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We report the results of a depolarized interaction-induced light-scattering (DILS) experiment on gase-
ous neon at room temperature, from which the two- and three-body induced spectra have been extract-
ed. The two-body spectrum is in excellent agreement (in absolute units) with a previous determination
by Frommbhold and Proffitt [Phys. Rev. A 21, 1249 (1980)], while the three-body spectrum is a new re-
sult. The comparison of the three-body experimental spectral moments with a calculation performed
within the pairwise additivity approximation shows a discrepancy which is of opposite sign to that ob-
served in krypton. The calculations have been carried out including the first-order correction of the
Wigner-Kirkwood expansion in order to take into account quantum effects. We suggest that the oc-
curence of irreducible three-body effects may be due to more than one microscopic mechanism and these
can be usefully investigated by means of DILS spectroscopy.

PACS number(s): 34.90.+q, 33.20.Fb, 36.40.+d

I. INTRODUCTION

In principle, the microscopic properties of a system
composed of a large number N of interacting particles
can be described exactly by a N-body Hamilton function
containing all the kinetic- and potential-energy terms.
However, the formidable complexity of such an approach
has prevented, so far, any application of this method to
the study of the real systems. Very often, the overall
behavior of the system has been described, to an excellent
approximation, as that of a model system driven by the
so-called standard Hamiltonian, whose interaction poten-
tial term is pairwise additive. The closest experimental
equivalent to the standard model is represented by the di-
lute rare gases.

In condensed rare gases, while many properties are
well reproduced by the standard Hamiltonian up to the
liquid density (and over) [1], other properties show that
irreducible many-body contributions to the potential en-
ergy may play a significant role. As an example, we re-
m/ind that even the experimental third virial coefficient of
argon does not agree with the one computed within the
pairwise additivity (PA) approximation [2]. Moreover,
all rare gases form fcc crystals, while pairwise additive
models show a minimum free energy for the hcp struc-
ture, which is almost independent of the particular choice
of the potential [3]. It is well known that introducing an
irreducible triple-dipole term in the Hamiltonian
significantly reduces the discrepancy, but the change in
energy is not big enough to stabilize the fcc structure [4].

While the pair potentials of simple systems are now ac-
curately known [5], still very little information is avail-
able about the irreducible three-body term. Moreover,
the inclusion of many-body forces in the theory of fluids
implies a great deal of complication, and even computer
simulation becomes quite inefficient when irreducible
triplet contributions are taken into account [6]. As a
consequence, the whole body of the statistical mechanics
of dense gases and liquids has been developed in the
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framework of the PA approximation. In recent times, as
the accuracy of the available experiments has been steadi-
ly increasing, this simplified interaction model has shown
its limitations.

A convenient and widely used method for studying the
density evolution of the microscopic and macroscopic
properties of fluids is based on their representation in the
form of power series of the density. In general, starting
from the ideal-gas limit (linear behavior), one finds devia-
tions increasing first as the square of the density: at
sufficiently low density the probability that a third parti-
cle falls within the interaction range of the other two can
be considered negligible and the pair approximation ap-
plies. At larger densities, triplets contribute with a cubic
term. This cubic dependence is due partly to the sum of
pair terms and partly to irreducible three-body effects.
When the latter begin to play a role, the pair approxima-
tion breaks down.

Experimental evidence of the breakdown of the PA
model in dense gases and liquids has been highlighted, for
example, by neutron-scattering experiments [7,8]. At the
same time, depolarized interaction-induced light-
scattering (DILS) experiments performed on krypton at
room temperature [9,10] and on hydrogen at several tem-
peratures [11-15] have pointed out the occurrence of the
same situation. Of course, only experiments can give us
information on where the cluster expansion should be
truncated beyond the pair term, and this will depend on
the thermodynamic state. However, due to the relatively
good description that the PA approximation gives of a
dense system, it is expected that the irreducible three-
body term will be sufficient to bring good agreement be-
tween theory and experiments in condensed systems, even
at rather high density, within the present precision of the
experimental results.

