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Statistics of energy loss and charge exchange of penetrating particles:
Higher moments and transients
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Recent work on mean energy loss and straggling of ions in the presence of charge exchange has
been extended to higher moments. The transient behavior of charge-exchange straggling has been
determined as well as the skewness of the energy-loss pro61e. Formulas have been found for the two-
and three-state cases where terms that have been well known in principle could also be written in a
way that illustrates their respective origin. In addition to the frequently analyzed case of negligible
energy loss in charge-changing events, we also mention explicitly the opposite situation where all
energy loss is associated with charge exchange. The role of transients and skewness is very difFerent
in the two extremes. As in a previous paper by one of us, the notation has been kept general such as
to allow for both collisional and spontaneous events, and no distinction needs to be made between
charge exchange and change of excitation state. Finally we compare our calculations to recently
obtained experimental results.

PACS number(s): 34.50.Bw, 34.70.+e, 52.40.Hf, 61.80.Mk

I. INTRODUCTION

A general theory has recently been outlined for the
statistics of energy loss of charged particles in the pres-
ence of charge exchange [1,2]. The scheme was directed
primarily at swift particles penetrating thin layers of
matter, but it is sufficiently Qexible to also apply to parti-
cles interacting with surfaces as well as to other physical
situations that are governed by similar rate equations.

For a beam of swift particles penetrating through a
thin layer of material, quantities calculated include the
mean energy loss and its fluctuation (straggling). It was
found that, with increasing target thickness, the mean
energy loss approaches a linear dependence with a slope
independent of the initial charge state but an intercept
that does depend on the initial state.

It is well documented that charge exchange produces
a contribution to the spread in the energy-loss spectrum
which is not accounted for by conventional theory of col-
lisional straggling. The development of this area of re-
search is described in Ref. [2], including an extensive list
of references. For more recent related work see [3]. A
general expression was derived for the Quctuation in en-
ergy loss in the presence of charge exchange [2]. This
expression was found to be closely related to the zero-
thickness intercept in the mean rate of energy loss. For
the specific case of a two-state system with continuous
stopping, well-known results were reproduced.

In connection with an experimental study of the elec-
tronic energy loss of slow ions scattered &om surfaces,
the claim has been made that charge exchange may be a
major source of skewness in an energy-loss spectrum [4].
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That claim was supported by model calculations that
ought to represent a special case of the scheme outlined
in [1]. It is well established that for swift heavy ions,
charge-exchange straggling may overshadow collisional
straggling [5]. A similar statement applying to skewness,
if proven more generally true, would be of importance in
ion beam physics. In this paper we concentrate on deriv-
ing expressions for skewness in equilibrium and transients
for straggling. A detailed comparison with the results of
Ref. [4], which involves time-dependent transition rates,
will be published separately, including expressions for full
energy-loss spectra.

By way of analogy, one expects skewness introduced by
charge exchange to be related to the transient behavior of
charge-exchange straggling. The latter has been found to
be measurable recently in experiments with swift heavy
ions [6].

On the basis of these considerations, we found it de-
sirable to carry on the analysis performed in [2] to the
next moment. As a result, we determine the stationary
value of the skewness and the intercept of the straggling.
In accordance with previous practice, an explicit analysis
has been carried out for the particularly transparent two-
and three-state cases.

II. INPUT AND OUTPUT

The key input is a set of difFerential transition rates
dAlg(T)/dT between accessible projectile states I and
J, defined such that [dAlg(T)/dT]dTb't = btdAlg(T) is
the probability in a sxnall time interval bt for a transition
&om state I to state J under simultaneous loss of kinetic
energy (T, dT). In standard penetration theory [1], only
collisional interactions are considered so that transition
rates reduce to dAlg(T) = 1Vvdol~(T), where 1V is the
density of scattering centers, v the projectile velocity,
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and doi j(T) the differential cross section. The notation
in terms of transition rates allows for both spontaneous
and collisionally induced events [2].

