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Dynamical efFects in atom optics

P. A. Ruprecht, M. 3. Holland, and K. Burnett
Clarendon Laboratory, Department of Physics, University of Ozford, Parks Road, Ozford OX1 8PU, United Kingdom

(Received 11 January 1994)

We present numerical calculations of the evolution of an atomic wave packet in the optical
potential created by a laser standing wave. These calculations do not rely on the Raman-Nath
approximation, and fully account for transverse atomic motion within the standing wave. Our
results show that atomic dynamics is important even for very brief interactions, and that the wave
packet can become well localized during and shortly after the interaction. We propose several atomic
beam splitters and de8ectors which make use of this effect. This e8'ect may also have repercussions
for recent proposals to measure the position of an atom in a standing wave by monitoring the phase
shift of the optical 6eld; these schemes require that the field does not act back on the atom to alter
its position wave function. A standing wave can also localize the wave packet in momentum space,
which we show can be used to cool an atomic beam in one transverse dimension.

PACS number(s): 03.75.Be, 42.50.Vk, 32.80.—t, 32.80.Pj

I. INTRODUCTION

The deflection of an atomic beam from a laser stand-
ing wave (SW) has in recent years become a model sys-
tem for investigating the interaction between atoms and
an optical potential. Since a SW can diffract [1], focus

[2], or split [3] an atomic beam, this configuration has
been used or proposed for a variety of atom optical ap-
plications, including atom microscopy, lithography, and
interferometry [4].

Much of this study, however, both experimental and
theoretical, has focused on determining only the final mo-
mentum distribution acquired by the atoms as a result of
the interaction. Furthermore, with a few exceptions (e.g. ,

[5—7]), much work has been limited to approximate cases
in which the interaction has close analogies to conven-
tional (light) optics. In particular, the Raman-Nath ap-
proximation assumes that the interaction is short enough
that the transverse position of the atomic wave packet re-
mains unaltered while inside the SW. This case produces
a far-field position distribution that is well described in
terms of Fraunhofer diffraction of atomic matter waves
&om a thin phase grating [4].

We find that retaining the possibility of transverse
atomic motion in a direct calculation of the atomic posi-
tion and momentum distribution during and after the
interaction suggests new phenomena and applications.
Here, we outline a numerical study of the evolution of
an atomic wave packet within an arbitrary SW poten-
tial. With it, we show that the momentum distribution
predicted under the Raman-Nath approximation remains
valid for interaction times far longer than those required
to significantly deform the position wave function. We
demonstrate atomic localization or "focusing" in the near
field by propagating the wave packet through &ee space
immediately following a brief SW interaction, and show
how a subsequent interaction with a second SW can de-
Bect or split the atomic beam. We also propose and an-
alyze a splitting technique for pulsed beams of atoms in

which the spatial phase of the SW is shifted by a quar-
ter wavelength partway through the interaction time. Fi-
nally, we show that a one-dimensional SW interaction can
significantly compress the transverse momentum spread
of an atomic beam.

II. DIPOLE FORCE AND POTENTIAL

The relevant optical force on atoms in the absence of
spontaneous emission (a condition that can be met by
using large detunings from resonance) is the dipole force.
It arises when an atom in a laser's electric field becomes
polarized; the atom thus is subject to a force if a Geld
gradient is present. Quantum mechanically, this force
arises from momentum transfer between the atom and
laser field due to photon absorption and stimulated emis-
sion cycles. In a SW composed of counterpropagating
running waves, an atom that absorbs a photon &om one
of the running waves may be stimulated to emit the pho-
ton either back into the same wave or into the other. In
the first case, the atomic momentum does not change
over the cycle; in the second, it changes by 2hk, where k
is the optical wave number. The direction of the dipole
force can be understood most easily in the atom-field
dressed-state basis. One can show [8] that in the case of
negative laser detuning &om the atomic resonance, the
dipole force attracts ground state atoms to regions of high
field intensity (SW antinodes), and for positive detuning
to regions of low field intensity (SW nodes).

