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Momentum-space calculation of electron-molecule scattering
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The momentum-space calculation of electron-molecule elastic scattering is described and illus-
trated as the first step in a program of electron-molecule scattering that takes all reaction channels
into account. The method is the analog for molecules of the integral-equation methods that have
had essentially complete success for structurally simple atoms. Although scattering is a single-center
problem in momentum space its multicentered nature in coordinate space results in the integral
equations for different orbital angular momenta being coupled. There are no restrictions in princi-
ple on the nature of the target molecule. For illustrative purposes the static exchange calculation
is supplemented by a phenomenological polarization potential that will be replaced by an ab initio
optical potential and coupled electronic channels in the planned development of a general scattering
method.

PACS number(s): 34.80.Bm

I. INTRODUCTION

Momentum-space methods in electron-molecule scat-
tering theory are attractive from two points of view.
First, differential cross sections are expressed in terms
of initial and final electron momenta so that the am-
plitudes involved in the calculation are directly re-
lated to experiment. Second, the electron-molecule sys-
tem has a single center in momentum space, whereas
a tractable coordinate-space representation is multi-
centered. The price paid for this is that in an orbital-
angular-momentum expansion, equations for different an-
gular momenta are coupled.

The momentum-space formulation of electron-atom
scattering [1] has led to fully converged numerical solu-
tions of the whole problem [2] in the case of one-electron
targets [the convergent-close-coupling (CGC) method]. It
is used in the coupled-channels-optical (CCO) method
[3], whose results are very close to CCC, and which gives
excellent agreement with very detailed experiments [4] in
a variety of cases, many involving electron spin analysis.

The application of the theory to molecules follows nat-
urally on this success. The framework remaining essen-
tially the same, the theory is nevertheless significantly
complicated in the case of molecules by the multicen-
ter nature of the potentials. In addition, processes non-
existent in atoms, such as rotational and vibrational ex-
citations, appear. On a more practical level, molecules
are often composed of many more electrons and nuclei,
dictating a larger number of computations and use of a
greater slice of available computer resources.

Many and various attempts at coming to terms with
these diKculties have been made, the solutions coming
generally through the use of approximations and sim-
plifications. A comprehensive review of the methods
available up to the year 1980 can be found in the ar-
ticle by Lane [5]. In particular, two ab initio methods
are described which have subsequently been developed

further. The B-matrix method has been developed by
workers such as Schneider et al. [6—8] and Burke et al.
[9]. The T-matrix expansion method of Rescigno et al.
[10—12] approximates the two-center molecular potential
by its projection onto a subspace of discrete Gaussian
basis functions. The Lippmann-Schwinger equation for
the T matrix is then solved using standard matrix tech-
niques. Within this framework direct, exchange, and po-
larization terms were used and the theory finally applied
to vibrational and vibrational-rotational excitation of Hz
[13—15]. More recently, several collaborators [16—18] have
introduced the Schwinger multichannel theory (SMC) for
use in electron-molecule scattering. Here the Schwinger
variational principle is extended to include multichannel
scattering along with polarization effects.

These various theoretical treatments are currently be-
ing applied to rotational and vibrational excitation, res-
onance processes, and to molecules much larger than the
hydrogen molecule, such as CH4, SF6, and Hz0. The re-
view article of Gianturco and Jain [19] reports the state
of the field as of 1986.

We have started on a program of calculations whose
final objective is to couple two electronic channels (the
elastic channel and one other observed channel) and to
treat remaining channels, including the ionization con-
tinuum, by adding an ab initio polarization potential to
the coupling potential. The present work describes the
elastic calculation for a general molecule and illustrates it
with a one-channel (static-exchange) calculation for the
hydrogen molecule, Hz. For comparison with experiment
we have included a real phenomenological polarization
potential, which is to be eventually replaced by the com-
plex, nonlocal ab initio polarization potential.

Electron-molecule scattering is reduced to an electronic
problem by the Born-Oppenheimer approximation, using
closure over the vibrational and rotational states. The
nuclei are assumed fixed at their equilibrium sites.