The most general output is a transfer matrix
F(bE, t) = (Fig(bE, t)). Here FI1(bE, t)d(bE) is the
probability for a projectile occupying state I at t = 0
to occupy state J at time t and to have lost kinetic en-
ergy (b,E, d(bE)) by an arbitrary sequence of events.
F(bE, t) has been found to obey a generalized Bethe-
Landau formula [1]

OO

F(bE t) dk ik&E t[c}—A(k)j
2~—

the fluctuation and skewness of the associated spectrum.
These quantities may be determined from the moments

(bE")I = ) d(bE)(bE)"Fig(bE, t)

n

) ( ) (
t(C}—A(k))

)-
q c}ky k=O

where the index I indicates a dependence on the initial
state. The first and second moments were determined
previously [2] and were shown to reduce to

where QIJ = f dAIJ —bIg p& f dAII, and AI~(k)
f dAig(1 —e '" ). Equation (1) assumes the individ-
ual events to be statistically independent and transition
rates dAig(T)/dT to be independent of time.

The charge-state distribution FI~(t) at time t is ob-
tained from Eq. (1) by integration over b,E,

(bE)I ——)

(bE')I = )

dt'FI J (t')'P~,

dt'FIg(t') Wg

F(t) = e'~.

The matrix Q satisfies the important sum rule

) dt'

J,K,L

XPJKFKI (t )Pi:

dt"FI~ (t' —t")

(4)

) QIJ=0.
J

(2)

III. MOMENTS

Quantities of primary interest are the mean energy
loss, irrespective of the outgoing charge state, as well as

I

where P is a matrix characterizing the rate of energy loss
with the elements 'Pig = f TdAI~(T), and PI = p&'Piz
Similarly, M is a matrix characterizing fIuctuations in
energy loss with the elements Mi J = f T dAI~(T), and

The sequence of steps leading to Eqs. (3) and (4) was

outlined in [2]. When applied to the third moment it
yields

(bEs)I = ) ) —(Q" 'N) + 3 ) ) —) (Q" " [MQ P + PQ"M])
J n=l J n=2 v=O

oo ~ 71—3 v

+ 6):).—,):) (&" ' P& "P&"P) .
J m=3 v=O p, =O

t t
= ) dt' (e' ~ N)IJ + 3) dt'

0 0

dt" (e(' ' )~[Me' ~ P+ Pe ~ M])

+ 6) dt'

J
dt's/I (

(t' —t")c}P (t" t"')Q P t"'c}P)—

or
t t t

(bE )I = ) dt' Fi~(t')Ng+ 3 ) dt' dt" Fig(t' —t") [NqKFKI, (t")PI, +'PgKFKI. (t")NI]
0 J,K,L

t t t

+ 6 ) dt' dt" dt"' Fix(t' —t")'PgKFKI, (t" —t"') PI MFMiv (t'")7'iv,
J,K,L,M, N

where N is a matrix related to skewness with the elements Ayg = f T dAI J(T), and JVy = p& JVyJ.

IV. DIAGONALIZATION

Further reduction was found possible by use of the diagonal form of Q. With the eigenvalues q( ) of Q, the real
parts of which are nonpositive, the charge-state distribution may be written in the form [2]
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Fly(t) = ) FI(Jle'~ (6)

where the coefficients FI& can be expressed in terms of the eigenvectors of Q. The explicit form of FI& does not(v) ~ ~ (v)

enter so long as only charge-state equilibrium and approach to equilibrium are of interest.
This allows carrying out the time integrals with the result

(&E)I = ).) .& (t)F
J v

(&E )I = ).) pv(t)FIz Ms+2 ) ) p»(t)Fix ~zKFKLpL„, (7)
J v J,K,L v, p

(AE )I = ) ) 'Yv(t)Fig JVJ + 3 ) ) 'Yvp, (t)Fig M JKFKL~L + PJKFKL+L
J v J,K,L v, p

+ 6 ) ) gvpA(t)FI~ ~JKFKL PLMFMN~N,(&) (~) (v)

J,K,L,M, N v, p. , A

where

~-(t) = („)(e" —I)
q(v)

'Y (t) —v (t)
( l (~)q —q

z ~(t) —z,i(t)

It is easily verified that p»(t) and p„„&(t)are fully sym-
metric.