The dipole force is conservative, and is thus equivalent
to a potential. It is straightforward to show that for de-
tuning, A = ui „,—cu„, „„,, having a magnitude much
greater than the Rabi frequency, B(r), this potential has
the form [9]

h/O(r) f2

This optical potential is the Stark shift of a two-level
atom in an oscillating field; the potential thus depends on
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the strength of atom-Beld coupling. In a one-dimensional
SW with wave number Ic, the Rabi &equency varies in
space with the field amplitude as O(r) = Oo cos(ky),
where 00 is the Rabi &equency at a SW antinode and
y is the spatial variable. Therefore the optical potential
has the same spatial form as the SW intensity.

Spontaneous emissions act to destroy the spatial coher-
ence of an atomic wave packet, and thus must be avoided
in all atom optical effects that rely on interference. In this
work we do not include spontaneous emission: that is, we
assume that the inequality pt; t,P, & 1 is satisfied. Here,

p is the natural linewidth, t; t is the interaction duration,
and P, is the probability that the atom is in the excited
state. Note that it is possible to choose 4 and 00 such
that P„which is proportional to lOol2/62, satisfies the
inequality while maintaining the desired potential depth,
]fool'l&.

III. ATOMIC MOTION IN A STANDING WAVE

each dressed state acts as a single-level particle moving
in the optical potential given by Eq. (I). As a result, the
equation which must be solved is simply

z, +&(y) &(y)
BP(y) —h2 02

Ot 2m Qy2

in which P(y) is a dressed-state wave function and m is
the atomic mass.

We propagate the solutions of Eq. (2) through time
using the Crank-Nicolson method of numerical integra-
tion [10].We perform the evolution in position space, and
can then Fourier transform the result to obtain the corre-
sponding momentum distribution. Since this calculation
is one dimensional, the atoms and SW are not coupled
in the longitudinal (x) direction. We therefore assume a
constant atomic velocity in that direction, and simulate
a longitudinal SW cross section by varying the strength
of the optical potential with time during the interaction.

The scattering of an atomic beam &om a SW is shown
schematically in Fig. 1. The incoming atomic beam is
assumed to be perpendicular to the SW and to have neg-
ligible longitudinal velocity spread. Furthermore, it is
assumed to be in a minimum position-momentum un-
certainty state with transverse spatial coherence greater
than one standing wavelength. The atomic beam ac-
quires transverse momentum, p» as a result of the in-
teraction, and is thus deBected into one or more diffrac-
tion orders. In the "near field" immediately following the
interaction, before the atomic position wave packet has
evolved to match its newly acquired momentum distri-
bution, the atoms may interact with a second SW, &om
which they may be further de8ected. Note that laser
light of a given wavelength can form a SW of an arbi-
trary (but greater) period if the two running waves that
make up the SW are not antiparallel, but rather intersect
at an angle [2].

In order to calculate the motion of a two-level atomic
wave packet traversing a SW, we numerically integrate
the one-dimensional Schrodinger equation in the dressed-
state basis [8]. In this basis, under adiabatic conditions,
an atom entering the interaction region in one dressed
state will remain in that state throughout. Furthermore,

IV. BREAKDOW'N OF THE RAMAN-NATH
CONDITION
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As a first demonstration of this simulation method, we
show that the primary assumption of the Raman-Nath
approximation, that the position wave function is unal-
tered by the interaction, breaks down well before the final
momentum distribution predicted under that approxima-
tion becomes invalid. This result demonstrates the im-
portance of atomic motion within a SW for interactions
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FIG. 1. Schematic for scattering an atomic beam from one
or two standing waves, with coordinate axis definition.
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FIG. 2. (a) Momentum distribution from Raman-Nath cal-
culation with Az t; t,/4 = —12.0. (b) Momentum distribution
following interaction with the same parameters, but calcu-
lated using the method of Sec. III. (c) Dashed line: initial
wave packet from the calculation in (b). Solid line: wave
packet following the interaction, showing increased probabil-
ity near the SW antinodes.
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much shorter than one might assume kom observation of
the momentum distribution alone.