The formulation of the two-channel scattering problem
in momentum space is in terms of two coupled Lippmann-
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Schwinger integral equations in the three-dimensional
momentum variables. They are reduced to coupled equa-
tions in radial momentum variables by partial-wave ex-
pansions. Because the coupling potentials are not spher-
ical, equations for different partial waves are coupled.
For larger values of orbital angular momentum the non-
spherical aspect of the potential is obscured by the cen-
trifugal barrier, matrix elements that are off diagonal
in orbital angular momenta become negligible, and the
partial-wave equations become uncoupled. As the nurn-

ber of coupled partial-wave equations is increased the
solution converges.

The quantities involved in the coupled integral equa-
tions are the potential matrix elements of the Born ap-
proximation, on and off shell. Target states are expressed
in terms of the independent-particle model using self-
consistent-field (SCF) orbitals that are linear combina-
tions of primitive Gaussians centered at the atomic sites.
Direct and exchange matrix elements are calculated by
analytic angular and numerical radial integrations.

Here E0 is the energy of the incident electron. The
Hartree-Fock orbitals and corresponding energies are P~
and e~ respectively. The coordinate of the ith of % elec-
trons is r;. The coordinate of the nth of M nuclei is
R and the corresponding charge is Z„. The sum in Eq.
(4) is taken over the W/2 electrons with the same spin

projection.

III. THE PHENOMENOLOGICAL
POLARIZATION POTENTIAL

The static-exchange approximation omits the effect on
elastic scattering of real and virtual excitation of target
states. In order to compare our illustrative calculation
with experiment we represent the effect by a phenomeno-
logical polarization potential

V ~(r) = vo(r) + v2(r)P2(cos8).

II. THE LIPPMANN-SCHW'INGER EQUATION
In future work the polarization potential will be calcu-

lated ab initio. The forms used are

The electronic T-matrix element for scattering from
the molecular ground state l0) to a state li) is given tl]
in atomic units by the integral equation

(k'ilTl0k) = (k'ilVlOk) + ) d q{k'ilvl jq)

vo(r) =—

v2(r) =—

1 —exp

b-

(6)

1
x (qj Tlok).

Momenta are expressed in a body-fixed frame of refer-
ence. The electronic states of the molecule are given in
terms of the electronic Hamiltonian Hz,

where the spherical and nonspherical polarizabilities are
taken to be respectively up = 5.2 and a2 ——1.32. The
effect on the differential cross section of changing a and
6 and omitting v2 has been tested.

(e, —H7)lz) = 0.

The electron-molecule potential is V. The total energy
of the electron-molecule system is E.

We treat the molecular states in the Hartree-Fock ap-
proximation. In the present work

l
i) and j) are restricted

to the ground state. This is the static-exchange approx-
imation. We consider only closed-shell molecules. The
potential matrix elements consist of direct VD and ex-
change V~ terms. The coordinate-space representations
of the potentials tlj are

1
d'ri(&21») (»ldll)r0 r1

) ~ +11

lro —R„l '

IV. SOLUTION OF THE INTEGRAL EQUATIONS

We make the following partial-wave expansion of the
potential matrix elements.

(k'OlV lOk)

) (k'lL'M')(k'L'M'llVllkLM)(LMlk). (7)
LML'M'

The reduced potential matrix element is given by in-

verting Eq. (7).

(k'L'M'llvllkLM)

1
Vx(ro, ri) = —) .(Wi lri) Eo —

&q
— {roid'q)

r0 —r1

(4)

dk dk'(L'M'lk')(k'OlVlOk)(klLM). (8)

The reduced T-matrix elements are defined similarly.
The reduced Lippmann-Schwinger equation is
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(k'L'M'llTllkLM) = (k'L'M'llVllkLM)+ ). f dcici'(k'L'M'11&112™)
LII Mll

x
( )

(qL"M" ifTiikLM).