V. STATIONARY SOLUTION AND APPROACH
TO EQUILIBRIUM

At least one of the eigenvalues q(v) must always
be vanishing, as follows &om Eq. (2). Equation (6)
demonstrates that all but those contributions Fi(& (t)
that belong to vanishing eigenvalues q(v) decay to zero.
Hence vanishing eigenvalues determine charge-state equi-
librium, or

F»(~) (o)

where v = 0 denotes a vanishing eigenvalue.
The following analysis is formally based on the assump-

tion that there is only one vanishing eigenvalue. The
existence of more than one vanishing eigenvalue would
indicate a reducible transition matrix, i.e., separate sets
of states with all interset transition rates vanishing.

The equilibrium state must be independent of the ini-
tial state. Therefore we have

(o) (o) (o)+rJ =FKJ =+J

Evaluation of the moments Eq. (7) in the limit of large
t requires due consideration of all terms with vanishing
eigenvalues. Limiting values of p and p „have been
given previously [2]. For p„„p one finds

' t'/6 for q(A) q(v) q(p, ) 0
—t2/[2q(~)] —t/[q(~)]2 —I/[q(~)]s for q( l —q(Pl —0
(t + I/q( l + I/q("l)/[q("&q("&] for q("l = 0
—I/[q(~) q(v) q(l )] for all nonvanishing.

When all terms that vanish in the limit of large t are dropped, the nth moment reduces to a polynomial in t of order
n. From these expressions, cumulants can be formed which read

(&E)r = t) F( l'Pg —) ) '
(„)Fr &z,

((bE —(AE)) )I = t) F~ Ag —2t ) ) ' F~ TgKFKL'PI, +01,
J

where
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OJ= —) ) ' ()FJJMJ+2 ) ) "() (
)FJ(JPJKFKLPL

g JK,L vp

2 ).). („) 2 FJJ pJKFL( +FJ pJKFKL pL ) )
J,K, L v

q(v) )
Primes and double primes in a sum indicate omission of vanishing eigenvalues. Moreover,

((AE —(AE)) )J = t) FJ JVJ —3t ) ) ' FJ MJKFKLPL+FJ 'PJKFKLML
J J,K,L

6t —) ) '
( ) 2FJ 'PJFK 'PKLFLM

J,K,I, , M v

+6t ) ) ( ) ( )
FJ pJKFKLpLMFMNpN + (const)I~

q( )q(~)

where the intercept (const) J has not been evaluated explicitly.

VI. GENERATING FUNCTION

In Ref. [2], it was demonstrated that the expression f(s) = s (sl —Q), where 1 is the unit matrix, can serve as a
generating function for the sums over eigenvalues occurring in the above moments and cumulants. Indeed, kom the
Laplace transform of Eq. (6),

one readily deduces that F( ) = f(0) and

VA'th this, we find

I 1
( )

[
(v)]n &) dSn

q(V)
'

(AE) J = t Tr[f(s)P] + —[f(s)P]J,
d

88

((AE —(AE)) ) J ——t Tr[f(s)M] 4- t—Tr[f(s)P f(s)P]

d2 f' d
+—[f(s)M]J + [f(s)P f(s)P]J —

I

—[f(s)P]J
Id8 d8 (ds )

((AE —(AE)) )J = t Tr[f(s)N] + 3t—Tr[f(s)M f(s)P] + t Tr[f(s)P f(s)P f(s)P] + (const) J,
d2

all expressions being taken at 8 = 0. Here, the notations

Tr[X] = ) XJJ and (XP)J = ) XJJpJ
J J

have been used.

(MP) = ) FJ MJKPK, ('PM) = ) FJ PJKMK,
JK JK

(p ) = ) FJ pJKpKLpL, and (p )J = ) .p»pJ
JKL J

VII. SPECIAL CASES A. The two-state case

The following definitions will be used throughout this
section:

(P) =) FJ PJ, (M) =) FJ

(A') = ) FJ( )JVg, ('P') = ) FJ(')'PJK'PK,
JK

The generating function for the two-state case has been
given in [2]. Its derivatives are found to obey the relations

d
f(s)

d2
f(s)

s=O
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where A = Aq2 + A2q. All traces and intercepts can then
easily be evaluated and read

1
(&&) = t(p) + —(p —(p))

A
(9)

((&& —(&E)) ) = t(~) + t —((p ) —(p) )

+—(~i —(~)) + —(PI —(P))
1 1 2

A A2

A, (—(P') —(P)')

+A, [(P')I —(PI)']

((&8—(&E)) ) = tW) + t ((~ —(~))(p —(p)))

+t ((p —(p))(~ —(~)))

+tA, ((p —(p))')+(c 't)I. (11)

f. Ignoring energy loss in charge exchange

(&E)1 = t(flP1 + f2P2) + —'(Pl —P2),
A

An instructive limiting case is found by decoupling the
possible processes into either energy loss or charge ex-

change, i.e. [1,7],

dAI J(T)/dT = AIJ~(T) + ~IJdAI(T)/d~.

