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The target continuum has a large effect on electron and positron scattering to low-lying states of
atoms. In addition to ionization the continuum of positron scattering includes positronium-formation
channels. The equivalent-local coupled-channel-optical method is a numerically simple way of including
the continuum in a coupled-channel calculation. Here it is tested by its prediction of total cross sections
for continuum and discrete excitations on inert-gas targets.

PACS number(s): 34.80.Dp

I. INTRODUCTION

The study of electron scattering to low-lying states of
atoms has now reached the level of detail where all reac-
tion channels must be taken into account in a calculation
in order to achieve agreement with experiment. For a
long time it has been possible to treat discrete channels to
convergence by solving the corresponding coupled
differential or integral equations or by the R-matrix
method. Inclusion of continuum channels requires devel-
opments in methods.

The coupled-channel-optical (CCO) method [1] solves
coupled integral equations for discrete channels (P space)
to convergence using a coupling potential that includes
an ab initio polarization part describing the excitation of
the continuum. With different levels of detail the method
has had broad success for atoms whose structure can be
described by one or two active electrons, for example hy-
drogen, alkali-metal elements, helium, and magnesium.
The convergent-close-coupling method [2] constructs a
convergent discrete representation of the whole target
space and solves the corresponding coupled integral
equations. It has been applied to hydrogen, as have vari-
ous basis-dependent pseudostate methods [3], and to sodi-
um [4].

The implementation of the coupled-channel-optical
method that has the widest applicability at this stage
makes equivalent-local approximations [5] to the matrix
elements of the polarization potential for computational
feasibility. A first check on the validity of the method for
a particular target is to calculate the total cross section
for the target continuum. For electron projectiles this is
the total ionization cross section. For positron projectiles
we have in addition the total cross section for positroni-

um formation.
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Here the space of target states has been split into two
parts. The P space consists of all the discrete states |i )
including the ground state |0). The Q space is the con-
tinuum. Sufficient P-space states are included for conver-
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The polarization potential matrix element describing
excitation of the continuum contains amplitudes for exci-
tation of a particular continuum state from each of the
P-space states, integrated over the kinematic variables of
the continuum. In the equivalent-local implementation
this integration is performed by a multidimensional
method [6] using Cartesian momentum variables. The
excitation amplitudes must be approximated by analytic
forms in order to calculate the integrand at several hun-
dred thousand points. The total cross section for ioniza-
tion or positronium formation is calculated by including
the relevant polarization potential in a coupled-channel
calculation

In the present work we check the equivalent-local po-
larization potential by comparing calculations of total
ionization and positronium formation cross sections with
experiment and other calculations. The primary objec-
tive is to obtain a polarization potential that has credibili-
ty in a coupled-channel-optical calculation, rather than
to obtain the greatest possible refinement in calculating
the continuum cross sections. However, an early form of
the method [7] compared quite well with the distorted-
wave Born approximation for total ionization cross sec-
tions in electron collisions with atoms or ions. It is in-
teresting to see if good agreement with experiment can be
obtained with the present method, which emphasizes de-
tailed treatment of the coupling of important low-lying
channels at the expense of the more approximate analytic
treatment of the distorted-wave channel state.

II. DETAILS OF THE CALCULATION

The total cross section for excitation of the target con-
tinuum is calculated by solving the CCO equations [1]:

1
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I
gence at about the 1% level in the total cross section.
The total cross section is calculated by the optical
theorem, and the Q-space cross section is obtained by
subtracting the integrated cross sections for the P space.
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The optical potential ¥'? is the channel-coupling po-
tential ¥ plus a polarization potential W€ that describes
the excitation of the part of the continuum being investi-
gated.

The form used here for the matrix element of the po-
larization potential is
(ki | W9 jk)

_ 1
= 3 (KilV¥, ) ——r
ieo n E(+ )_En

(W), @)

where f‘l’(n‘)) represents the time reverse of the exact
state vector for a reaction starting in channel n. The no-
tation »n is a discrete notation for the three-body ioniza-
tion continuum or the two-body positronium rearrange-
ment channels. Spin dependence is implicit in the nota-
tion. We use the LS-coupling representation for that
which is due only to electron exchange.

The exact state vectors cannot be calculated. For ion-
ization the model used is

W, ) =lcy' " Nq.)qs ), 3)

where g, and g _ are the greater and lesser, respectively,
of the absolute momenta of the outgoing particles. Ion-
ization is described in the independent-particle model,
where ¢ is the remaining core and (r|¢' )(q.)) is a
Coulomb wave orthogonalized to the orbital from which
the electron is removed. If the slow particle is a positron
there is no corresponding orbital, and the appropriate
Coulomb wave is used. (r|q. ) is a plane wave. In this
model there is an analytic form [8] for the direct potential
matrix element. The exchange matrix element for the
case of an incident electron has a similar analytic form in
the equivalent-local approximation.
The model used for positronium formation is

W, ") =[c,Q) , )

where ¢, is the state of positronium, and Q is the
momentum of the positronium center of mass. The plane
wave (R|Q) represents the motion of positronium quite
well, since only short-range terms in the positronium-ion
potential survive.

