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We present a non-Hermitian Born-Floquet theory of scattering of fast electrons by atoms in the
presence of a strong monochromatic laser field. The interaction of the laser Geld with both the inci-
dent electron and the target atom is treated nonperturbatively, while the interaction of the incident
electron with the target atom is treated in first Born approximation. Fluorescence is neglected. De-
tailed calculations are performed for the "elastic" scattering of 500 ev electrons by atomic hydrogen
accompanied by the transfer of photons. The contribution of the entire spectrum of unperturbed
atomic states to the dressing of the target is exactly taken into account by performing the calcula-
tions on a complex Sturmian basis set. In the nonresonant case, and for electric field strengths that
are small with respect to the atomic unit, our Born-Floquet results are in agreement with those
obtained using the semiperturbative approach of Byron and Joachain (in which target dressing is

treated in first-order perturbation theory) even at intensities where multiphoton ionization is non-
perturbative. The Born-Floquet approach is particularly useful to study resonant cases, where the
laser frequency matches a transition frequency in the atom. Two such situations are analyzed.

PACS number(s): 34.80.gb, 32.80.Wr

I. INTRODUCTION

The study of electron-atom collisions in the presence
of a laser field is presently a subject of intense research
activity, not only because of the importance of these pro-
cesses in applied areas (such as plasma heating), but also
in view of their interest in fundamental atomic collision
theory. In particular, laser-assisted electron-atom colli-
sions allow the observation of multiphoton processes at
relatively moderate laser-field intensities [1] and give rise
to a number of new effects with respect to field-free col-
lisions (see, for example, [2]).

Most of the early theoretical investigations of
laser-assisted electron-atom collisions were confined to
the study of laser-assisted potential scattering, in which
the target atom is modeled by a structureless center of
force and hence does not interact with the laser field.
This is the case, in particular, for the first Born calcula-
tions of Bunkin and Fedorov [3], the low frequency theory
of Kroll and Watson [4] and the high-intensity, high fre-
quency theory of Gavrila and Kaminski [5].

The analysis of electron collisions with "real" atoms
(having an internal structure) in the presence of a laser
field is a much more diKcult problem. We have three
interactions: first, the unbound electron interacts with
all the constituents of the target atom (atomic nucleus
and bound electrons) as in the field-free case; second,
the laser field interacts with the unbound electron; third.

the laser field interacts with the target atom and hence
"dresses" the atomic target states.

In order to understand the role played by these three
interactions in laser-assisted electron-atom collisions, By-
ron and Joachain [6] used a semiperturbative method,
valid for fast incident electrons (Ei„& 100 eV) and
electric field strengths that are small with respect to
the atomic unit of electric field strength el'ao 5.1 x
10 V cm . In this method the interaction between the
fast projectile electron and the target atom is treated per-
turbatively by using the Born series. On the other hand,
the interaction between the laser field (assumed to be
described as a monochromatic, monomode and homoge-
neous electric field) and the projectile electron is treated
exactly by using a Volkov wave function [7]. Finally,
the laser-target interaction is treated by using first-order
time-dependent perturbation theory, as the laser electric
field is assumed to be small with respect to the Coulomb
field of the nucleus experienced by the target electrons.
This semiperturbative theory has been applied exten-
sively to a variety of laser-assisted electron-atom colli-
sions involving the transfer of several photons between
the electron-atom system and the laser field: "elastic"
collisions [6,8,9], inelastic (excitation) collisions [10], and
(e, 2e) reactions [11]. If, instead of being treated to all
orders (via Volkov wave functions), the laser projectile
interaction is treated to first order, the semiperturbative
theory reduces to a fully perturbative treatment [12].
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How can the semiperturbative theory be improved?
Assuming that the projectile electron is fast (so that a
perturbative treatment of the projectile target interac-
tion is adequate), the only cause of concern is the first-
order treatment of the interaction between the laser field
and the target atom. The reason is twofold. First, if the
electric field strength Ee is increased (within reasonable
limits, otherwise the target atom would decay too rapidly
for the laser-assisted electron scattering experiment to be
performed), it is expected that higher-order terms in the
laser Beld-target atom interaction could become signifi-
cant. Second, and more importantly, a first-order treat-
ment of the laser-field —target-atom interaction is inade-
quate in the immediate vicinity of a resonance, i.e., when
the laser photon energy matches the excitation energy of
an intermediate state; perturbation theory will exhibit a
spurious divergence at the resonance. There is no diver-
gence when the states which are resonantly coupled by
the laser Geld are treated nonperturbatively, for exam-
ple, by representing the atom by a two-state model in
the rotating wave approximation [13]. Unnikrishnan [14]
proposed to improve this simple two-state model, which
is clearly not valid off resonance, by including the Grst-
order corrections arising from the counter-rotating terms
and by treating the coupling of the two resonant states
to the other, nonresonant states by first-order perturba-
tion theory. Unnikrishnan applied his method to study
the scattering of fast electrons by atomic hydrogen in the
presence of a laser-field coupling resonantly the ground
state to the 2p state. A more general and accurate treat-
ment of the laser-target interaction was used by Francken
and Joachain [15] to analyze the resonant laser-assisted
excitation of the 2 8 and 2 P states of helium by fast
electrons. Their method consists in coupling a few target
states (namely, those which are near-resonantly coupled
by the laser field) exactly, using the Floquet approach,
while the coupling of the laser field with the remaining
target states is treated perturbatively. The Floquet the-
ory [16] is indeed a natural framework for developing
nonperturbative treatments of the dressing of the target
atom by the laser field [17,18].