Calculation of the momentum distribution expected
under the Raman-Nath approximation is straightfor-
ward. Since the atom is assumed to undergo no trans-
verse motion, we can use the Schrodinger equation as in
Eq. (2) but without the kinetic energy (second spatial
derivative) term. The time-evolution operator for a SW
interaction of duration t;„t and with constant 00 is thus

URN(t;„t)= exp
I

——V(y) t;„

= exp
I

i — '" cos (ky) I
.

( . Idol' t;„t
)

Fxpanding URN(t;s, ) in Bessel function form, the a«m's
momentum distribution following the interaction is given

by

(pwlURN(~ t)l&) = ps exp
I

'"
I

Jo
I

'"
I
+2) i"J

I

'"
I
cos(2nky)

(ilOol t tl 'fl0ol t tl '. (IOsl

) &» ); "&» )

+ ) i"J„
I

'"
I ((py + 2nnkl@) + (ps —2nhkly))

(Iopl' t;„t l

where the final form follows because of the cosine factor's
action as a stepping operator in momentum space [11].
This result, for the parameters Oo2t;„t/6 = —12.0, ap-
pears in Fig. 2(a). (Units in this work are scaled in terms
of recoil values. Here, the recoil frequency u„, = hk2/2m
and the recoil time t„, = 2m/hk2. Furthermore, we as-
sume Ao to be real. ) As expected, the distribution is
composed of a number of discrete scattering orders, sep-
arated by 25k.

An interaction with the same parameters (specifically,
Oo2/6 = —485m„, and t;„t ——0.025t„,), but calculated
with the method of Sec. III yields the momentum dis-
tribution shown in Fig. 2(b). Although the momentum
predictions from the two calculations are virtually indis-
tinguishable, the position distribution obtained from the
second shows significant distortion. The initial position
wave packet appears as the dashed line in Fig. 2(c), while
the wave packet immediately following the interaction is
shown with the solid line. Note that the wave packet has
begun to localize into peaks at intervals of half a stand-
ing wavelength as the dipole force attracts the atoms to
the SW antinodes. Since the Raman-Nath approxima-
tion predicts no spatial deformation at all, it has clearly
broken down even after a very short interaction.

This eKect may have repercussions for recent propos-
als to determine the position of an atom in a SW via a
measurement in which the phase shift of the optical field
resulting from the interaction is monitored [12]. These
schemes require that the field does not act back on the
atom to alter its position wave function, and thus will be
valid only for extremely brief interaction times.

, p'„
Ur, (tr, ) = exp —— "tr,

h2m
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We find that the wave packet becomes strongly localized
in position in the near field shortly after the interaction.
As in the case of the localization within the SW described
in the preceding section, the free-space focusing occurs at
intervals of half an optical wavelength. Inside the SW,
the wave packet was attracted to the antinodes. How-

ever, the momentum imparted to the wave packet in the
SW provides a deQection such that after the interaction,
the wave packet localizes behind the SW nodes. Figure
3 charts the free-space evolution of a wave packet whose

V. LOCALIZATION IN THE NEAR FIELD

Following an interaction calculated using the method
of Sec. III, it is possible to determine the wave packet's
subsequent evolution through &ee space by applying the
momentum space kinetic operator

FIG. 3. Evolution of the wave packet in free space follow-

ing the SW interaction shown in Fig. 2. (a) Disappearance of
localization at SW antinodes after t; t ——0.0125t„,. (h) Con-
structive interference of deBected wave packet components
resulting in strong localization behind the SW nodes when

0.035t, , (c) At t;„& ——0.055t„„ the peaks are no
longer as sharp, but contain more of the atomic probability.
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position distribution upon leaving the SW is as in Fig.
2(c). At tx, = 0.0125t„„shown in Fig. 3(a), the wave

packet has smoothed out, nearly reconstructing its ini-
tial, preinteraction forxn. By tx, = 0.035t„, [Fig. 3(b)],
we observe localization into spikes with width 1/36 of
a standing wavelength. These spikes make up very little
of the total atomic probability, which is contained mostly
in the unlocalized baseline. However, by tf, ——0.055t„,
[Fig. 3(c)], the peaks have begun to spread out, and con-
tain a much larger &action of the probability.