It is a set of coupled integral equations, which is solved

by matrix inversion after representing the q integration
by a quadrature rule. The solution is described in Ref.

P]
In practice as L increases the oE-diagonal potential

matrix elements decrease and become negligible after a
value Lo. For L & Lo the corresponding set of coupled
equations is solved fully. For L & Lo the potential is
essentially spherical and uncoupled integral equations are
solved for each L.

I

x„,y, z of R„ into the spherical representation, where
Yi (r) is a spherical harmonic. They are given by Table
I.

In detailing the computational form of the potential
matrix elements we abbreviate the set of indices gnpk by
a superindex i. Quantities labeled with i may depend
only on a subset of gnpk. Primed indices are used for
the complex conjugate orbital ((tiI. ~r).

The Gaussians in Eq. (10) are expanded in spherical
Bessel functions of imaginary argument i (z);

V. COMPUTATION OF REDUCED POTENTIAL
MATRIX ELEMENTS

e *'+ '~ = *l" + *l ) (—1) (4') (2n;rR;)

x Y*„(r)Yx(R, ).

The molecular orbital 4|I is represented by a linear
combination of "atomic" orbitals (LCAO) centered at the
nuclear sites R„. In the present calculation we use s and

p orbitals, expressing the p orbitals in the Cartesian rep-
resentation (see, for example, Snyder and Basch [20]).
The principles involved in refining the representation by
including d or f orbitals are sufficiently illustrated by our
formalism.

(rlPI) = ) g„r,s, e '"'"'+ "' ).Wpnimr Yim(r),
gnpk lan

(10)

where p labels the symmetry of the "atomic" orbital (e.g. ,

S, P, P„, P, ), k labels the atomic orbital, which is a
linear combination of primitive Gaussians, and g labels
the primitive Gaussian.
The coefBcients pp„~ transform the Cartesian repre-
sentation in terms of the components z, y, z of r and

We make use of the multipole expansion of the Coulomb
potential,

1
(12)= ) Y„'„(r)Yj,„(r')

A.
""

(k'L'M'[[vD[[kLM) = 8-''

«r'i I.(kr)i L'(k r)
0

M' Mx ) CI,, „"I, CI, ),I,Fp„(r), (13)

where the coeKcients C are Clebsch-Gordan coeKcients
and the functions F&„(r) are defined by

The reduced potential matrix elements of Eq. (8) are
evaluated by using the expansions (10)—(12) and perform-
ing the angular integrations. The reduced matrix element
of the direct potential is given by

ki ( )= 26c) cf dc'c'
q ) c;ic; i( —2) +ci (2cc;c'R;)ic(2cc; c'22; )

j=1 ) 1 1'
~xpC

pqstii

xp;i p,*, r'+ e '" + ' e "" + "Y*„(R,) Y(.(R, )

g(2l + 1)(2+ + 1)(21 + 1)(2P + 1) C2L2LkqCpppC(', )dtCpppC2Lk'titCppp

(2p+ 1) crlp ~&p pcs p» l'sp l'sp

2 ) f , ,c d(c' —R ) (14)

The quantities k (projectile momentum) and LM (projectile angular momentum quantum numbers) and the corre-
sponding primed quantities have the meaning assigned to them in (8).

The exchange potential (4) has separable and nonseparable terms. We treat the matrix elements of the corresponding
operators VsE and VNE individually.
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(k L M 1[VNEllkLM) = 8i ) ) (—1)
j=l Apilm

p(s t

dr' r' H„„(r')jL (k'r') e *~" + * ~i p(2n, r'R, )

x Y'((R, )p;I
(2l + 1)(2(o+ 1) rud+ooo+~dM'+pop

(2L~ + 1) pcs pcs lsI' IsL &

where

H&„(r') = ) (—1) drr +'
z jL(kr) e *'~ + "~ i (2ck, rR; )