In the Born-Floquet calculations reported in this pa-
per we go beyond the work of Francken and Joachain
[15],since in the present approach all the hydrogen atom
target states are coupled exactly to the laser Geld and
multiphoton ionization is taken into account. The inter-
actions between the laser Geld and both the projectile
and the target are treated in a nonperturbative way: the
former by using (exact) Volkov waves and the latter by
using the non-Hermitian Floquet method [19]. (The use
of the non-Hermitian Floquet method distinguishes the
present Born-Floquet theory from the theory proposed
by Faisal [18].) The interaction between the projectile
electron and the target atom is treated by using the Grst
Born approximation. Hence, the present theory is phys-
ically meaningful for fast projectiles, provided that the
laser Geld does not act for a long time before the collision
takes place (since no allowance is made for fluorescence).
It is also applicable to cases where the semiperturbative
theory is questionable, e.g. , at high intensity or for res-
onant laser fields, and is amenable to numerically con-

verged calculations. In the present work, we apply this
theory to the case of an atomic hydrogen target, for which
the contribution of the entire spectrum (bound and con-
tinuum) to the dressing of the atomic states can be taken
into account in a very concise way, by expanding the wave
function of the target atom, dressed by the field and de-

caying by multiphoton ionization, on a discrete basis of
complex Sturmian functions. It is justified to neglect ex-
change effects (which arise from the antisymmetry of the
wave function) in the present work. Indeed, the field-

free exchange effects are essentially negligible at the high
impact energy —typically 500 eV or higher —we are con-
sidering [20]. Moreover, it has been shown that exchange
effects are usually smaller in the presence of a laser field
than in the field-free case [21]. It would not be easy to ex-
tend the Born-Floquet theory to a lower range of impact
energy, where the first Born approximation breaks down

(i.e., the distortion of the target by the projectile can-
not be neglected) and exchange effects must be included.
An R-matrix-Floquet theory in which the electron-atom
interaction as well as projectile and target dressings are
taken into account nonperturbatively is presently being
developed to analyze laser-assisted electron-atom colli-
sions at low energy [22].

The advantage of adopting the Floquet approach
is that it is then possible to cast the essentially
time-dependent problem of laser-assisted collisions into
a time-independent formalism which is more suitable for
carrying out numerical computations. Clearly, reduction
to a time-independent problem would not be possible
without restricting the range of scattering processes that
can be considered. The Floquet method is appropriate
to describe experimental situations in which the duration
of one optical cycle of the laser (or the inverse of the rele-
vant atomic transition frequencies) is much shorter than
(i) the temporal scale of the variation of the laser inten-
sity experienced by the target as the laser pulse passes by;
(ii) the lifetime of the target atoms in the field; and (iii)
the duration of the pulses of projectiles that are directed
onto the target atoms. Condition (i) is easily fulfilled
since even short laser pulses encompass, in typical ex-
periments, at least hundreds of optical cycles. However,
together with condition (ii), it sets an upper limit to the
pulse peak intensity that can be considered for a given
&equency and pulse duration. As described in Sec. II
below, we assume that the decaying atom can be char-
acterized by a single Floquet state before the collision
occurs; this would not be possible if the intensity were
varying too rapidly. Moreover, representing the atom by
a single (pure) state vector implies that the duration of
the laser pulses we consider is limited not only by the
rate of photoionization but also by the rate of fluores-
cence, since spontaneous decay destroys the coherence
of the initial Floquet state [23]. We address here the
case where the laser pulse is shorter than the fluorescent
time of the atom excited by the field; in particular, we
are interested in collisions in the presence of an intense
field where the rate of photoionization is larger than the
rate of fluorescence. As noted previously, the theory pre-
sented in this paper is not suited to the cases where the
atom can decay by fluorescence before the collision occurs
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or where the laser bandwidth is significant. (It is possi-
ble, experimentally, to distinguish the electrons scattered
during the passage of a sub-ns laser pulse with transfer
of a nonzero number of photons from those scattered in
the absence of field, since the former and the latter have
a different final energy. However, it could be dificult to
measure cross sections for laser-assisted scattering with-
out net transfer of photons if the pulses are very short. )

Condition (iii) amounts to impose that the energy
width of the projectile wave packet is small compared
to the energy of the photons and to the diH'erences in
energy of the relevant target states, so that the incident
wave packet can be approximated, as in field-free time-
independent scattering theory, by a monoenergetic beam
of infinite duration. This makes it possible to distin-
guish processes in which difFerent numbers of photons
have been absorbed or emitted. Since it is not possi-
ble to define when the collision takes place if there is no
uncertainty in the energy of the projectile, one should
not expect the scattering cross sections to depend on the
phase of the laser field when condition (iii) is fulfilled;
the opposite conclusion would be reached if the process
investigated were, for example, the scattering of short
pulses of electrons in the presence of a microwave field
of period much longer than the duration of the electron
pulses. Phase-dependent cross sections for assisted scat-
tering have been considered by Bachau and Shakeshaft
[24] and by Smith and Flannery [25]. The case studied
by Bachau and Shakeshaft was the scattering of protons
by hydrogen in a nearly resonant laser field. The phase
dependence stemmed from treating the heavy projectile
as a classical particle following a well-defined trajectory
with no uncertainty in position at any time, in the impact
parameter formalism. The authors stressed that the mea-
surable cross section involves an average over the phase
of the field. Smith and Flannery have also used the Flo-
quet method (including a few target states in the calcu-
lation) in a study of laser-assisted 1s-2s and 1s-2p excita-
tion of atomic hydrogen by intermediate energy electrons,
the collision dynamics being described either within the
framework of the multichannel eikonal formalism or in
the Born approximation. The phase-dependent cross sec-
tions considered by these authors were cross sections for
transitions between unperturbed states of the atom in the
presence of the field, not for transitions between dressed
states of the atom. The scattering amplitudes for transi-
tions between dressed states depend on the phase of the
field, P, in a simple way, through a phase factor which
has no eKect on the corresponding cross section —see Eq.
(28). By contrast, the phase dependence of the scattering
amplitudes for transitions between unperturbed states in
the presence of a field is nontrivial, because unperturbed
states are linear superpositions of several dressed states,
each varying with P in its own way.

