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Quantum-statistical properties of noise in a phase-sensitive linear amplifier
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We present a model for a two-photon phase-sensitive linear amplifier in which the phase sensitivity is
introduced by injecting three-level atoms initially prepared in a coherent superposition of upper and
lower levels. We have studied the quantum-statistical properties of noise and show that, under certain
conditions, the additive noise is in a squeezed vacuum state whose squeezing parameter depends on the
atomic variables.

PACS number(s): 42.50.Ar, 42.50.Lc

I. INTRODUCTION

The desire to retain nonclassical light properties
through optical processing has encouraged research in
the operation of quantum amplifiers [1—5]. The recent
work on optical communication and high sensitivity
quantum detectors has renewed interest in the quantum
limits imposed on the amplifiers. Standard models of the
linear amplifiers [6] indicate that the amplifier does
indeed amplify an input signal but the output includes
amplified noise, called added noise. The added noise
arises from the coupling of the signal to the internal de-
grees of freedom of the amplifier. The nature of the added
noise depends upon the state of these internal modes.

On the basis of classification by Caves [7], a phase-
insensitive amplifier is the one which amplifies both the
quadratures of the signal by the same factor and also
adds equal noise to the two quadratures. It is, therefore,
incapable of giving squeezed output for an unsqueezed in-
put, whereas the phase-sensitive amplifier [8,9] is the one
which responds differently to the two quadrature phases
in the form of unequal gains or unequal noise or both. It
has been suggested by many authors, that with the intro-
duction and generation of squeezed states, it is possible to
modify or "rig" the reservoir [10,11]. The reservoir state
is produced in such a way that the processed boson mode
is driven by the reservoir operators. The amplifier-added
noise can be made widely different in two quadrature
components of the field.

The idea of preparing atoms in a coherent superposi-
tion of atomic states has received attention because of its
efFectiveness in amplifying a squeezed-signal quadrature
with reduced added noise as compared to the standard
phase-insensitive amplifiers. It has been used for noise
quenching by correlated-spontaneous-emission laser [12]
and quantum-beat laser [13].This idea has also been used
in a phase-sensitive amplifier [14—16], in which atoms are
prepared in a coherent superposition of atomic states. It
is shown in these papers that under certain conditions the
additive noise in one of the field quadratures goes to zero
at the expense of enhanced noise in the conjugate quadra-
ture.

In the present paper we consider the quantum-
statistical properties of noise in a two-photon linear

amplifier. We consider a system consisting of three-level
atoms, initially prepared in a coherent superposition of
atomic states. In particular, we show that in the
Langevin picture, for an initial vacuum state, the expec-
tation value of the normally ordered field operators is
proportional to the expectation value of the correspond-
ing antinormally ordered noise operators. This idea has
motivated us to relate the P representation for the field
operators to the corresponding Q representation for the
noise operators. We also show that the additive noise is
in a squeezed vacuum state and the efi'ective squeezing
parameter is a function of the initial atomic variables.

The organization of the paper is as follows. In Sec. II,
using the Heisenberg-Langevin approach, it is shown for
an initial vacuum state that the expectation value of nor-
mally ordered moments of the field operators is propor-
tional to the expectation value of the corresponding an-
tinormally ordered moments of the noise operators. A
condition is obtained which relates the P representation
for the field operators to the Q representation for the
noise operators. In Sec. III, we define the model for the
amplifier and the equation of motion for the reduced den-
sity matrix. In Sec. IV, an exact time-dependent solution
of the Fokker-Planck equation for an initial vacuum state
in the P representation has been obtained. A comparison
between the P representation for the field operators and
the Q representation for the noise operators shows that
the additive noise is squeezed with the squeezing parame-
ter being a function of the initial atomic variables. Sec-
tion V contains the conclusion and a discussion of our re-
sults.

II. ADDITIVE NOISE IN THE AMPLIFIER

A linear amplifier by definition is the one whose output
signal is linearly related to its input signal. It is now un-
derstood that the signal information is carried by the
complex amplitudes of the relevant modes, rather than
the number of quanta. The evolution equation for an
operator representating a linear amplification process in
the Langevin picture is

a, =~Gao+ &(G —1)Nt,

where a, and ao represent the annihilation operators for
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the Geld mode in the output and input, respectively, 6 is
the gain of the amplifier, and N is the Langevin noise
operator which is responsible for the amplifier's additive
noise. The operator N itself is a boson operator. It is in-
troduced in order that the operator a satisfies the boson
commutation relation at the output.