~ I ~I I )

x Y.„(R, )p,',
(2l'+ 1)(2a + 1) xpq~ooo~rn'qM~ooo

(2L + 1) sAp nAp l'pL l'pL

The reduced matrix element of the separable exchange potential is

(k'L'M'11VsE
1
1kLM) = ) (&o &i )(0411~™)(k'L'M'I I&I )

where

(d, ((kLM) = j dkYzM(k)(d;(k),

= 2siL ) (—1) Y „(R, )p,', ,
i'l' m' cry

dr r2+l'~ (kr) e
—&k, i(s' +R,~)

(2(r + 1)(2l' + 1) „M ()()()

(2L+ 1)

Similarly for (k'L'M'11/I).
The reduced matrix elements of the polarization po-

tential are

VI. COMPUTATION OF CROSS SECTIONS

The differential cross section for exit channel i is

(k'L'M'
1 1

vp
1 1
kLM)

idrr jL(k-r)jL (k'r)vp(r), (20)
'7t 0

= (27r) —*1(k,ilT10kp)1',
( dO) k()

(22)

(k'L'M'
1 1

v211kLM)

2 L—L 2L+ 1 0MM 000
2L,( + g

2LL' 2LL'
TL M LM = (k, L M 11TllkpLM). (23)

where k0 and k; are the respective channel momenta.
We use an abbreviated notation for the reduced T-matrix
element, defined in analogy with (8):

«r'i L(kr)j I. (k'r) v2(r) (21)

l

0

1

1
0

1

1

0

1

0
0

1

0

0

QJ nlm.

~4~
—~4~+„

—g2 ]3
—~4~y„
;+2 I3
;/2 )3
—~4~z„
g4~/3

TABLE I. The Cartesian-spherical transformation coefB-
cients p„„~

(p'ilTI»o) = L L'*
TL' M' LM DMpDMI p I

LML'M' pp'

x YLp(&p) Yi*. (p'). (24)

We choose the positive z axis to be p0.
The differential cross section is

For target molecules in the gas phase we assume ran-
dom initial orientations and treat rotational excitation as
an adiabatic process. This is equivalent to averaging the
differential cross section over molecular orientations.

Following the work of Gallup [21] we transform our en-
trance and exit channel momenta k0 and ki, which are
expressed in the body-fixed kame, into momenta p0 and

p, in the space-fixed (laboratory) frame. The transfor-
mation is effected by the rotation matrices.
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(dO)
= 4x ) ) Q(21' + 1)(2L2+ 1)TL„M,L,~M~TL, M, I M,

LiMxL~Mqp, q L2M2L2M~p2

1 +M, Mz M~+M2+M~ Mq My+M2
p'ipse™ ~™2i+ 2 r 2J+ ) Lq L' J L

J
p I I I I

L L' 1 L' L J L I IP') L I (P'))

The integrated cross section for exit channel i is obtained by integrating the expression (25) over p;.

O;p ——4m 3 +M& M~ M&+M& +M~ M2 M&+M~ +p & & +& p &
LgMgLMg LgMgLMz ~ ~ 2J + ] Lg L J LLg J LLg J LLg J

Lg Mg Lg Mg Mi M2 L p, J

TABLE II. DifFerential cross
10 ' cm /sr).

sections for elastic scattering of electrons on Hq ( units are

Scattering

Angle (deg)
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180

SE
86.4
86.5
86.6
87.0
87.5
88.3
89.4
90.7
92.1
93.7
95.5
97.5
99.6

101.9
104.3
106.9
109.6
112.4
115.2
118.1
121.0
123.9
126.8
129.6
132.3
135.0
137.6
140.0
142.2
144.3
146.1
147.7
149.0
150.0
150.8
151.2
151.4

1eV

SEP
27.5
27.0
26.4
26.2
26.5
27.4
29.0
31.2
34.0
3?.4
41.3
45.9
51.1
56.8
63.1
69.9
77.1
84.7
92.6

100.8
109.1
117.5
125.9
134.2
142.4
150.3
157.9
165.1
171.8
177.8
183.3
188.0
192.0
195.0
197.3
198.6
199.0