The theory is developed in Sec. II by considering the
case of laser-assisted "elastic" collisions of fast electrons
by atomic hydrogen, for which detailed Floquet calcu-
lations are feasible to obtain the dressed target states.
The theory can be generalized easily to the case of
laser-assisted excitation of discrete states, provided their
decay width can be neglected when calculating the cross

section this is briefly discussed in Sec. II, between Eqs.
(25) and (26). Applications of the present Born-Floquet
theory to laser-assisted excitation of atomic hydrogen will
be reported in a future publication. We only give a short
account of the Floquet method, which has been discussed
at length in the recent literature (see, e.g. , [26,27]). iVu-

merical results are presented in Sec. III, where we discuss
the nonresonant case and analyze two resonant cases.

II. THEORY

I et us consider an elastic collision between a fast (non-
relativistic) electron of mass m and charge —e and a
hydrogen atom, in the presence of a laser field. %'e take
the nucleus to be infinitely massive. During this collision,
a net number ~%~ of photons are transferred between the
electron-atom system and the field. Thus, if k; and kg
denote, respectively, the wave vectors of the unbound
electron before and after the collision and Ei„=52k2/2m
and Ei„= 5 k&2/2m are the corresponding energies, we

have

Ep, ——Eg,. + Nku, N = 0, +1,k2, . . . .

The laser field will be treated classically, as a spa-
tially homogeneous, linearly polarized, monochromatic
and single mode electric field:

Z(t) = E'psin((et+ P),

the corresponding vector potential being

A(t) = Apcos((et+ P)

with Ap ——cE'p/w. We describe below how we allow
for spatial and temporal variations of the field that are
slow on the scales set, respectively, by the range of the
projectile-atom interaction and by the laser period.

We work in the dipole approximation. The non-
relativistic Hamiltonian of the electron-atomic hydrogen
system in the presence of the laser field may be written
in the direct arrangement channel as

e = HF+HT+ V~,

where

1 e
HF = pp + —A(t)

2m e
(5)

1 e -~ e
HT = pi + -A(t)

2m, c
(6)

is the Hamiltonian of the target hydrogen atom in the
presence of the laser field, and

e e
V~ = ——+

r0 r01
r01 +0 +1

is the Hamiltonian of the &ee electron in the presence of
the laser field,
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is the projectile electron-target atom interaction in the
direct arrangement channel.

The Volkov wave function

3/2 ~Ik.~o —k-CX{t)—KI, &/& —g {&)]

with n(t) = cap sin(art + P) and np ——eEp/mid is the
exact solution of the Schrodinger equation

0
ih —y(rp, t) = HEy(rp, t),

Bt

for a &ee electron moving in the laser field with mean
momentum hk; ap is the amplitude of oscillation that
a classical electron would have in the field. In Eq. (8),
Eh = 5 k /2m, ((t) = (e /2mhc ) f A (t)dt, and we

have normalized yh to a 8 function in momentum.
Let us now turn to the Schrodinger equation describing

the target atom dressed by the laser field,

(10)

Under the assumption that the intensity and the &e-

quency are constant or vary adiabatically, this equation
can be transformed into a time-independent problem by
making the Floquet ansatz, namely, by writing the wave
function 4(ri, t) as

+oo
I,( t) i Et/h i('(—t) )— iM~t y—().
The harmonic components EM(r) are solutions of the
system of equations

(i2)

with pM = me /h kM and

kM'—
2m

(E + M'hu)

E = E;+b, —tT/2, (18)

E; being the eigenenergy of the initial (unperturbed)
state of the target, b, its dynamical Stark shift, and I'/h,
its total rate of multiphoton ionization.

The boundary conditions are implemented implicitly in
our calculations, by expanding the harmonic components
on a discrete basis set consisting of spherical harmonics
Yt (ri) and complex radial Sturmian functions S„"&(ri)
[29—31]. The latter are given by

S„",(ri) = JV„", ( 2trr)t+' —e*""

x F (I. + 1 —n; 2l + 2; —2irr),

where JV„"& is a normalization constant. The coniluent
hypergeometric function zP~ can be reduced to an asso-
ciated Laguerre polynomial. The complex parameter K

is chosen to lie in the first (upper right) quadrant of the
complex plane; hence the Sturmian functions oscillate
and decrease exponentially at large distance. We choose
the axis of quantization of the angular momentum along
the polarization direction. Then only the spherical har-
monics with the same value of the magnetic quantum
number m; as the initial state need to be retained in the
expansion (the quasienergy depends on the value of ~m;~),
and we write

The branch of the square-root function in Eq. (17) is
chosen such that the exponential function is decreasing
at large distance in the closed channels, and increasing
in the open channels, with an outgoing wave behavior.
The quasienergy E is, therefore, a complex eigenvalue of
the system of Eqs. (12):

where Hp ——pi/2m —ez/ri is the target Hamiltonian in
the absence of the laser field, and

eh
Vp ——p A.p Vg.