The investigation has been carried out mainly by com-
paring the predictions of the pair approximation (often
by means of computer simulation) with the experimental
results. The DILS technique is of particular interest in
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the investigation of three-body effects in monatomic or
spherically symmetric molecular systems because the
zero-density limit, in this case, is the pair term of the den-
sity expansion and the first correction already contains
the triplet effects. However, the interpretation of DILS
experiments is more involved than for a neutron-
scattering experiment, because the effects of the irreduc-
ible many-body interactions appear both in the potential
energy function, which drives the microscopic dynamics
of the particles, and in the induced polarizability, which
produces the depolarized light spectrum. The two effects
cannot be easily separated. The DILS technique has been
widely studied in the past two decades, and a rather large
amount of data is now available for the rare-gas fluids
and some simple spherical molecular systems [16,17].

Argon has been the first system for which the PA ap-
proximation has been tested by means of DILS experi-
ments. The spectral data, taken at 298 K between about
4 and 1000 bars, were used to evaluate the density depen-
dence of the Oth and 2nd spectral moments with the cor-
responding classical computer-simulation results ob-
tained within the PA model [18,19]. In the simulations,
the same polarizability model which best fitted the low-
density pair data was used and a substantially good agree-
ment was found in the whole density range. The same
comparison was extended to the liquid phase with similar
results [18—20]. The conclusion is that for argon three-
body irreducible effects are very small and below the limit
of detectability with the present accuracy of DILS experi-
ments. However, when the same experimental investiga-
tion was extended to krypton, different results were
found. While for the Oth moment the discrepancy was
small, and of the same size as the joint uncertainties in
the experiment and in the calculations, a clear breakdown
of the PA hypothesis was observed in the behavior of the
second spectral moment. Here the discrepancy was
clearly beyond the errors that could be attributed either
to the experiment or to the simulation result, including a
possible uncertainty in the polarizability model [10]. A
similar conclusion was drawn by Egelstaff and co-
workers, after analyzing a neutron-diffraction experiment
on the same substance [7]. Therefore, it appears that for
krypton the PA approximation fails at relatively low den-
sity and irreducible three-body interaction terms should
be included in the theory in order to interpret correctly
the density dependence of the measured properties.

The hydrogen molecule is diatomic and, therefore, its
depolarized Raman spectrum results in a mixture of an
intermolecular DILS band with the intramolecular rota-
tional lines [14]. In spite of this fact, the translational
interaction-induced Raman band of hydrogen is measur-
able between w~10 and © =200 cm™! [11,12,15,21], and
this allows a satisfactory determination of the first DILS
spectral moments. The experimental determination of
the cubic term in the virial expansion of the DILS hydro-
gen spectrum was done both at 50 and 297 K and the
comparison with the theoretical results was carried out
on the first two (Oth and 1st) moments [22]. Here, the ob-
served discrepancy, between calculations and experi-
ments, is larger than the experimental error. Moreover,
while at 50 K both the computed moments are larger (in
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absolute value) than the experimental ones, the situation
is reversed at room temperature, where the calculation
gives smaller values than the experiment.

Finally, there is a substantial difference between the
effect found on krypton and that observed in hydrogen at
room temperature. For krypton, the computed values of
the second moment as a function of density are larger
than the experimental ones. This implies that a possible
irreducible three-body contribution has the same sign
(and increases the absolute value) as the PA term. For
room-temperature hydrogen the situation is reversed, and
the computed values of the three-body components
would give a density variation of the moments stronger
than the experiment. This means that, for hydrogen, the
likely irreducible contribution has an opposite sign with
respect to the PA term. In order to gain more insight
into this matter, it seems worthwhile extending the inves-
tigation to other systems, and, in particular, the rare
gases with smaller mass than argon.