This makes the matrices P, M, and N diagonal and
causes the last term in Eq. (10) to drop out. Then, Eqs.
(9)—(11) reduce to

((&8 —(&&))')1 = t(f1~1 + f2~2)
2t

+
A

f1f2(P1 —P2)'

+—(Ml —M2)
2

A

f2(f2 4f1) (p p )21 2

((b,E —(b,E)) ), = t(flA'1+ f2JVg)

+ (~1 ~2) (Pl P2)
6tfl f2

A
6t
A2 flf2(fl f2)(P1 P2) 3

+ (COIlst) 1, (14)

2. Energy loss only by charge exchange

The opposite extreme is a situation where all energy
loss goes into charge exchange. Such a model was pro-
posed by Firsov [9] to describe electronic energy loss by
slow heavy ions in gases. In that case, all diagonal el-

ements in the three matrices vanish. For the two-state
system, the terms proportional to t read, then,

with f, = fl(0) = A21/A and f2 =—f2(0) = A12/A. The
corresponding relations for state 2 are found by inter-

changing indices.
Here, the expression Eq. (12) is contained in the results

of Ref. [2]; the equilibrium term proportional to t in Eq.
(13) is well known and was first derived in Ref. [8], while

the intercept was not previously known; in Eq. (14), only
the equilibrium term is given, which is also new.

((&& —(&E))') = t(f1~1 + f2~2) ——(Pl —P2)(fl Pl —f2P2)
A

((+E (+E)) ) t(f1+1 + f2+2) ——(Pl —P2) (fl ~1 —f2 ~2) ——(~1 —~2) (fl Pl —f2 P2)

124 2 2+
A2 (Pl P2) (flP1 + f2P2) (fl Pl —f2 P2).

These expressions difFer significantly from Eqs. (13) and (14).

(16)

B. Three-state case

In the notation of Ref. [2], and after introduction of the quantities

~»-=). ' (p»-pK. ) an«I=-). ~»,
K J

the expressions for the three-state case can be brought into the following form:

(17)
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((+@ (+E)) )I = t(~) + t ((P ) —('P) )
—2t) fJPJKEK + —(~i —(JH)) —) (~I —~J)

20,' 4o.+ .( ~ —( »' + . [('P') —('P )'] — . (('P') —(P)') + —(P)(P. —(P))

+—(('P ) —(P) )+ —).fJ&JK~K ——).~»P'J —(P))P /3

+ ) PIJ (~I ~J) + 2) ~IJ~J + (~I)
J

where a = gi J AI J p p Qi p I ) pl A32A21 +
A23A31 +A21 A31, and p2 and p3 are obtained from pi by
cyclic permutation. With this, fI = pI/p. The constant
terms in Eq. (18) were obtained from Eq. (9) by means of
computer algebra. The t-dependent terms are equivalent
to the result given in Ref. [2]. For the special case of
A 13 —A31 —0 that result reduces to the one given in
Ref. [10]. We have not evaluated the third moment for
the three-state case.

VIII. DISCUSSION

While the notation in this paper as well as in [2] has
been chosen such as to allow for collision-induced and/or
spontaneous events, conclusions will be made here for
collision-induced events only. For this purpose, we list a
translation of the above results into conventional nota-
tion in particle penetration,

dA = Nvdo', 'P = NvS, M = NvW, A = NvQ,

/4fi —f2/

N(cr, 2 + o21) 2f1
(19)

if the initial charge state was 1. This is to be compared
with the transient thickness for the mean energy loss
which emerges &om Eq. (12),

with indices added where appropriate. Here, N is the
atom density in the penetrated medium and v the pro-
jectile speed, S = f Tdo a stopping cross section, W =
f T2do a straggling parameter, and Q = f Tsdo a skew-
ness parameter.