The expectation value of the normally ordered product
of creation and annihilation operator for the field mode
are evaluated by using Eq. (1). For the field initially in a
vacuum state IO &,

&(Q, )"(Q, ) &=&Ol[&GQO+~ (G —1)N]"

X[~GQo+i (G —1)N ] 0&

—(G 1 )(n +m)/2& NnNfm
&

This result shows that for an initial vacuum state the ex-
pectation value of the normally ordered field operators in
the output is proportional to the expectation value of the
antinormally ordered noise operators. The proportionali-
ty established in Eq. (2) between the field operators and
the noise operators is true only for the initial vacuum
state. For any field other than vacuum, such a straight-
forward relationship does not hold. From Eq. (2) we
have, for example,

QtQ
&NN &= (3)

(G —1)

It may be of interest to note that the relationship estab-
lished above between the normally ordered field operators
and the corresponding antinormally ordered noise opera-
tors can also be represented in terms of a relationship be-
tween the P representation and Q representation for the
output field and noise, respectively. It may be recalled
that the P and Q representations can be used to evaluate
the expectation values of the normally ordered and an-
tinormally ordered operators, respectively. In view of
Eq. (2), we can relate the P representation for the field
variables to the Q representation for the noise variables
via

(4)

Here, the relation between p and a is of the form

III. THE AMPLIFIER MASTER EQUATION

where a and a are the creation and the annihilation
operators of the field and g is the atom-field coupling con-
stant.

We consider a situation in which atoms are injected in-
side the amplifier at the rate r, in a coherent superposi-
tion of states IQ & and lc &. The atomic wave function at
time t is therefore,

where C, and C, are the probability amplitudes for levels

IQ & and level lc &, respectively. The atom-field density
operator at time t is therefore

P„„(t)=[P..IQ & &Q I+P., IQ & &cl

+P„lc & &Ql+P„lc & &cl]IIPF . (9)

In Eq. (9), p„and p„are the initial populations of levels

Q & and lc &, and p„and p„are responsible for the ini-

tial atomic coherence between levels IQ & and Ic &.

The dynamics of the field mode equation of motion in
the Born-Markov approximation governed by the master
equation can be written as [14],

TKPnn(QQ PF 2Q PFQ +PFQQ )
Bt

P ( PF 2 PF +PF

,'KP„(QQPF —2Q—PFQ +PFQQ—)

2Kpn~(Q 'Q pF
—2Q pFQ +pFQ Q ) (10)

where ~ is the linear gain coefficient, the terms propor-

Our system consists of three-level atoms in cascade
configuration as shown in Fig. 1. The boson mode of fre-
quency co is assumed to be in resonance with two atomic
transitions IQ &

—+ lb & and lb &~ lc &. The interaction
Hamiltonian in the interaction picture and in the
rotating-wave approximation is

0 =irig[Q'(I& &&Ql+ lc &&bl)+«IQ &&bl+ Ib &&cl)l

G —1

It is thus apparent from Eq. (5) that the noise variable.

p is dependent on the gain 6 of the amplifier. The expec-
tation value of any antinormally ordered function
&F(N, N ) & of N and N may be determined from
Q~(p, ,p ) via the relation [17]

&F(N, N')&= fF(I,I *)QN(l, p*)d I . (6a)

Ia

In particular we can write

(6b)

The function Q&(p, p' ) thus makes it possible to evalu-
ate the expectation values of the antinormally ordered
noise operators. We now turn to the specific model for
the phase-sensitive linear amplifier.

Ic

FIG. 1. Energy-level diagram for three-level atoms in cas-
cade configuration.
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tional to p and p„correspond to the usual gain and ab-

sorption in the amplifier. The anomalous terms propor-
tional to p„and p„are responsible for the phase-
sensitive operation of the amplifier.

quantized electromagnetic field are defined as the expec-
tation values of normally ordered products of the annihi-
lation and creation operators.