Several groups have recently observed such near-field
focusing by passing an atoxnic beam through a SW, which
acts as an array of lenses, and depositing the focused
atoms onto a substrate [13,14]. These authors explained
their results using a sexniclassical simulation of atomic
trajectories in the dipole potential, but ignored eGects
due to the wave nature of the atoms.

VI. INTERACTION WITH A SECOND
STANDING WAVE

Once the wave packet has become well localized in the
near field following the interaction and &ee propagation
described above (but this time with tx, = 0.048t„,), we

may arrange for it to interact with a second SW. If the
potential of the second SW is offset froxn that of the
first by an eighth of a wavelength in the y direction,
the peaks in the wave packet will pass through regions
with a high potential gradient [see Fig. 4(a)]. The second
SW, for which Oo/b, = 18060~„, and t; t ——0.0061t„,

(i.e., Got;„&/6 = 110.8), thus exerts an asymmetrical
transverse force on the atom, whose resulting xnomen-

tum distribution after the second interaction appears in
Fig. 4(b). From this figure, it is clear that the SW has
efhciently deBected the atomic momentuxn by —1005k.

For He interacting with a laser tuned near the 2 Sq-
2 P2 transition at 1.083 pm, the velocity corresponding
to a transverse xnomentum of 100hk is 9 ms . Since a
typical (supersonic) beam of He atoms has a longitudi-
nal velocity of 1760 ms i [2], the deflection angle for the
mirror described above is thus 5 mrad. Such a deQec-
tion compares favorably with that reported for atomic
reflection from an evanescent wave mirror [15].

Next, consider a situation that begins with an initial
SW interaction identical to that in the previous case.
This time, however, the wave packet interacts with a
second SW whose period is twice that of the first and
for which Oo/b, = 72250m„, and t;„t ——0.0061t„, (i.e. ,

002t;„t/b, = 443.4). Now, successive peaks of the wave
packet pass through regions of alternating potential gra-
dient [see Fig. 5(a)], which exert equal but opposite forces
on difFerent parts of the wave packet. As a result, the
atomic momentuxn distribution is split into two widely
separated peaks, as shown in Fig. 5(b). This setup there-
fore acts as an eKcient atomic beam splitter. As such, it
produces output similar to that of the magneto-optical
beam splitter [3], which uses a magnetic field parallel to
a single SW to split an atomic beam into two narrow
outputs separated by 405k.

The relative amounts of momentum acquired by the
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FIG. 4. De8ection of an atomic wave packet by interac-
tion with two SW's. (a) Solid line: wave packet at time
tf, ——0.048t, after the first interaction. Dotted line: lo-
cation of the potential of the second SW with respect to the
wave packet. (b) Atomic momentum distribution following
the second interaction, showing strong deflection.
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FIG. 5. Splitting of an atomic wave packet by interac-
tion with two SW's. (a) Solid line: wave packet at time
t;„& ——0.048t„, after the first interaction. Dotted line: lo-
cation of the potential of the second SW with respect to the
wave packet. Note that the period of the second SW is twice
that of the Srst. (b) Atomic momentum distribution following
the second interaction, showing symmetrical bifurcation.
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atoms in the two examples above are straightforward to
explain. The depth of the optical potential of the SW
shown in Fig. 5(a) is four times that of the SW shown
in Fig. 4(a). However, since the period of the SW of
Fig. 5(a) is twice that of the SW in Fig. 4(a), the gradient
of the optical potential (and hence the dipole force) in the
second example is double that of the first.