2mc
(20)

+OO

I(+)( t)
—iEt/h —i('(t) y iM~t iM(g n—/2)— —

M= —oo

x ) c„, r, 'S„",(ri)Yt~, (ri)
nE

It is worth noting that the dependence on the phase P can
be eliminated easily &om the system (12), by introducing
the functions

which satisfy the system

(E + MRu —Hp)gM = V+gM i + V gM+i. (15)

eLIcMr f

+M(ri) ) fM'M(rl)ri
M' rg

(16)

Since the atom is initially in a bound state, its physical
wave function must have a pure outgoing (+) wave be-
havior in the open channels. Accordingly, the harmonic
components XM(r) must be regular at the origin and
satisfy the Siegert boundary conditions

In numerical calculations, the expansion on M is trun-
cated to a finite number of terms, and the coeKcients

c„& are obtained by solving the linear eigenvalue system
representing the coupled Eqs. (12) on the basis [28,27].
The relevant eigensolution of the system of Eqs. (12) is
the one whose harmonic component with photon index
M = 0 reduces either adiabatically or diabatically to the
initial unperturbed state in the zero field limit (e.g. , [32]):

4, (+) ( t) iE;t/ho(P)—
1 1 1

= e * " "B„,t, (ri) Ye;~; (r i). (21)

In writing this last equation we should exclude the case
where the target is a hydrogenic system initially in a
state other than ls, 2s, 2p, or 3p, for otherwise the Flo-
quet state would reduce to a superposition of unperturbed
states belonging to the same n; manifold and of the same



4856 M. DORR, C. J. JOACHAIN, R. M. POTVLIEGE, AND S. VUCIC

(22)

where the initial and final states of the system (distorted
by the electromagnetic field) are coupled to first order
by the projectile-target interaction. Once complex con-
jugated, the harmonic components QM corresponding to
a quasienergy E satisfy the Floquet Eq. (14) with a
quasienergy E*. Their asymptotic behavior is to decrease
exponentially in the closed channels and to increase ex-
ponentially in the open channels with an ingoing wave
behavior. Therefore, the Floquet wave function is sim-

ply given by
+oo

C ( —)
( t) iE't/h i((t) +— —i—Mwt —iM(@—vr/2)

1)

x ) c„t *r, '[S„"I(r,)]'VI, (ri). .(23)

parity but with different values of 8. We assume also that
the atom stays, in good approximation, in a single Flo-
quet state as the intensity varies during the passage of the
laser pulse. Either the intensity increases slowly and the
atom remains on the adiabatic quasienergy curve which
develops from the unperturbed energy, or the intensity
increases rapidly enough (on the time scale set by the
largest relevant Rabi frequency) that the atom remains
on a single diabatic quasienergy curve. It is not easy to
extend the theory to cases where the atom is in a super-
positiori of several Floquet states, as a result of very fast
intensity variations or incomplete population transfer at
avoided crossings, because of the difhculty to calculate
the weight of each state in the superposition for such in-

herently time-dependent processes. We do not consider
here the case where the atom is in an incoherent mixture
of different states, as could be produced by spontaneous
decay.

Besides the Floquet wave function with outgoing wave
behavior, we also need the wave function with ingoing
wave behavior, C ~ ~. Using these Floquet wave func-
tions, the S-matrix element for direct "elastic" scatter-
ing in the presence of the laser field is given in first Born
approximation by

+oo
p~B1,F

increase of the harmonic components at large distance.
This is achieved by making use of the expansions (20)
and (23), to express the matrix element of V~ as a double
sum of well-defined integrals (e.g. , [29]).

It, is interesting to note that the product:
tl( )*(ri, t) 4'(+)(ri, t) is a periodic function of t, and,
iil particular, that the cycle average of (4( ) [4(+)),

M= —oo nnil

(M) (M) dr S„",t(r)S„"I(r)

is constant in time. Therefore, by normalizing the Flo-
quet wave function according to

27l /t Cd

dt(C(-) ~C(+)) = dr r B„.t (r) = 1, (25)

we ensure that the norm of the initial field-free state is
preserved at any intensity —recall that the atom is as-
surned to stay in a single Floquet state. The Floquet
state with ingoing wave behavior and the normalization
of Floquet states are also discussed by Pont et al. [33],
within the time-reversal operator formalism.

The time integration in Eq. (22) is readily performed
and leads to an energy-conservation b function, even
though the atomic energy level is broadened by the field.
The case of "norielastic" collisions is different in this re-
spect, since only for "elastic" collisions the exponential
increase in time of the ingoing Floquet wave function of
the final state and the exponential decrease in time of'

the outgoing Floquet, wave function of the initial state
exactly compensate one another in the integrand of Eq.
(22). In the case of "nonelastic" scattering an energy-
conservation b function is still obtained if the difference
between the energy widths of the initial state and of th(-

final state can be neglected. (This simplificatioii can be
made when their lifetimes in the field are longer than the
duration of the projectile electron wave packets. )

Working from now on in atomic units (a.u. ), and mak-

ing use of the formula,

+CX:

exp[ —iK ~ no sin(~t + P)] = ) e '" '+ J„(K no),

(26)

we have

+oo

) b(Rk, —EI, —N~)f )~,
N= —oo

g81,F
el (27)

where f,i ~, the first Born approximation to the "clas-
t

tic" scattering amplitude with the transfer of [%~ pho-
tons, is given by

gB1,F —iNQ
J el, lV

M, M'= —oo

(M') (M) (28)
nI EI ng

The spherical harmonics are not complex conjugated,
so that 4( )(ri, t) has the same zero-field limit (21) as
4(+)(ri, t)—provided the radial wave function B„I,(ri).
is real; we are free to not complex conjugate the spherical
harmonics, since their azimuthal phase factor can be fac-
tored out of Eq. (12) in the case considered. The physical
interpretation of the asymptotic behavior is the follow-
ing. Near the nucleus, [4( )[ increases exponentially in
time with a rate I'/h. Therefore, the flux of electron den-

sity in the direction of the nucleus, at a fixed radius r,
must also increase exponentially in time. This is possible
only if at any given fixed time the electron density in-

creases exponentially in r in the open channels, since the
mean velocity of an electron Rowing towards the nucleus
is constant at large distance. The radial integral over r1
in Eq. (22) must be defined as the analytic continuation
of a divergent Riemann integral, owing to the exponential
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In the above equation, K = k; —Icy is the momentum
transfer and

2f."e .t = — d& '~."~ ( )&i* (~)

x [exp(' ~ ) ) — ]S„",().)Yj, ().).