A. Straggling
The first problem mentioned in the Introduction is

the transient in charge-exchange straggling. Ignoring the
terms containing MI, one deduces from Eq. (13) that for
the two-state case, charge-exchange straggling saturates
for

charge exchange. Then, Eqs. (13) and (14) reduce to

((&E —(&&))')
((&@—(&E))'). .. 3

(fi —f2) (Sl S2).
&12 + &21

(21)

This may be compared with the collisionally induced
skewness

((&& —(&E))')
((&& —(&&))') ..»

™(22)

for straight Coulomb stopping, where m is the electron
mass. In the energy range where Eq. (22) applies, that
ratio is much greater than Eq. (21), since stopping cross
sections are made up by energy losses (( mv2, and since
charge-exchange cross sections are of similar or higher
magnitude as energy-loss cross sections. Hence, for swift
ions, skewness introduced by charge exchange is negligi-
ble in comparison with the skewness introduced by vi-
olent Coulomb collisions. This is not too surprising in
view of the width of the Rutherford spectrum.

The situation is different in the opposite extreme where
energy loss is caused mainly by charge-changing events.
Here, the corresponding estimate based on Eqs. (15) and
(16) leads to

((&E —(&&))')
((&E —(&&))') ..„

6
(f1S1+f.S.),

+12 + 021

(23)

where the occurrence of the mean stopping cross section
on the right-hand side indicates that this term is much
more significant than Eq. (21).

In the low-velocity limit, which was dealt with in Ref.
[4], the above arguments concerning Coulomb stopping
do not apply and hence charge exchange does contribute
to skewness. This is consistent with the findings in Ref.
[4].

f2( Si —S2I
vt ))

N(o12 + t221) f1S1 + f2S2
(20)

C. Comparison with experiments
Unlike Eq. (19), this depends sensitively on the partial
stopping cross sections.

B. Skewness

Next, consider skewness. Ignore all collisional strag-
gling and collisional skewness as well as energy loss to

We apply the calculations presented for straggling in
the three-state case to experiments [6] using 17.6 MeV/u
Br + beams penetrating through 1 pm Si foils. The
states involved are Br + (1), Br + (2), and Br + (3)
with equilibrium occupations of 0.2, 0.4, and 0.4, respec-
tively. Brackets define the notation for the states. Stop-
ping powers are 4.06, 4.33, and 4.6 MeV/pm, respectively.
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These numbers were obtained by scaling the measured
average energy loss of 4.6 MeV with |Iz [6]. From an es-
timated mean &ee path of 0.5 pm for loss of an L-shell
electron one obtains a transition rate &om state 2 to state
3 of Azs ——2 (pm) . If only one-electron processes are
allowed (i.e. , Aqs ——Asq ——0), the remaining transition
frequencies can be extracted &om the equilibrium occu-
pations and read A23 ——A32 ——A2q ——2 and Aq2

——4, all
in (y,m)

Insertion of these numbers in Eq. (18) gives the equi-
librium straggling (Qz);h~,„——0.029 16 MeVz and a contri-
bution from the intercept b, (O )s,h,„=—0.0173 MeV .
Taking into account the Bohr straggling (QB ~, = 137
keV) finally leads to a total straggling of Qq t ——175 keV
which is to be compared to the experimental value of
0 pt: 178 keV. This excellent agreement is not unex-
pected since the transition frequencies input into Eq. (18)
were determined &om the same experiment to which we
compare the straggling number. The resulting equation
for straggling in this case reads

IX. SUMMARY'

We extended previously presented calculations on
mean energy loss and straggling of ions penetrating mat-
ter to the third moment. The general result is given in
Eq. (5).

For the equilibrium limit we derived general formulas
for the first three cumulants [Eqs. (8)] which we eval-

uated explicitly for the two- and three-state systems in
Secs. VII A and VII B, respectively.

We derived new expressions for the intercept in strag-
gling and for the equilibrium in skewness.

Finally we focused on the contributions coming &om
charge exchange for the two-state system in two limiting
cases (no energy loss in charge exchange and energy loss
in charge exchange only) and applied our results to re-
cently obtained experimental data involving three charge
states.
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