On a purely experimental basis, neon appears more
manageable than helium for a light-scattering experi-
ment: although the atomic polarizability of both systems
is so small that the experimental determination of the
DILS spectrum is obtained only with great efforts, the
larger atomic polarizability of neon (almost twice than
helium) and the fourth power dependence of the cross
section on this quantity, make quite a difference between
the two systems. Moreover, both neon and helium are
expected to manifest non-negligible quantum effects [23].
However, as long as we deal with neon at room tempera-
ture, the first Wigner-Kirkwood correction is sufficient to
take into account quantum effects up to the second spec-
tral moment. Therefore, for this case, the interpretation
of DILS results is less questionable [24]. In this paper,
we report the results of an experiment from which the
three-body spectrum of neon has been obtained for the
first time. In Sec. IT we will briefly recall the basic formu-
las of DILS theory, while the experimental work is de-
scribed in Sec. III. The analysis of the results is reported
in Sec. IV, and the conclusions are the arguments of Sec.
V.

II. OUTLINE OF DILS THEORY

A more detailed account of DILS theory has been
given elsewhere [10]. Here we simply recall the results
which will be necessary for the discussion. The DILS
spectrum is the time Fourier transform of the autocorre-
lation function of the total polarizability tensor A of the
system, projected on the polarization directions of the in-
cident and the scattered fields. These are usually orthog-
onal and will be denoted with x and y. The relevant
correlation function for DILS is

Gy (D=(1/V)( 4,,(1) 4,,(0)) , ()

where V is the scattering volume. It is important to point
out that the statistical average, represented by the angu-
lar brackets in right-hand side (rhs) of Eq. (1), should be
carried out using the true Hamiltonian whose potential-
energy contribution can be cluster-expanded as



4604

2 ¢(2)

i<j

+ 3 ¢+ 2)

i<j<k

where ¢'*' and ¢'* represent the irreducible two- and
three-body potential-energy terms. Also, the polarizabili-
ty tensor A can be cluster-expanded as

d(ry, ..., 1x)=

A= Ea )+ 3 a? (r;,r;)
i<j

+ 3 L)+, (3)

i<j<k

where a'!'(r;) is the polarizability tensor, in the laborato-
ry reference frame, of the ith molecule whose center-of-
mass position is r;. Correspondingly, a(Z)(rlv,rj)
represents the excess polarizability of the pair (i,j), and
so on. Within the PA approximation, all terms beyond
$'* and a'? are neglected. For monatomic systems, like
the rare gases, the single-molecule term does not contrib-
ute to the depolarized scattering because of the spherical
symmetry. Therefore, the leading term of the correlation
function (1) becomes simply what arises from pair in-
teractions, namely,

ny(t)=(1/V)< S aBij0 3 alikL0) > @
i<j

where we shorten the notation writing (ij) in place of
(r;,r;). In the following, we will drop the subscript xy as
well as the superscript (2) in the polarizabilities. Here, it
is important to point out that the PA approximation re-
quires not only to neglect the term a ' in Eq. (3), but
also to compute the N-body statistical average on the rhs
of Eq. (4), discarding triplet and higher-order terms from
the potential energy of the system.

When the sums in (4) are worked out, three terms are
obtained, according to whether common indices appear
in the pair labels of the two tensor elements or not

G()=GP(12,)+G¥(123,0)+ G (1234,1) ,  (5)
with
GP(12,1)=[N(N —1)/2V{a(12,t)a(12,0)) , (6)
G¥(123,1)=[N(N —1)(N —2)/V]{a(12,t)a(13,0)) ,
@)
G™(1234,1)=[N(N —1)(N —2)(N —3)/4V]
X (a(12,1)a(34,0)) . (8)

Although these three terms exhibit an explicit density
dependence of the form n?, n3 and n* (n =N/V), re-
spectively, the implicit density dependence of the equilib-
rium distribution functions, which is used to perform the
statistical averages, must be taken into account in order
to write down the virial expansion for the correlation
functions G'”(¢) (i=2,3,4). For a homogeneous system,
this information is contained in the distribution functions
g{r,,...,r;}) [1]. For i=2, the pair distribution
function is
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g2(1,2)=g”(1,2)+ng?(1,2)+ - - - )

and analogous expressions hold for ;=3 and i=4.