(29)

We remark that since we are dealing with an elastic tran-
sition and because of our choice of quantization axis par-
allel to the polarization direction of the Geld the mag-
netic quantum number m; of the target state must be
unchanged.

The angular part of the integral (29) is performed by
expanding exp(iK ~ ) ) in partial waves. This gives rise
to radial integrals of a product of two associated I.aguerre
polynomials, an exponential, an integral power of r, and
a spherical Bessel function j~(K)), which are delicate
to evaluate. They can be calculated by expanding the
spherical Bessel function either in a power series in Kr
(when the momentum transfer is small, roughly K & 0.5
a.u. ) or in a power series in (K).),and using recurrence
relations for the resulting integrals [34].

As expected from the discussion in the Introduction,
the Born-Floquet differential cross section,

d~B1,F

dO, ( ~
(30)

does not depend on the phase P of the laser field. The
ponderomotive acceleration the projectile experiences
when penetrating and leaving the laser beam should be
taken into account when relating this differential cross
section to experimental data [35], as well as the spatio-
temporal distributions of laser intensity, of nonionized
target atoms and of ions created through multiphoton
ionization. Ponderomotive acceleration tends to deflect
the electrons away from the regions where the intensity is
large, which may make it difBcult to measure accurately

I

cross sections for scattering in very intense Gelds, unless
the pulses are very short. This classical effect originates
from the macroscopic spatial variations of IA.pI, and is
distinct from the quantum microscopic problem we focus
on.

Before coming to the description of our numerical re-
sults, let us comment briefly on two points. First, our
Born-Floquet scattering amplitude (28) is gauge invari-
ant. Under a gauge transformation of the electromag-
netic field, the wave functions y), , ()'p, t) and y)„()'p, t)
are simply multiplied by a phase factor exp[i'() p, t)], and
the Floquet wave funtions 4 l+l()'i, t) and 4l l() i, t) by
a phase factor exp[i'() i, t)]; the phases in the bra vector
and those in the ket vector of Eq. (22) cancel each other.
However, the choice of gauge is important as far as com-
putations are concerned: the velocity gauge is more ap-
propriate for performing Floquet calculations on a basis
of Sturmian functions [27]. There is no gauge invariance
if approximations are made in the Floquet wave func-
tions, for example, if too few harmonic components or
partial waves are included in the numerical calculations.
[The energy scale may shift under a gauge transforma-
tion. In particular, the quasienergy is larger by a quantity
E~,„g = e Ep/4mur when calculated in the E' ~ ) gauge
rather than by solving the system (12); Ep,„st is the sec-
ular component of ((t). Of course, this energy shift has
no effect on the cross sections. ]

The second point is that the Born-Floquet scatter-
ing amplitude for "elastic" scattering &om the ground
state does correctly reduce for electric Geld strengths
fp « e/a2pto the semiperturbative scattering amplitude
of Francken and Joachain [9] (that is, the scattering am-
plitude in Born approximation when the target is dressed
only within the Grst-order in perturbation theory, in the
E ~ ) gauge). Upon solving the system (12) in first-order
perturbation theory, the scattering amplitude (28) be-
comes, for P = 0,

= JN(K ap)A".
, i.+~

2c

) - Jm-i(K ao)
~np, ia

) JN+i(K ~ ap)
np, ia

( ) f81 ( IA +II )
np, 1a + ' (:IA. ~I ) f"
np, ia + ~ (31)

where the sums extend over all the spectrum of states of
p symmetry (including the continuum), and the scatter-
ing amplitudes fP, i„fi, „,and f „i, are the field-free
first Born amplitudes for the 1s —+ 18, 18 ~ np, and
np ~ ls transitions, and or~„ i, ——E~„—Ei, . (The sym-
bol n denotes the principal quantum number of the un-
perturbed atomic states that act as intermediate states,
in this paragraph. ) The terms with IMI + IM'I ) 1 are
neglected when defining f,& ~, since they are of higherB1,1PT

order in E'0. By using the relations

(npIAp VIls)'f„„ i, = (npIAp . VIls) fi, „„(32)
and

(npIAp &I») = ——~ ),i (npIa'p. &I»)

Eq. (31) can be reduced to Eq. (9) of Ref. [9]:

f.( ~ = JN(K ao)fP, 'i.
—2iJ~(K ~ ap) )

np)1a

"fi"..,(npl&p ~l»). (34)

Byron and Joachain [6) introduced a low frequency ap-
proximation to f,i ~, namely,

f„iv
——Jiv(K ~ ap) f

2)J~(K ~ ao) ) — f„„„(npIE'p . ).Ils).
~np, 1a

The scattering amplitude takes on the particularly simple
form
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(30)

when the dressing of the target is completely neglected;

f,& ~ is the Bunkin-Fedorov [3] amplitude for scattering
by the static potential of the target.

The Sturmian method is convenient to calculate the
semiperturbative amplitude f,& N to arbitrary accu-

racy, directly from Eq. (28) with the sums over M and
M' truncated as explained above, without need to per-
form the cumbersome sum over unperturbed eigenstates
on the right-hand side of Eq. (34). In perturbation the-
ory, Po(r'i) is identical to the unperturbed wave function

of the initial state 4„& (ri), and Xq(v i) and j i(v i)
are obtained by solving the equations

perturbation in the present case, since the laser electric
field is much weaker than the Coulomb binding field for a
laser that is not superintense. The harmonic components
of. the target wave function which contribute most to the
differential cross sections are, therefore, those with pho-
ton number M close to zero and are also the ones that
are best described by perturbation theory, even at large
intensity. The harmonic components with large photon
number, which contribute to the rate for multiphoton
ionization rate, are more sensitive to nonperturbative ef-
fects.

Table I reveals, however, that this simple physical ar-
gument does not explain the close agreement between the
Born-Floquet results and the semiperturbative results.