In addition to the equivalent-local approximation for
the exchange amplitudes for an incident electron, a half-
on-shell equivalent-local approximation is made for the
whole polarization potential. This is necessary for com-
putational feasibility. The polarization potential matrix

element is calculated only at about ten points in the vari-
able K, where

K=|k—k'|, 1k’=E—¢,. )
This is achieved by an angular-momentum projection
(ki|WQjk)="3 U (K)Yp, oK) 6)

I"m"

The calculation is done for the complex one-dimensional
functions
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Cubic spline interpolation is used for general values of K.

A simple estimate [1] of the total cross section for ex-
citing states of Q space is given, instead of including all
the states of P space in solving the equations (1), by ap-
proximating the entrance-channel T-matrix element of (1)
by its driving term. This results in

0o =(2/k)(27)’ Im(kO| W'?'|0k ) . (8)

II1. EFFECT OF DISCRETE INELASTIC CHANNELS
ON CONTINUUM CALCULATIONS

In order to use the predictions of total cross sections
o for different parts of Q space to test the validity of the
corresponding optical potential, it may be consistent with
the rough validity of all the approximations to calcula-
tion o by the estimate (8) rather than the full solution of
(1.

We compare the two methods for the case of positron
scattering on helium, where P space includes the lowest
ten states. They are 1,2,3'S; 2,3'P; 3'D, 2,33S; and
2,33P. The configuration-interaction calculation of these
states is based on eight orbitals, namely 1,2,3,4s; 2,3,4p;
3d; and the pseudo-orbitals 5,p,d [9]. The CCO calcula-
tion includes polarization potentials in the couplings
1'5-11s,1's-2'P,2'S-2'S,and 2'P-2'P. Note that
triplet states cannot be excited by positrons, since they
require the exchange mechanism.

The comparison is shown in Table I. For both the to-
tal ionization o; and positronium-formation op, cross
sections the estimate (8) is quite close to the more de-
tailed calculation. For op, we calculate the formation of
positronium in its » =1 and 2 states. According to the
close-coupling calculations of Hewitt, Noble, and
Bransden [10], this is about 90% of the total.

IV. CROSS SECTIONS FOR HELIUM

The CCO model has been quite successful [11] in calcu-
lating total cross sections for sodium and potassium,
where the continuum is weakly excited. In the case of
helium, continuum cross sections form a large fraction of

TABLE I. Comparison of the Q-space cross sections for the
ten-channel positron-helium problem calculated by the CCO
method and Eq. (8).

o; (units of ma}) op, (units of 7ad)

E (V)  CCO Eq. (8) cco Eq. (8)
30 0.11 0.06 0.89 0.54
40 0.22 0.25 0.70 0.66
50 0.35 0.35 0.57 0.59
75 0.52 0.50 0.32 0.33

100 0.57 0.50 0.16 0.17
200 0.48 0.53 0.04 0.02
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TABLE II. Comparison of theoretical estimates of the total
scattering o, and total ionization o; cross sections for
electron-helium interaction with the semiempirical estimates of
de Heer and Jansen [12]. Units are ma3. Errors in the final
significant figures are shown in parentheses.

E (eV) o; (expt) o; (CCO) o (expt) o, (CCO) o, (CC)

30 0.074(3) 0.194 2.73(19) 2.83 2.54

40  0.192(7) 0.316 2.12(14) 222

50 0.269(10)  0.412 1.79(13) 1.81 1.63

80 0.374(14)  0.529 1.12(7) 1.12 1.02
100  0.391(18)  0.556 0.90(5) 1.00 0.84
200 0.358(16)  0.419 0.48(3) 0.50

the total cross section, which significantly tests the mod-
eling of the continuum.

We test the description of the ionization continuum for
electron scattering by comparing the total ionization
cross section o; calculated by the CCO method, as de-
scribed in Sec. III, with experiment. This comparison is
shown in the second and third columns of Table II. o is
calculated by subtracting the total scattering cross sec-
tion for the ten channels of P space o, from the total
cross section o  obtained from the optical theorem. It is
significantly too large.

The last three columns of Table II test whether the
overestimate of the Q-space cross section invalidates the
description of the continuum for calculations of the P-
space excitation. The calculation of o, by the CCO
method agrees closely with the semiempirical estimates of
de Heer and Jansen [12], and is better than the ten-state
coupled-channels (CC) method, which omits the continu-
um.

For positrons we test the description of the ionization
and positronium-formation continuum by the CCO
method. The total ionization cross section o; and the to-
tal positronium-formation cross section o p, are compared
with experiment in Tables III and IV, respectively. In
both cases calculated and experimental values are quite
close above about 50 eV. For o; the present model is
better for positrons than electrons. The major difference
is the presence of exchange amplitudes for electrons. The
equivalent local approximation is quite rough for these
amplitudes. For op, the present model is in semiquanti-
tative agreement with the experiments, and with the

TABLE III. Comparison of the CCO calculation of the total
ionization cross section o; for positron-helium interaction with
experiment. Units are 7a3. Expt. 1: data of Fromme et al. [13].
Expt. 2: data of Knudsen et al. [14]. Errors in the final
significant figures are shown in parentheses.