We have now all the ingredients to write the correla-
tion function G (¢) in power series of the density within
the PA approximation [25]. This is

G(t)=G,(t)(n*/2)+G,y(t)n+ - - | (10)

with
G,(1)=V{al12,0)a(12,0)) , (1
and
G, () =V [{al12,t)a(13,0))
+(D{al12,0)a(12,0))'] . (12)

Taking into account that in an isotropic fluid, g'*'(r,,r,)
depends only on the distance r,,=|r;—r,], it is straight-
forward to compute the angular averages in Egs. (11) and
(12). Then, the two-body average operator { --- ){*
reduces to a one-dimensional integral and, in a similar
way, it is easily shown that the three-body average opera-
tors (---) and (---){» become triple integrals
whose expressions are known [26].

The triplet correlation function G;(¢), which is
represented by Eq. (12) within the PA approximation, is
then composed by two terms. The first one is given by
the correlation between the induced polarizability (pair-
wise additive) within a triplet. The second term origi-
nates from polarizability correlations within a single pair
which are dynamically influenced by the presence of a
third particle nearby. The first term is expected to give
rise to a cancellation effect (decrease of the depolarized
spectrum) due to a lesser degree of anisotropy in a triplet
than in a pair. This term is always negative for a dipole-
induced-dipole Lennard-Jones (DID-LJ) model [27]. The
second term, instead, tends to increase the depolariza-
tion, in general. This is positive, for a DID-LJ model, at
almost all temperatures, apart from a limited region
when the reduced temperature is around 1.5-2.0 [24]. Ir-
reducible three-body contributions to DILS, when
present, would add up to Eq. (12) and are provided both
by irreducible three-body polarizability and three-body
potential-energy terms. It appears very difficult, at
present, to assess the relative weight of the two contribu-
tions to DILS.

III. THE EXPERIMENT

Collision-induced scattering results in a weak depolar-
ized wing appearing at both sides of the polarized
Rayleigh-Brillouin spectrum. The intensity profile is al-
most exponential and the signal falls off rapidly with in-
creasing frequency shift (typical decay constants are from
10 to 20 cm™!). Basically, the experimental apparatus
employed for DILS measurements is a standard Raman
setup. However, the close proximity of the much
stronger elastic peak and the exponential decay of the
DILS spectrum, make essential requirements an intense
laser source, an efficient stray-light rejection of the mono-
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chromator and a detector with low and constant noise
level.

The green (A;=514.5 nm) beam of an argon-ion laser
was focused on the neon gas sample inside the pressure
optical cell [28]. Depolarized scattered radiation was col-
lected at right angle, dispersed by an 85-cm Czerny-
Turner double monochromator (Spex 1401) and detected
with a GaAs cathode photomultiplier tube (Hamamatsu
R943-02). The detector noise was found stable enough to
allow for a constant noise subtraction. Due to the small
scattering cross section of neon, as many as 15 h were
needed to acquire one spectrum keeping the statistical
uncertainty (after noise subtraction) within a few percent.
Thus, particular care was taken in controlling the stabili-
ty of the system during this time.

DILS spectra of gaseous neon were measured at room
temperature and seven different pressures up to 340 bar
with numerical density ranging from 2 to 7 atom/nm3
(PVT data were obtained from Ref. [29]). For each densi-
ty the spectrum was recorded on the Stokes side at fre-
quency shifts in the range 6—120 cm ™! with respect to
the laser line; the sampling step was 4 cm ! with an in-
strumental pass band of 2 cm~!. The frequency depen-
dence of the scattered signal was corrected for the rela-
tive efficiency of the apparatus and an absolute calibra-
tion was performed using the integrated intensity of the
rotational S(0) and S(1) Raman lines of hydrogen as an
external standard, according to

dzacoll(w) _ Dcoll(w)

—n do
dQdow B2 D, [S(D]

dQ}

(13)

S

where D (@) and D[S (J)] are the measured quanti-
ties [the DILS signal from the neon sample (counts/s) at
frequency shift », and the integrated intensity of Raman
scattering from hydrogen at density ny, (cm ™! counts/s),

respectively], while (do /dQ)g,, is the scattering cross
section of the rotational Raman line S(J) of hydrogen
which is accurately known [18,30].