(E; + Ru —Ho)Eyi ——e+'(~ ~ ) UpC (
I 2+00 ~ I I I ~ i i

I
r ~ s

I
e I I

I
I ~ ~

on the basis set. 1.50

III. RESULTS AND DISCUSSION 1.00

The differential cross section for "elastic" scattering of
electrons from hydrogen assisted by a laser field of 620
nm wavelength is displayed in Fig. 1 as a function of the
scattering angle, for a fixed laser intensity of 1.4 x 10
W/cm2 corresponding to a field strength fo ——0.02 a.u.
These results have been obtained in linear polarization
and for an incident electron energy of 500 eV, like all
other results presented in this paper; a first-order treat-
ment of the projectile-target potential V~ is expected to
be adequate at this large energy. At 620 nm, the cross
sections obtained by using the Byron and Joachain scat-
tering amplitude of Eq. (35) are very close to those ob-
tained by using the full semiperturbative scattering arn-

plitude (34) (they are within less than 1%). Taking only
decay through multiphoton ionization into account, the
half life of the atom is 0.8 ns at 1.4 x 10 Wjcm, the
corresponding field-induced width of the ground-state en-

ergy being 2.2 x 10 a.u. The rate of multiphoton ioniza-
tion departs significantly from perturbation theory (the
induced width is 3.6 x 10 a.u. at this intensity, when
calculated in perturbation theory).

Results for two different geometries are shown in Fig.
1. Let us begin by the geometry in which the polarization
direction is kept parallel to the momentum transfer, and
thus changes with N and with the scattering angle. As is
well known, both projectile dressing and target dressing
are important in this case, and this is confirmed by the re-
sults of Fig. 1. The most interesting conclusion that can
be drawn from the figure, however, is that the nonpertur-
bative Born-Floquet cross sections (F, solid curves) are
very close to the semiperturbative results (1PT, dashed
rurves). The same is true for N = 3, 4, and 5 also. This
is in marked contrast with the nonperturbative charac-
ter that other multiphoton processes, such as multipho-
ton ionization, have at this intensity. The physical reason
behind the success of the semiperturbative theory for the
case of Fig. 1 seems clear, intuitively: while dressing is
important to all orders in the field for the projectile elec-
tron, dressing for the target electron can be taken as a

0.50
\ ~ 4 ~

0.00

0.80—
~ I ~ I I I l I I I ~ ~ ~ ~

0.60—
O

a 0.40—
'U

0.20—

0.00--
~ ~

0.15—
I

I
~ I I ~

I I ~ ~

0.10

0.05—

0.00
0 8

Scattering Angle (deg)

FIG. 1. The differential cross section (in atomic units) for
elastic electron-H(ls) scattering in the presence of a linearly
polarized laser field as a function of the scattering angle (in
deg). The laser photon energy is 2 eV, the electric field

strength is 0.02 a.u. , the incident energy is 500 eU, and the
polarization vector is parallel to the momentum transfer. N
is the net number of photons absorbed by the projectile dur-

ing the collision. Results are shown for N = 0, 1, and 2. Full
curve (F): results when the target is dressed nonperturba-
tively in the Floquet approach [Eq. (28)]; broken curve (1PT):
results when the target is dressed in 6rst-order perturbation
theory [Eq. (34)]; dot dashed curve (ND): results obtained

by neglecting the dressing of the target [Eq. (36)]. The dot-
ted curve represents the results with Floquet target dressing
for the case where the laser beam is polarized parallel to the
incident electron beam.
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TABLE I. DifFerential cross section (in atomic units) for hu = 2 eV, E0'——0.02 a.u. , Eq, =. 500

eV, and two different scattering angles. The polarization is parallel to the momentum transfer. p
is the maximum value of )M[+ )M'[ (see text); the letter u indicates that the summation over M
and M' is unrestricted. F: results calculated with a nonperturbative target wave function obtained

by solving the Floquet system (12) truncated to —5 ( M ( 12 and 0 ( E ( 7; F(0,1): results
calculated with the same Floquet wave function, but E and E' were restricted to be 0 or 1 in Eq.
(28); PT: results calculated with a target wave function obtained in first-order perturbation theory;
PT(n): PT results normalized as is explained in the text. The numbers in brackets indicate powers
of ten.

0 0
1
2
3
4
U

1 0
1
2
3
4
U

2 0
1
2
3
4
U

3 0
1
2
3
4
U

PT
9.79[—1]
1.77

9.98[—3]
2.50

3.35[—5]
2.7O[-2]

7.79[—8]
9.71[—5]

9.22[-3]
2.31

8.13[—3]
6.97[—1]

s.o9[—s]
2.50[—2]

2.72[—S]
7.82 [

—3]

7.2o[—8]
8.97[—5]

6.34[—8]
2.84[—5]

8 = 0.5'
PT(n) F(0,1)
9.04[—1] 7.97[—1]
1.64 1.17

F
6.91[—1]
1.02
1.35
1.74
1.79
1.83
7.o4[—3]
6.35[—1]
6.11[

—1]
2.39
2.38
2.59
2.36[—5]
7.11[

—3]
6.S9[—3]
2.4S[-2]
2.74[-2]
s.2o[-2]
5.50[—8]
2.58[—5]
2.27[-s]
9.50[—4]
1.O2[—3]
4.12[—5]

PT
5.54[—2]
4.02[—2]

5.13[—2]
7.50[—2]

1.45[—1]
1.47[—1]

6.84[—2]
5.83[—2]

8=
PT(n)
S.12[—2]
3.71[—2]

4.74[—2]
6.9S[—2)

1.34[—1]
1.36[—1]

6.32[—2]
5.39[—2]

8.0'
F(o,1)
4.65[—2]
3.87[—2]

4.32[-2]
S.44[—2]

1.22[—1]
1.23[—1]

s.7s[—2]
5.24[—2]