SE
147.8
146.7
143.4
138.3
131.6
123.7
114.7
105.1
95.0
84.8
74.9
65.4
56.7
48.7
41.6
35.4
30.1
25.8
22.2
19.5
17.4
15.9
14.8
14.2
13.9
13.8
13.9
14.2
14.4
14.7
15.1
15.3
15.6
15.8
16.0
16.1
16.1

15 eV

SEP
336.7
312.7
263.0
218.3
185.4
158.4
135.0
116.1
100.6
86.8
74.9
64.9
55.9
48.0
41.2
35.3
30.2
25.9
22.4
19.5
17.3
15.7
14.6
13.9
13.6
13.5
13.7
14.1
14.6
15.1
15.7
16.2
16.6
17.0
17.4
17.5
17.4

100 eV

SE
74.7
72.1
64.7
54.1
42.4
31.3
21.9
14.6
9.45
5.96
3.69
2.26
1.36
0.789
0.440
0.236
0.125
0.0682
0.0397
0.0256
0.0201
0.0203
0.0244
0.0310
0.0394
0.0481
0.0546
0.0580
0.0598
0.0626
0.0676
0.0737
0.0796
0.0850
0.0904
0.0950
0.0968

SEP
391.3
280.1
164.4
96.1
56.5
33.1
20.1
12.4
7.92
5.11
3.32
2.14
1.33

0.800
0.443
0.237
0.121
0.0650
0.0377
0.0259
0.0199
0.0218
0.0247
0.0316
0.0397
0.0471
0.0545
0.0559
0.0590
0.0603
0.0658
0.0717
0.0766
0.0833
0.0859
0.0943
0.0882
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1 eV

FIG. 1. H2 elastic diKeren-
tial cross section for scat ter-
ing at Eo——1 eV. Theoretical:
solid curve, SEP; dashed curve,
static exchange. Experimental:
Q, Ref. [23]; E, Ref. [24];
Ref. [25].

(D

CU

A
0 I

20 40 60 80 100 120 140 160 180

Scattering Angle (Degrees)

VII. DISCUSSION

A. On method

(e, 2e) studies [22] have shown that, to a very good ap-
proximation, molecular wave functions require only S, P,
and D atomic orbitals in the LCAO description of the
molecular SCF orbitals of the target. We use this de-
scription without further approximation. The method's
applicability is, in theory at least, independent of molec-
ular orbital shape or size so it can be applied to nonlin-

ear, multiatomic molecules of any size. In practice, the
computation required is large and increases with molec-
ular size. There are ways around this problem. For large
molecules, it is only necessary to accurately represent
the valence orbitals, as the remaining orbitals, de6ning

an inert core, do not critically acct the scattering, pro-
vided they are normalized and orthogonal. This removes
the numerical problems which arise in the process of ex-
pressing the inner molecular orbitals in an accurate lin-
ear combination of basis Gaussians, by keeping otherwise
large primitive Gaussian exponents small. Large expo-
nents produce functions too peaked for accurate numer-
ical integration and numbers too large for the computer
to manage. In the case of hydrogen, no approximation of
this type was necessary as exponents were small enough
in any case.

It would be computationally advantageous if the calcu-
lation could be segmented into a product of a reaction-
dependent expression, made up of functions of the in-
cident and outgoing projectile momenta, and a static
factor containing complete structural information on the
molecule. This would allow a one-time calculation for

x10 3

C0
D
(D

CG

7
6

5

x10 3

2

FIG. 2. H2 elastic differen-
tial cross section for scatter-
ing at Eo ——15 eV. Theoretical:
solid curve, SEP; dashed curve,
static exchange. Experimental:

Q, Ref. [26];, Ref. [27]; A,
Ref. [28].

20 40 60 100 120 140 160 180

Scattering Angle IDegrees)
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x10

x10

O
0x10

0
x10

(D

x10

a

FIG. 3. H2 elastic differen-
tial cross section for scatter-
ing at Eo——100 eV. Theoretical:
solid curve, SEP; dashed curve,
static exchange. Experimental:

Q, Ref. [26];, Ref. [29]; A,
Ref. [30].