The result of the experiment is a two-dimensional sam-
pling of the frequency and density dependence of the
depolarized scattering cross section of neon in the range
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FIG. 1. DILS depolarized spectra of room-temperature neon
at n=2.1, 5.0, and 7.1 nm™>. By expressing the frequency shift
in units 1/A (cm™!), D) turns out a dimensionless quantity.

specified above. The estimated uncertainty, taking into
account all the corrections and calibration procedures,
goes from 5% to 15 % increasing with frequency shift.
Some of the measured spectra are shown in Fig. 1.

IV. DATA ANALYSIS

As already discussed in Sec. II, two- and three-body
contributions to DILS can be separated by analyzing the
density dependence of the spectra. In particular, a poly-
nomial regression of the measured cross section as a func-
tion of density, at fixed frequency shift, allowed us to
derive both the pair and triplet spectral components ac-
cording to the virial expansion [31].

Dy(@,n)=D, (@)n*/2+D; (o), (14)

where D, (0)=(2/15) kok;G (), ko and k; are the in-
cident and the scattered wave vectors, respectively, and
G (w) is the time Fourier transform of G(t) defined in
Sec. II. It is worthwhile pointing out that, in the frequen-
cy range of the present experiment, no extra contribution
with respect to those explicitly written in Eq. (10) were
observed. This was proved by a careful analysis of the y*
values for different polynomial fittings.

Density analysis resulted in the determination, in the
explored frequency region, of the two-body spectrum
D, (@) and the three-body spectrum D; () in absolute
units (nm® and nm’, respectively). For frequency shift
beyond 70 cm ! the best fitting curves were quadratic so
that the three-body spectrum was found to vanish within
the errors. In Fig. 2 the two-body spectrum is plotted
against a logarithmic scale and compared with an in-
dependent experimental result reported by Frommhold
and Proffitt [32]. The comparison shows a good agree-
ment both in shape and in absolute values. The three-
body spectrum of neon is reported in Fig. 3.

Measurements of the two-body spectrum, which is
rigorously described by the pair theory, allow the deter-
mination of a model for the pair polarizability, once a re-
liable pair interaction potential is given. The coincidence
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FIG. 2. Experimental two-body spectrum of neon, in abso-
lute units, at T=296 K. The full squares represent the present
determination and are compared with the spectrum measured
by Frommbhold and Proffitt (full line) reported in Ref. [32].
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FIG. 3. Experimental three-body spectrum of neon, in abso-
lute units, at 7=296 K (full squares with error bars). The full
line represents the low-frequency exponential extrapolation.
One third of the area between the full and the dashed line
represents the estimated extrapolation error on the integrated
intensity (see text).

of the two pair spectra of Fig. 2 implies that the two-
parameter empirical model for the pair polarizability de-
rived by Frommbhold and Proffitt [32] can be consistently
used in the calculation of three-body spectral features in
the PA approximation. With this information, it would
be possible, in principle, to compute the three-body spec-
trum. However, while a theoretical calculation of the
pair spectrum is possible, either classically or using quan-
tum mechanics [33], this has not been exploited, to date,
for the triplet contribution, even within the PA approxi-
mation. The calculation is feasible, at present, only for
the first few spectral moments. The comparison with the
theoretical models can be carried out, for these quanti-
ties, even for moderately quantum systems [24].

We recall that the ith moment of the n-body spectrum
is defined as

M ==V =1)[d'G,(1)/dt"], _y= [ G,(0)w'dw ,
1=0,1,2,..., (15

where the definition of G,(w) follows immediately from
the Fourier transform of Eq. (10). Three-body moments
are obtained from the measured G;(w) and by calculation
of the time derivative of the three-body correlation func-
tion [cf. Eq. (15)]. The comparison of the two determina-
tions is a test of the PA approximation.