Note that in the absence of spontaneous emission,
these deflection processes are coherent. Therefore the
output beams can be used for interferometric phase mea-
surements.

An experimental observation of these deflections would
require careful positioning and control of the SW's rela-
tive to each other and to the atomic beam. In particular,
the proper spatial phase relationship between the two
SW's is critical, and must be kept constant for the du-
ration of a measurement. Furthermore, the separation
between the SW's should be maintained quite carefully;
for the 4He case above, this separation is 320 pm. Such
a separation, while not much greater than the required
widths of the SW's, should be experimentally feasible.
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0
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VII. SHIFTED-POTENTIAL BEAM SPLITTER

We now describe a particular single SW interaction
that can act directly as a beam splitter as follows. First,
a pulse of atoms incident on a positive detuned SW is
allowed to become localized at the low-potential regions
(field nodes. ) Then, the spatial phase of the SW is shifted
by a quarter wavelength in a time short enough that the
atomic motion during the shift is minimal. After the
shift, the atoms find themselves at the high-potential
antinodes. Once again, they will be attracted to the
nodes, and thus acquire positive or negative transverse
momentum depending toward which adjacent node they
move.

In practice, the splitting process is slightly more sub-
tle than the simple scheme described above, particularly
when eBects due to a time-dependent SW cross section
are taken into account. We will follow an example inter-
action in detail to illustrate its basic mechanism. Con-
sider a wave packet with a transverse position spread of
1.2 optical wavelengths incident on a SW with a Gaussian
longitudinal cross section and a potential depth whose
mean value is Aoz/6 = 1210~„,. The duration of the
interaction is t;„~ ——0.195t„,. The dipole force attracts
the initial wave packet, shown as the dashed line in Fig.
6(a), to the SW nodes, at which the wave packet becomes
localized after t = (4/15)t;„~, as the solid line in Fig. 6(a)
shows. Its momentum distribution at this time appears
in Fig. 7(a). This localization is only transient, how-
ever, and by t = (2/5)t; i the wave packet has spread
to cover most of the regions of low potential [see Fig.
6(b)]. Its momentum distribution subsequently narrows,
as shown in Fig. 7(b). At this time, t,b'fg we shift the
phase of the SW by A/4, so that the wave packet, which
was mostly in regions of low potential, finds itself con-
centrated on potential hills. This phase shift cannot take
place instantaneously in order to avoid violating adia-
batic conditions; here the shift duration is t;„&/300. As

FIG. 6. Evolution of position distribution of an atomic
wave packet during a shifted-potential interaction. See text
for a description of each sub6gure.

the SW shifts, it exerts an extra transverse force on the
wave packet, which results in the slightly asymmetrical
profiles in Figs. 6—8.

The structure in the position distributions on a scale
much smaller than a standing wavelength is the result of
interference between various components with difFerent
momenta.
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FIG. 7. Evolution of momentum distribution of an atomic
wave packet during a shifted-potential interaction. See text
for a description of each subfigure.
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FIG. 8. Final momentum distributions for shifted-potential
interactions with the parameters (a) Ao /b = 1008id„„
t;nr ——0.314tre„ teh;fr

——(2/5)t;nr, (b) Ao/6, = 1008id„„
tint = 0 ~ 262tree& tehift = (2/5)tint ~

At and shortly after the time of the shift, the wave
packet is in the most intense part of the SW. It is thus
attracted strongly to the new nodes. The wave packet
can be seen moving away &om the new potential hills
toward the new nodes in Fig. 6(c), and its momentum
distribution, in Fig. 7(c), has clearly split. The fastest
momentum components in the wave packet have enough
time and energy to pass through the new nodes and be
slowed slightly by moving up the adjacent potential hills.
Since the intensity of the SW drops off quite quickly at
this point, the slower components are scarcely reflected
by these potential hills, and can thus "catch up" with
the faster parts. As a result, the 6nal momentum distri-
bution after the interaction, shown in Fig. 7(d), consists
of two fairly narrow but widely spaced clusters of diffrac-
tion orders, which together contain. over two-thirds of the
probability. Thus most of the atoms in the pulse will end
up in one of these two output beams in the far 6eld.
Figure 6(d) shows the final position distribution, which
spreads out as the confining optical potentials decrease.