Energy (eV) Expt. 1 Expt. 2 CCoO
30 0.058(6) 0.033(7) 0.11
40 0.222(26) 0.174(17) 0.25
60 0.415(49) 0.42
100 0.501(60) 0.596(56) 0.60
200 0.444(52) 0.444(50) 0.53
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TABLE IV. Total positronium-formation cross section for
helium. Column headings are as follows. Expt 1: experiment of
Fromme et al. [13]. Expt. 2: experiment of Diana et al. [15]
(energy interpolations of a few eV are made in the data). CCA:
close-coupling approximation of Hewitt, Noble, and Bransden
[10]. Units are 7wa2.

Energy (eV) Expt. 1 Expt. 2 CCA Eq. (8)
30 0.43(5) 0.45 0.542
40 0.49(5) 0.463 0.658
50 0.49(5) 0.53(7) 0.340 0.586
80 0.36(4) 0.27(12) 0.237 0.287
100 0.31(4) 0.20(4) 0.200 0.173
200 0.10(4) 0.04(4) 0.014 0.022

close-coupling approximation of Hewitt, Noble, and
Bransden [10].

V. TOTAL IONIZATION CROSS SECTION
FOR INERT GASES

The total ionization cross section for both electron and
positron impact has been calculated for He, Ne, Ar, Kr,
and Xe. In the case of inert-gas atoms larger than helium
it is difficult to model the excited states accurately. We
therefore estimate continuum cross sections by Eq. (8).
This is justified for helium in Sec. III. Hartree-Fock or-

0.7

ionization cross section (ra)
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FIG. 1. Total ionization cross section (units of ma3) for elec-
tron and positron impact on helium. Experimental data for pos-
itrons are due to Fromme et al. [13] (circles) and Knudsen et al.
[14] (triangles). For electrons the data (asterisks) are due to
de Heer and Jansen [12]. Solid curve: present calculation for
positrons; short-dashed curve: positron calculation of Cam-
peanu, McEachran, and Stauffer [16]; and chain curve: present
calculation for electrons.
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FIG. 2. Total ionization cross section (a3 ) for electron and
positron impact on neon and argon. Circles represent the posi-
tron data of Knudsen et al. [14]. For electrons the data are
represented by asterisks: Rapp and Englander-Golden [17]; tri-
angles: Krishnakumar and Srivastava [18]; and diamonds:
Fletcher and Cowling [19]. The present calculation is represent-
ed by a chain curve: positrons; and a solid curve: electrons.

bitals are used to model the states of the target (relativis-
tic in the case of Xe).

The comparison of theory and experiment for He is
summarized by Fig. 1. In addition to the present calcula-
tion we have included the distorted-wave calculation of
Campeanu, McEachran, and Stauffer [16] for positrons,
which agrees closely with the present one.

The comparison for Ne and Ar is shown in Fig. 2. The
present method describes both electron and positron re-
actions for argon rather well, but for electrons on Ne
there is a shift of the peak, which does not occur for oth-
er cases here or in Ref. [7]. We suspect that the Hartree-
Fock calculation gives an unexpectedly poor description
of the ground state in this case.

The discrepancy between theory and experiment for
electrons on Kr and Xe (Fig. 3) is similar to that for heli-
um.

VI. CONCLUSIONS

The equivalent-local description of continuum cross
sections is reasonably good at energies above about 50 eV
in the case of helium, where the excitation of discrete tar-
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FIG. 3. Total ionization cross section (wa3) for electron and
positron impact on krypton and xenon. The notation is the
same as for Fig. 2. The short-dashed and solid curves for xenon
show the electron calculations for the relativistic and nonrela-
tivistic Hartree-Fock approximations, respectively.

get states may be described accurately. It is better for
positrons than electrons, the difference being the rather
rough equivalent-local approximation to the exchange
amplitudes for electrons.

For electron-helium scattering the total cross section
o, for the excitation of P space is well described by the
CCO calculation, including the equivalent-local polariza-
tion potential. This indicates that the errors in the polar-
ization potential are not large enough to cause difficulties
with calculations of P-space excitations in which the con-
tinuum effects are included. Omission of the Q space has
a significant effect.

For larger inert gases the quality of the calculations of
the total ionization cross section varies. It is good for ar-
gon, but inexplicably bad for neon. For all gases except
neon, theory and experiment tend to agreement above
500 eV. The bad description of neon reactions is prob-
ably due to a comparative failure of the Hartree-Fock
description for the target. The model predicts electron
and positron cross sections for krypton and xenon that
are too high at intermediate energies when loss of flux
from the entrance channel to discrete excitations is ig-
nored. It is not yet possible to calculate discrete excita-
tions accurately enough in these cases to test whether this
is the reason for the discrepancy.
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