Following the procedure outlined here, we have evalu-
ated the first three moments of the experimental three-
body spectrum of neon. This is not a straightforward
task, because the accuracy in the experimental deter-
mination of spectral moments is affected by the extrapo-
lation of the spectrum in the frequency region where the
measurement is not possible. The evaluation of the
zeroth moment (the integrated intensity) is affected main-
ly by the extrapolation toward zero frequency. In fact,
the spectrum is known to deviate, at very low frequen-
cies, from the quasiexponential behavior, and a
significant portion of the integrated intensity comes from
the extrapolated region. On the other hand, at high fre-
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quency, a cutoff is imposed on the measured spectrum by
the weakness of the signal in the wings, which is particu-
larly severe in the case of neon. This requires to estimate
an extrapolation to infinite frequency and limits the num-
ber of the experimentally accessible moments.

To deal with these difficulties, we used the same extra-
polation procedure we have already tested on data from
previous experiments [15]. The low-frequency contribu-
tion to the integral was evaluated using the exponential
extrapolation as the best estimate for the zero-frequency
limit and considering as a lower limit the intensity at the
lowest measured frequency. One third of the difference
between the two extrapolations was added to the estimat-
ed standard error. For the high-frequency region we
have extrapolated to infinity by means of a two-
parameter function which accounts for the observed cur-
vature of the spectral shape in a semilog plot. A lower
limit for the extrapolation is determined by imposing a
purely exponential shape. The difference between the
two distinct contributions to the moments was added to
the estimated error. The contribution of low- and high-
frequency extrapolations is shown, for the case of the
zeroth and second spectral moment of the three-body
spectrum, in Figs. 3 and 4, respectively.

An alternative procedure, which was used in order to
check the internal consistency of our analysis, consists in
evaluating, for each density, the first few spectral mo-
ments M,(n). For the spectral moments a virial expan-
sion is possible (and rigorous) [25] so that experimental
two- and three-body moments can be obtained through a
density analysis analogous to that of Eq. (10). Best poly-
nomial fitting curves were obtained in the form

M(n)=,Mn*/2+ Mn* . (16)

Experimental points with error bars and the best fit are
reported, for the three spectral moments, in Fig. 5. Here,
the ratio of the spectral moments to the density is plotted
as a function of density, so that three-body effects appear
as deviations from a linear behavior. Such deviations de-
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FIG. 4. The generating function of the second spectral mo-
ment for the three-body spectrum of neon. The full squares
with error bars are the experimental points. The full line on the
left is the low-frequency extrapolation. On the right side of the
figure, the full line is the high-frequency extrapolation, while
the lower (dotted) line represents the exponential extrapolation
(see text).
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FIG. 5. Density behavior of the first three spectral moments.
The plotted quantities are the ratio of the moments to the densi-
ty (squares with error bars). The full lines represent the best
fitting to the data. As explained in the text, the deviations from
the pure pair contribution (dashed lines) decrease as the order of
the moment increases.

crease with increasing the order of the moment. This is
because of the increasing importance of the high-
frequency portion of the spectrum, which is mainly pro-
duced by pair interactions.

A comparison a posteriori of the results of the two pro-
cedures showed good agreement, within their respective
errors, and, therefore, we could proceed to the compar-
ison of the experimental moments with the theoretical
calculations obtained with the hypothesis of pair additivi-
ty of the interactions. As already stated, from this com-
parison valuable information can be obtained on the
weight of three-body irreducible terms as well as their
dependence on the system parameters or the thermo-
dynamic state.

The results of the analysis are reported in Table I. The
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quoted errors on the experimental results are estimated
standard deviations and include the uncertainty intro-
duced by the extrapolations. Calculated quantities are
also reported and include quantum corrections to the first
order in the Wigner-Kirkwood expansion. The model
chosen for the pair potential is of the Hartree-Fock-
dispersion (HFD) type with parameters derived by Aziz
[5]. For the induced polarizability, the two-parameter
phenomenological model by Frommhold and Proffitt
[32], the empirical model of Meinander, Tabisz, and Zop-
pi [16], and the long-range DID polarizability model are
used, respectively. The comparison of the results for the
various models confirms the well-known fact that the
DID approximation reproduces the correct dynamics
only at low frequency. In fact, as the order of the mo-
ment increases, the results for this model deviate more
and more from those obtained with the more realistic
phenomenological models. These, in turn, are in good
agreement with each other, and the differences between
their values may serve as an indication of the size of the
uncertainty due to the particular choice of the polariza-
bility model. In any case, the outcome of the comparison
with the experimental values is hardly affected by such a
choice. In particular, while the experimental zeroth mo-
ment is fully consistent with the PA calculation, a
disagreement emerges clearly for the higher-order mo-
ments. Although the uncertainties of the measured
values are quite large, mainly due to the magnitude of the
extrapolated contributions, the difference with the calcu-
lation is well beyond the experimental uncertainty. It is
very interesting to note that the deviation of the comput-
ed values from the measured ones has the opposite sign
with respect to that observed in krypton, thus indicating
that the irreducible three-body effects play a similar role
in neon and in room-temperature hydrogen.