Two other final momentum distributions, for the pa-
rameters shown, appear in Fig. 8 to give some idea of
the range of possible results. Speci6cally, it is possible to
produce fairly broad output beams that contain virtually
all of the atomic probability, or very narrow ones contain-
ing a somewhat smaller &action of the total number of
atoms, by varying the interaction parameters slightly.

Since this technique is quite sensitive to the time at
which the phase of the SW shifts, it is limited to very
short pulses. Alternatively, it could be applied to a small
cloud of cooled atoms that had just been released &om a
magneto-optical trap. In that case, a SW of large enough
diameter that the entire atomic cloud was within a re-
gion of nearly constant longitudinal cross section could
be turned on around the cloud. The SW intensity could
be given a Gaussian variation in time, and its phase could
be shifted at the appropriate time. Then, the two groups
of atoms that had received opposite transverse momenta
would separate as they fell under gravity.

For Cs in a SW tuned near its D2 line at 852 nm, the
required duration of the interaction in Figs. 6 and 7 is
t;„t ——1.5 x 10 s. Since the natural lifetime of the Cs
D2 transition is 3 x 10 s, a large detuning from res-
onance will be necessary to suppress spontaneous emis-

VIII. ATOMIC MOMENTUM COMPRESSION
BY A STANDING WAVE
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FIG. 9. (a) Initial (dashed) and final (solid) position distri-
butions for a wave packet passing through a negative detuned
SW antinode. (b) Initial (dashed) and Iinal (solid) niomen-
tum distributions for the same interaction, showing signi6cant
reduction in width.

Finally, we show that the transverse-momentum distri-
bution of an atomic beam passing through an antinode of
a negative detuned SW can be signi6cantly corn.pressed.
Consider an interaction for which Qo/b, = —1000id„,
and t;„t —— 0.025t„„and for which the SW has a
Gaussian longitudinal cross section. The wave packet,
whose initial position and momentum distributions are
shown as the dashed lines in Fig. 9, at first can spread
out to cover the low potential area around the antinode.
However, as it moves up into regions of higher potential,
it loses kinetic energy, and its momentum spread sub-
sequently narrows. We choose the interaction duration
such that the SW intensity has begun to drop off quickly
at this point; as a result, the wave packet does not re-
Qect f'rom the regions of high potential and thus regain
its transverse momentum.

The final position and momentum distributions appear
as the solid lines in Fig. 9. Because the momentum
profile has narrowed, the rate of transverse spreading of
the atomic beam is greatly reduced; that is, the beam
has become well collimated. As a result, this interaction
acts as the atom optical analog of a beam expander.

The initial wave function is a minimum position-
momentum uncertainty state, for which Ap„b, y = ti/2.
This uncertainty relation changes very little during the
interaction; the 6nal state is such that 6p„Ay = 0.545.
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IX. CONCLUSION

We have outlined a numerical method for calculating
the position and momentum distributions of an atomic
wave packet as it passes through a laser standing wave.
With this method, we have shown that the Raman-Nath
criterion breaks down for shorter interaction times than
one might infer from study of the final momentum distri-
bution alone. We have proposed a method for deHecting
or splitting a continuous atomic beam based on two SW
interactions applied in quick succession. Furthermore, we
describe a technique for splitting a pulsed atomic beam
with a single SW by quickly shifting the SW phase part-
way through the interaction. The coherence and high efB-

ciency possible with these schemes should make them at-
tractive candidates in atom interferometers that require
a large separation between the two paths. Finally we
describe an atom optical beam expander in which the
transverse-momentum spread of an atomic beam can be
compressed by passage through a SW antinode.
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