F
4.22
3.48
4.58
3.93
4.24
4.26
3.91
4.99
6.29
7.38
7,55
7.61
1.11
1.12
1.44
1.45
1.50
1.50

[-21
[-2)

[-2]
[-2)
[-2]

[-2]
[-21
[-2)
[-2)
[-1)
[-1)

[-1)
[-2]
[-2]

S.21[-2]
4.73[—2]
6.22[—2]
S.79[-2]
5.90[—2]
S.87[-2]

All the entries in Table I have been calculated by using
Eq. (28), the sum over the photon numbers M and M'
being either unrestricted or restricted to the terms such
that ]M[+ ]M'] & p. Four different sets of coefficients

c„& were used, as explained in the table caption. The(M)

PT results for p = 1 are nothing else than the semiper-
turbative (1PT) cross sections; they are based on a tar-
get wave function calculated in 6rst-order perturbation
theory. The PT(n) correspond to a set of coefficients

c &pT obtained by normalizing this 6rst-order pertur-(M)

bative wave function following the same prescription as
for the Floquet wave function, namely,

+1 OO

(M) (M)) ) c~ ~pT(n) nrpT( )

Because of the normalization, the PT(n) results are
smaller than the PT cross section, by a constant fac-
tor 0.92 . It is particularly interesting to compare the
PT(n) results and the F(0,1) results. The wave functions
they are based on are expected to be very similar since
fo is much smaller than one atomic unit. Their similarity

can be measured by evaluating the distance 'V between
the corresponding sets of Sturmian coeKcients c„&, as
follows:

[ (M) (M)/ ~ ~ nrpT(n) nrF(0, 1) [

(M)).]'.rF(o, )[

This measure is meaningful only if the same set of Stur-
mian functions are used to represent both wave func-
tions. The difference between the (normalized) pertur-
bative wave function and the nonperturbative Floquet
wave function is indeed very small: 17 is only 1% for
(M = O, E = 0), and 0.8% for (M = +1,I. = 1). Con-
sidering that these wave functions are so close, it is sur-
prising that the corresponding cross sections sometimes
dier appreciably, as happens for example at 0 = 0.5 . A
more detailed analysis shows that the small differences in
the wave functions are ampli6ed by complicated cancel-
lations into much larger di8'erences in the cross sections.
The full Born-Floquet results (F) for p = 0 and p = 1
are not identical to the F(0,1) cross sections, since I. is
not restricted to 0 or 1 in the full Born-Floquet calcula-
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tions. However, as more and more harmonic components
are taken into account, i.e. , as p increases, the F cross
sections converge towards a limit (the F results of Fig.
1) which happens to be rather close, in the present, case,
to the semiperturbative results. We conclude, therefore,
that the general agreement between the Born-Floquet
cross sections and the semiperturbative ones for E'0 « 1
a, .u. can be understood by the simple argument devel-
oped above, although a detailed understanding of this
agreement requires the consideration of the normaliza-
tion of the wave functions and of cancellations occur-
ring in the contributions of harmonic components with

~M~ & 1 which are not included in the semiperturbative
theory.

In Fig. 1 is also displayed the cross section for trans-
fer of zero photons (W = 0) for the geometry in which
the polarization direction is kept along Ie;. In contrast
with the previous case, this cross section (shown as a
dotted line) cannot be distinguished from the field-free
cross section on the scale of the figure. The argument
of the Bessel functions of Eq. (28) is nearly zero in the
present geometry, since the momentum transfer is small
and the polarization direction is nearly perpendicular to
K for small scattering angles. Therefore, the values of
the Bessel functions are either very close to 0 (when
M g M') or very close to l. (when M = M'), and pro-
jectile dressing has no effect on the "elastic" cross sec-
tion. If one performs an analysis similar to the one of
Table I one can see that the Born-Floquet cross section
is dominated by the contribution of the s wave of the har-
monic component with M = 0, although the other partial
waves and the harmonic components with M g 0 play
a non-negligible role in the remarkable agreement, with
the field-free cross section. For example, the differential
cross section which is obtained without taking them into
account is 18% smaller, for scattering at 0.5', than the
full Born-Floquet result. A likely explanation of the near
ab ence of any physical effect arising from the dressing
of the target is that the laser field does not modify much
the distribution of momentum of the atomic electron in
any direction normal to the electric field vector (we are
far from any resonance), so that transfer of momentum
to the projectile perpendicularly to the polarization di-
rection occurs as in the absence of field- —at least in Born
approximation. It is not diFicult to show that f, l ~ hasB1,F

the same large K limit as the field-free elastic scattering
amplitude, for N = 0 with K J Zo, when the Floquet
wave function is normalized according to Eq. (25).

The differential cross section for scattering at 0.5 is
shown in Fig. 2 for a field of 620 nm wavelength and
varying strength. At a field strength of' 0.0377 a.u. , cor-
responding to an intensity of 5.0 x 10 W/cm, multipho-
ton ionization is fully nonperturbative [36]. The half life
of the atom is 3.2 ps. Despite these extreme conditions,
the difFerential cross section calculated with nonpertur-
bative Floquet target dressing, on the one hand, and
the cross section calculated with target dressing taken
into account to first order, on the other ha, nd, are in
good agreement. This illustrates, once again, how dif-
ferent the importance of certain harmonic components is
in t, he scattering case compared to the multiphoton ion-