V. CONCLUSIONS

We have reported the results of a DILS experiment on
gaseous neon at room temperature, from which we have
extracted the two-body and three-body induced spectra.
The two-body spectrum is in excellent agreement with
the previous experimental determination by Frommhold
and Proffitt [32]. The experimental three-body spectral
moments have been compared with a calculation per-
formed within the PA approximation, taking into ac-
count quantum corrections by means of the Wigner-
Kirkwood asymptotic expansion. The comparison shows
a clear disagreement at the level of the first and second
moment, which can be accounted for neither by a possi-
ble uncertainty in the polarizability model used for the

TABLE 1. Three-body spectral moments of neon. Experiment denotes this work. FP denotes the
polarizability model of Frommhold and Proffitt (Ref. [32]). MTZ denotes the polarizability model of
Meinander et al. (Ref. [16])). DID denotes the long-range dipole-induced-dipole polarizability model.

Experiment FP MTZ DID
My(107'2 nm'?) —6.5%1.3 —6.48 —6.45 —6.79
M(107"2 nm'?ps™!) —1.1240.46 —0.469 —0.481 —0.357
M,(107"2 nm'? ps™?) —87.0£37.0 —35.9 —36.8 —26.4
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calculations, nor by the errors of the experimental re-
sults. Such discrepancies are not new. What is interest-
ing to note here is that, in the case of neon, the absolute
value of the experimental second moment is higher than
the one computed within the PA approximation. There-
fore, the observed difference is of opposite sign of that
measured in room-temperature krypton. At the same
time, the difference on the first spectral moment of neon
has the same sign of the one observed in hydrogen at
room temperature.

The available information on the irreducible three-
body contributions to the microscopic dynamics of fluids,
obtained from the comparison between DILS experi-
ments and the calculations performed within the PA ap-
proximation, begins to provide a general picture of the
importance of these effects for the rare gases and hydro-
gen. However, it appears clearly that more experimental
results, on different systems, would contribute
significantly to the elucidation of the mechanism leading
to deviations from the PA approximation results. For in-
stance, while the comparison between the cases of argon
and krypton would suggest that irreducible three-body
effects in rare gases might increase with the atomic polar-
izability, the first measurement of the three-body DILS
spectrum of neon, here reported, shows that the situation
is more complex than expected. An extensive calculation
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[24], carried out on the DID-LJ model as a function of
the reduced temperature, has shown that a delicate bal-
ance between the two PA contributions to ;M; deter-
mines the size and the sign of the three-body DILS spec-
tral moments. It is then reasonable to suggest that a
change of sign in the effect attributed to the irreducible
many-body terms can be determined by a change of bal-
ance among different physical effects. The case of hydro-
gen represents, somehow, a unifying key for interpreting
the data. In fact, while room-temperature hydrogen data
behave similarly to the present data of neon, the experi-
ment at 50 K suggests a more close similarity with the
case of krypton. This is an implicit demonstration that
the temperature plays an important role in this phenome-
nology.

An extensive series of DILS experiment, carried out on
various systems and at different temperatures, has provid-
ed the evidence of the importance of irreducible many-
body effects. A correlation with experimental informa-
tion from other sources (e.g., neutron spectroscopy) could
be attempted. However, the amount of experimental
data is not so extensive to go beyond a qualitative discus-
sion. In any case, at present, the limitation appears more
on the theoretical side. We expect that these experiments
will induce more theoretical work in the field of irreduc-
ible many-body interactions.
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