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Scattering Angle (Degreesj

e " i (2o.rR;) (27)

is negligibly small for all r. A cutofF value of u = 6 was
found to be suKcient in all cases.

Little variation was found in the differential cross sec-
tions as a result of the implementation of the different
forms for the polarization potential outlined in Sec. II.

the static functions which would be stored permanently
and then recalled repeatedly for the complete calculation
at different electron impact energies. This is in fact the
case for the evaluation of the direct V-matrix elements
in Eqs. (13) and (14). The Fp„ functions possess all the
structural detail of the molecule and do not depend on
reaction conditions. The greater part of the total compu-
tation time would be due to these functions if repeated
evaluation was required. This leads to a signi6cant sav-
ing in computer time. Unfortunately, the nonseparable
exchange matrix elements cannot be dealt with so easily
and repeated calculation of the full expression given by
Eqs. (15) and (16) is necessary.

The summation over o, y or p, ( in Eqs. (14), (19),
(15), and (16) is pivotal to the convergence of the total
calculation for the direct and exchange matrix elements.
The sum is terminated when the Gaussian-Bessel func-
tion product

The results were in general, and to a good approxima-
tion, insensitive to the differing parameter values and
radial structure of the models tested. Where a difference
existed, better results were obtained through the exclu-
sion of the nonspherical term in the truncated Legendre
expansion of Eq. (5).

B. On numerical analysis

Coupling between partial waves was observed to be-
come negligible beyond L = 6 to better than 1% ac-
curacy for the hydrogen molecule. Selection rules were
responsible for the fact that oR'-diagonal V-matrix ele-
ments with odd partial-wave quantum number L or L'
and M or M' g 0 were zero. All numerical integrations
were performed to an accuracy of at least 1%, usually
signi6cantly better. The quadrature meshes used at each
incident energy to solve the Lippmann-Schwinger equa-
tion were checked for stability against number of points
and range of integration. A range of 10 a.u. was found to
be universally adequate. 20, 13, and 10 quadrature points
were used at 1eV, 15 eV, and 100 eV, respectively. The
H&~M functions of Eq. (16) were interpolated using cubic
splines before substitution into Eq. (15). Once again the
error introduced was less than 1%.

TABLE III. Integrated cross sections for elastic electron scattering on H2 ( 10 cm ). Numbers in parentheses refer to the
percentage error.

Energy (eV)
1

15
100

Present results
1258.2
572.7
80.8

Expt. 1

704.0(16)
83.4(19)

Expt. 2

88.8(10)

Expt. 3'
1459.0(8)

Expt. 4
1420(13)

Expt. 5

554.0(18)

Expt. 6'

561.0 (13)
77.0(13)

Expt. 7g

717.0(20)
64.8(15)

Reference [26].
Reference [29].

'Reference [23].
Reference [24].

'Reference [27].
Reference [28].

IReference [31].
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VIII. RESULTS AND EXPERIMENTAL
COMPARISON

Table II gives the theoretical differential cross sections
for electron scattering from the hydrogen molecule at in-
cident energies of I eV, 15 eV, and 100 eV with (SEP)
and without (SE) polarization supplementing the static-
exchange model. Figures 1—3 show the curves at these en-
ergies. Experimental results are indicated. The dashed
line is for the static-exchange calculation and the solid
curve includes polarization. Integrated elastic cross sec-
tions at these energies are given in Table III.

It is clear that, even though approximate, the polar-
ization potential, at all incident energies, has a profound
effect on the cross section especially at forward scattering
angles. We conclude that virtual excitation is important
in electron-molecule scattering and must be described ac-

curately. Our intention is to further develop this method
with the inclusion of an ab initio complex, nonlocal polar-
ization potential. We expect that this will lead to better
agreement with experiment. Agreement at intermediate
to high energies and at backward scattering angles should
improve with the development of a complete theory tak-
ing all channels into account.
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