheme we have investigated Raman cooling in
a three-level A system. For alkali atoms the two ground
states are typically Zeeman levels belonging to the 8 state
hyperfine structure manifold and in this case the optical
potential for the two ground states are identical. This
leads to a Raman cooling mechanism in complete anal-

ogy to ion traps.
Localization of atoms as described in this paper is

interesting &om the point of view of lithography with
laser-manipulated atoms [16]. The cooling and trapping
of neutral atoms in deep laser-induced potential wells is

similar to ion traps and may be one way to realize a
single-atom trap.
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APPENDIX A: BOGOLIUBOV TRANSFORM

The ladder operators az, a, for the ground state and
the excited state are related through a Bogoliubov trans-
form

Mg = +1, Mg ——+1, and M~ ——+2. We expect the
Raman cooling mechanisms to be valid for this situation.
We again perform a quantum simulation of the corre-
sponding master equation (7). In Fig. 11 we show steady
state momentum, position, and population distributions
for Raman cooling in an I" = 2 —+ I"' = 2 transition.
The parameters are v = I'/5, b, 2s ———10I', 02' ——2.6I',
and 02'/02s ——10. E2q is chosen to match the Raman
cooling condition given by b = —v. The agreement be-
tween the results of Sec. III and the simulation results
shows that the picture of Raman cooling is valid for more
general level schemes and we can expect to apply the re-
sults for cooling rates and final energies of this picture to
realistic atomic configurations.

V. CONCLUSION

In this paper we have discussed cooling dynamics and
localization of atoms in deep potentials induced by a far-

( a, l ( coshr —sinhr l ( as 5

q
at y~ ~q

—sinhr coshr
& q ast y

'

where r is given by

(I v, +vs)r = arccosh
(2 Qvevs )

or in terms of the squeezing operator S(r),

a, = St(r)asS(r)

with

2

S(r) = e~l

The number states are related through

/n), = St/n)s

(A1)

(A2)

(A3)

(A4)
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AP PENDIX B: SEMICLASSICAL FORMULAS For example, we obtain

= [V+(*)—V-( )]+ [V-(*') —V+(*')1

= g&'{x)2 + n —gA'(z') + n (B1)

The time it takes for the atom to perform this cycle is of
the order of

1 1
br(z, z') - +r, () r, (B2)

Defining the cooling rate (in analogy with the cooling
rate for ion traps) as W = bE/br/E for this cycle, and
averaging over all possible x and x', we obtain

dzdz'P(z, x') ', , (B3), bE(z, x')
br z, z'

where P(x, x') is the probability for the atom to perform
a transition from

I

—) to I+) at x and a subsequent tran-
sition from I+) to

I

—) at x', and is given by

P(z, z') = K r-,+(*)

M [E —V (x)]

r+, -(z')

[E+(*) V—(*')]

(B4)

In Sec. III we have described qualitatively the cooling
mechanism for a two-level atom confined in a superdeep
potential in terms of transitions between the (cooling
laser) dressed levels. In this appendix we give some an-
alytical results for this semiclassical approach, as well as
for its regime of validity.

Let us consider an atom initially in the state
I

—), os-
cillating in the potential V (x) with energy E . After
a time of the order of I' + it will be transferred to the
state I+) at a certain position x, where it oscillates with
an energy E+ ——E + [V+(z) —V (x)]. Then, after a
time of the order of I'+ and at the position z' it is
transferred back to

I

—), where it oscillates with an en-
ergy E' = E+ + [V (z') —V+(x')]. The energy balance
of the cycle

I

—) ~ I+) ~
I

—) is

bE(x, x') = E' —E

V+ - —mv, x + —IAI,
2 ' 2

V —mv z
1 2 2--'
2 g 2

r =r,
1 n4

I' —I'—
16 [I4 I

+ -'m(v2 —v2) z ]

(B6a)

(B6b)

(B6c)

(B6d)

*02 + 6'(x)2 (z, j = +),

where

8' —= —„=——m(v.' —v,')x (B8)

and v, is the atomic velocity in the state i. This proba-
bility is to be compared to the probability of a radiative
transfer of population during half a period of oscillation.
This latter can be estimated by

With these formulas, one can perform integral (B3) and
find an analytical expression for the cooling rate. %e
omit this expression here since it is very involved and
does not give any further information. However, from
(B6) one can already see that in the low intensity limit,
the cooling rate is proportional to 0, i.e. , the higher the
0, the faster the cooling becomes.

So far we have not mentioned the conditions of valid-
ity of the estimation (B3). In order to derive it, apart
from the semiclassical approximation, we have neglected
(i) the nonsecular terms in the rate equations (20), and
(ii) nonadiabatic transitions from the dressed states due
to the motion of the atom in the potentials. Nonsecular
terms are negligible in the limit fl + 6 » I' (which
coincides with the regime where the lowest temperatures
are found). On the other hand, nonadiabatic transitions
due to the atomic motion are negligible when they are
less likely to occur than transitions due to the exchange
of photons. Following Ref. [10] one can overestimate the
probability of a nonadiabatic transfer of population dur-

ing half a period of oscillation in one of the potentials
by

0
IAI + 2m(v2 —v2)x2 (B5)

with K a normalization constant. In (B3), z~ are the
turning points of the potentials V~ for the atoms with
energies Ey. Note that x+ depends on x, since the
energy E+ depends on the position at which the atom
has made the transition from

I

—) to I+).
Integral (B3) can be evaluated numerically. Here, how-

ever, we will be mainly interested in the low intensity
limit, where IAI ) 0, with 6 ( 0, since that is where
the lowest final energies are found. In this limit, one can
expand all the expressions (Bl) and (B2) up to the lowest
nonvanishing order in the small parameter (note v, ) vg)

max

~1max

d-" (B9)

Clearly, the higher the Rabi frequency is, the better
the approximation becomes. For low intensities, one can
use (B6) and substitute them in the above probabilities.
The result is very similar to the one found for the op-
tical molasses case, where in order to neglect the non-
radiative transfer of populations, a rather large detun-
ing (compared to trap frequencies and decay rates) is
needed. However, when comparing the semiclassical re-
sults with the Monte Carlo wave function simulations, we

have found qualitative agreement even for detunings of
the same order of magnitude as the other parameters.
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