We transform the equation of motion (10) into the
Fokker-Planck equation via the substitution [17],

IV. FOKKER-PLANCK EQUATION
AND ITS TIME-DEPENDENT SOLUTION aa a =aa a (12a)

In this section we convert the density-matrix equation
of motion for the field mode in a c-number Fokker-
Planck equation using P representation for the density
operator,

p= fP(a, a')la)(aid a . (11)

This representation provides a convenient way of evaluat-
ing the ensemble averages of normally ordered operators.
The utility of normal ordering has long been recognized
because of appropriateness of normally ordered products
for the description of photon-absorption processes.
Moreover, normal ordering has an application in the in-
terpretation of photon counting and coherence experi-
ments [18,19]. The correlation function G'"' for the

I

a Ia)(al= a*+ Ia)(al .a
(12b)

The resultant Fokker-Planck equation is of the form

ap ~ a a
Bt 2 Ba

——(p„—p„) a+ a"

K 8 K 8 8
2Pac gag 2Pca ga«p

+ Paa gaga«

(13)

For an initial vacuum state with complex amplitudes, the
Fokker-Planck equation at time t has the form

(N, N, )'"
P(a, a', t)= exp — (N&+N2) —

—,'[N&(A iC) +N—2(B —iD) ]a

—
—,'[Nt(A +iC) +N2(B+iD) ]a" (14)

where

Paa Pcc

(p„+Ip„ I )(6 —1)
' (15a)

I

when atoms are injected in perfect coherence, i.e.,
2=

IPac I =PaaPcc

We can then define a parameter g such that

(18)

and

Paa Pcc

(p„—lp., l)(G —1)
'

G = exp[~(p„—p„)t],

(15b)

(16)

p„=(I+ri)/2,

p„=(1—ri)/2,

p„=lp„ I exp(i')),

(19a)

(19b)

(19c)

1/2
(2lp., I

—p., —p,.)/Ip. , I

1/2
(2lp., I+p., +p,.)/lp. , I

(17a)

(17b)

is the amplification factor. The amplification takes place
when p„&p„. The values of the constants appearing in

Eq. (14) are

(19d)

On substituting for N„Nz, A, B, C, and D, solution (14)
simplifies considerably and we obtain

1/2

P(a, a', t) = 1 2g
n(G —1) 1+g

l Pac Pca

2 [(21p., I

—p., —p,.)lp., I]'"
'

l ( — )Pac Pca

2 [(2lp., I+p., +p,.)lp., I]'"

(17c)

(17d)

X exp
(G —1)

1 (a2 —i/+ «2eif)
2(G —1)

1/2

In general, Ip„ I

~p„p„. The above expression for
P(a, a*,t) is valid for arbitrary value of coherence p„.

The solution (14) of the Fokker-Planck equation shows
that the phase sensitivity which was introduced through
the coherent atomic injection is still refiected in the con-
stants N, , N2, A, S, C, and D. An interesting case arises

(20)

We next recall the relationship established between the
P representation for the field operators and the corre-
sponding Q representation for the noise operators in Eq.
(4). It follows from Eqs. (4) and (20) that Qiv is given by
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the following:

1 2g
m(G —1) 1+g

1/2

representation for an ideal squeezed vacuum state if we
identify

(25a)

and
X exp —

~ p~
—

—,'(p e '~+ p* e'~)

1/2

1—
tanh(r) =

1+g (25b)

(21)

Next we show that the Q representation for the noise
operators corresponds to the Q representation for an
ideal squeezed vacuum state. A squeezed vacuum state is
given by

tanh (r) =
Paa

(26)

The conclusion is that the additive noise is in a squeezed
vacuum state with the efi'ective squeezing parameter r.

On substituting the value of ri in Eq. (25b) we find

lg&=S(g)lo&,

where the unitary squeeze operator is defined by

S(g)= exp( —,'g'a + —,'(at ),

(22)

(23)

The additive noise is therefore squeezed with the squeez-
ing parameter being a function of the initial atomic con-
ditions. It is obvious that r =0 (p„=0) corresponds to
incoherent excitation. The added noise, in this case, is
due to vacuum fluctuations.

Q(a, a', g)= —l(alp &I'
1

sech(r)
exp[ —iai' —

—,'(a'e ' +a*'e' )

Xtanh(r)] . (24)

A comparison of Eqs. (21) and (24) shows that the Q
representation for the added noise is identical to the Q

with g=rexp(i8) being an arbitrary complex number.
Here, r = i)i is called the squeeze parameter and 8 is the
reference phase of the squeezed field. Then for a state
lg& [20]

V. CONCLUSION

In conclusion, we have shown that a three-level phase-
sensitive linear amplifier prepares the internal degrees of
freedom in such a way that the additive noise is in a
squeezed vacuum state. The associated squeezing param-
eter is a function of initial atomic variables.
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