ization case. Actually, one can neglect in Eq. (11) the
harmonic components with photon index M such that
Re(E+ Mku) ) 0, without any significant effect on the
cross sections of Fig. 2, although the multiphoton ioniza-
tion rate would vanish in this approximation. It is clear
that the open-channel part of the Floquet wave function
does not contribute much to the cross section, at least in
the absence of resonances, even in cases where the total
multiphoton ionization rate is large. In other words, the
projectile is scattered essentially as if the atom were not
decaying and the process could be described by a Her-
mitian Floquet theory. By contrast, it is important to
retain a sufficiently large number of angular momentum
components in the wave function; in the present case val-
ues of t up t, o 7 must be included in order to obtain cross
sections converged to wit, hin 1%. It is also worth not-
ing that the contribution of the continuum states of the
field-free atom to the closed-channel part of the Floquet,
wave function is considerable. For example, in the case
of Fig. 2 and for E'0 ———0.0377 a.u. , the semiperturbative
differential cross sections for N = 1 or N = 2 are reduced
by 35% when the continuum states are neglected in the
sum over intermediate states of Eq. (34).
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FIG. 2. Same as in Fig. 1, but for a fixed scattering angle
(0.5 ) and varying electric field strength (in atonuc uriits).
The results with Floquet dressing are represented by solid
squares. The broken curve corresponds to results obtained
when the target is dressed by using 6rst-order perturbation
theory (1PT). The dot dashed curve (ND) refers to no target
dressing.
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FIG. 3. The differential cross section (in
atomic units) at a scattering angle of 10'
for elastic electron-hydrogen scattering in the
presence of a linearly polarized laser 6eld of
intensity 10 W/cm, vs wavelength (in A),
in the vicinity of the one-photon 1s-2p res-
onance. The results with Floquet dressing
are shown for scattering from the (adiabatic)
ls or 2p dressed states and for N = 0, 1, or
—1; the results with perturbative dressing are
shown only for scattering from the ls state
and N = 0 or 1. The inset is a magni6cation
of the region delimited by the box.
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The nonperturbative Floquet approach adopted in this
work is particularly relevant when the field brings the
initial state into resonance with another state. This is
illustrated by Fig. 3. In the weak field limit, the 18
and the 2p states are in resonance through a one-photon
dipole coupling at a wavelength of 121.5 nm. While the
scattering cross section diverges at this wavelength when
calculated in first-order perturbation theory, it remains
finite when the coupling of these two states is taken into
account nonperturbatively. Off resonance, at 122.5 nm
the ionization widths of the 18 and 2p states are, re-
spectively, 4.36x10 a.u. and 7.66x10 a.u. The ion-
ization width of the 18 state is 2.8x10 a.u. at 121.5
nm. This last number should be compared to the natu-
ral width of the unperturbed 2p level, 1.5x10 a.u. We
see that loss of coherence is not a cause of concern in
this particular case, since photoionization is faster than
spontaneous decay. Keeping the intensity constant and
increasing the wavelength adiabatically, the Floquet state
corresponding to the dressed 1s state below 121.5 nm
loses its character as the resonance is passed, and takes
on a 2p character; conversely, the dressed 2p state ac-
quires the character of a dressed 18 state above 121.5
nm. The character interchange of the two states, which
is associated with an avoided crossing in the real part
of their quasienergies [37], manifests itself clearly in the
cross section for elastic scattering without a net exchange
of photons. (The crossing of the curves occurs actually at
a slightly longer wavelength than in the zero-field limit,
because of the shift and width of the dressed states. ) On
the other hand, the cross sections for scattering from the
dressed 18 or &om the dressed 2p state with a net ex-
change of 1 photon are also very close near resonance.
The ~N~ = 1 Born-Floquet results actually consist of
four curves, namely, two curves for N = 1 (one for each
dressed state) and two curves for N = —1. The results
for N = +1 are very close. At the crossing, two of the
four curves osculate: this is why we see only three curves
in the inset of the figure. The difference between the
cases N = 0 and ~Nl = 1 is not difFicult to understand
once it is noted (i) that the cross section is dominated by

the term with M' —M = N in Eq. (28) at the very weak
intensity and small momentum transfer considered; and
(ii) that the ls and 2p Floquet wave functions are essen-
tially similar superpositions of the 1s and 2p unperturbed
states near the resonance (though with quasienergies dif-
fering by hu, and difl'erent relative phases between the
harmonic components). As expected, and for both N = 0
and ~N~ = 1, it is only in the immediate vicinity of the
resonance that there is a substantial difference between
the results obtained with target dressing treated pertur-
batively and those obtained with nonperturbative target
dressing.

Finally, differential cross sections in the neighborhood
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I I I I
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FIG. 4. The difFerential cross section (in atomic units) at
a scattering angle of 0.5 for elastic electron-hydrogen scat-
tering in the presence of a linearly polarized laser field of
intensity 10 Wjcm, vs wavelength (in A), in the vicinity
of the two-photon 1s-2s resonance. The results with Floquet
dressing are shown for scattering from the (adiabatic) 18 or
2s dressed states and for N = 0 (solid circles) or N = 1
(solid triangles). The solid lines are a guide for the eyes; the
results with dressing in first-order perturbation theory are
shown only for scattering from the 1s state.
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of a two-photon resonance (betw'een the ls and the 2s
states) are presented in Fig. 4. At an intensity of 10 s

W/cm and a wavelength of 242.4 nm, the widths of the
1s and 2s states are, respectively, 1.75x10 a.u. and
1.65x 10 a.u. The structure of the Floquet wave func-
tions of the two states is now more complicated than in
the case of Fig. 3: there are significant difkrences, for

1 as well as for N = 0, between the results for
scattering from the ground state and those for scattering
from the resonant state. The results for K = —1 (not
shown) are again very close to the ones for W = +l. Of
course, no resonance structure is found when the atom is
not dressed beyond erst order in perturbation theory.

The variation of the cross section with the wavelength
near a three-photon resonance between the initial 18 state
and the 2p state has been described elsewhere [38]. In
contrast with the previous cases, the crossing between

the two quasienergy curves is a true crossing for this
three-photon resonance —that is, the real parts of the
quasienergies intersect. Nevertheless, the Born-Floquet
cross section was found to be strongly enhanced at the
resonance.
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